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Introduction: Alzheimer’s disease and related disorders (ADRD) progressively

impair cognitive function, prompting the need for early detection to mitigate

its impact. Mild Cognitive Impairment (MCI) may signal an early cognitive

decline due to ADRD. Thus, developing an accessible, non-invasive method

for detecting MCI is vital for initiating early interventions to prevent severe

cognitive deterioration.

Methods: This study explores the utility of analyzing gait patterns, a fundamental

aspect of human motor behavior, on straight and oval paths for diagnosing MCI.

Using a Kinect v.2 camera, we recorded the movements of 25 body joints from

25 individuals with MCI and 30 healthy older adults (HC). Signal processing,

descriptive statistical analysis, and machine learning techniques were employed

to analyze the skeletal gait data in both walking conditions.

Results and discussion: The study demonstrated that both straight and oval

walking patterns provide valuable insights for MCI detection, with a notable

increase in identifiable gait features in the more complex oval walking test. The

Random Forest model excelled among various algorithms, achieving an 85.50%

accuracy and an 83.9% F-score in detecting MCI during oval walking tests. This

research introduces a cost-e�ective, Kinect-based method that integrates gait

analysis—a key behavioral pattern—with machine learning, o�ering a practical

tool for MCI screening in both clinical and home environments.

KEYWORDS

Alzheimer’s disease, mild cognitive impairment, human motor behavior, gait, depth

camera, machine learning, signal processing

1 Introduction

Alzheimer’s disease (AD) and related dementias (ADRD) are progressive
neurodegenerative diseases marked by neuronal damage and deterioration, leading
to substantial cognitive impairments and affecting cognitive functions such as memory,
language, and problem-solving. In addition, many individuals with ADRD have gait and
balance deficits (1–4). As of 2023, approximately 6.7 million individuals in the United
States aged 65 and above are estimated to live with AD, with projections indicating that
this number is expected to swell to 13.8 million by 2060 (2). Despite ongoing research, a
cure for ADRD remains elusive, underscoring the critical importance of early detection
for managing and slowing its progression.

Mild Cognitive Impairment (MCI) is often characterized as a transitional stage
of cognitive decline that exceeds the normal cognitive changes associated with aging
(5) and frequently represents the earliest identifiable stage of ADRD (6). Individuals
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with MCI due to AD exhibit AD pathology biomarkers and face
a significant risk of transitioning to clinical AD dementia, with an
annual progression rate ranging from 10% to 15% (7). Furthermore,
MCI is also prevalent among patients with Parkinson’s disease
(PD), representing a significant subset of this population that may
transition to PD dementia. Recent studies have begun to explore
biomarkers that differentiate between PD patients with and without
MCI, enriching the understanding and potential intervention
strategies for these conditions (8). MCI may also represent early
stages of vascular cognitive impairment, and in some cases may not
progress to dementia.

In clinical settings, current diagnostic procedures involve
a collection of tests, including magnetic resonance imaging,
positron emission tomography, lumbar puncture, blood tests, and
neuropsychological evaluations, which can provide comprehensive
information for the diagnosis of MCI and ADRD among older
adults (9, 10). Although these clinical tools offer comprehensive
insights into the cognitive status and underlying causes of
impairment in older adults, they are expensive, invasive, and time-
consuming, requiring clinical expertise (9) and less frequently
used in the primary care setting. The diagnosis process also has a
significant subjective component and depends on the knowledge
and experience of the clinician or researcher. Recent reports
support that detection of early stages of ADRD and MCI is
challenging outside of specialty centers, with most cases recognized
in the primary care settings at the moderate stage of impairment
and nearly 80% of MCI cases not diagnosed at all (11, 12). A
comprehensive neurological and neuropsychological evaluation is
the standard in memory care centers but are less common in
primary care. Thus, developing new technological tools with lower
cost, easy-to-set, and objective decisions can increase the likelihood
of early detection of MCI and AD in the primary care setting. This
has advantages for health disparity populations, who may not have
access to specialists or expensive technology.

Gait and balance assessments are commonly examined in
the primary care settings and are emerging as promising tools
in this context for MCI and ADRD detection (13). Gait, a
fundamental human function, is integral to daily life activities
and involves complex cognitive processes (14). As a routine
activity, gait necessitates the integration of attention, planning,
memory, and various motor and perceptual functions (15). This
intricate interplay between cognitive and motor functions makes
gait analysis a potentially valuable behavioral marker for early
detection of cognitive decline. By focusing on gait patterns, we
can tap into these underlying cognitive processes, offering a non-
invasive and insightful window into the cognitive health of older
adults.

Previous studies have primarily concentrated on exploring the
association between gait features andMCI or textcolorblackADRD,
aiming to identify potential biomarkers for their detection (16, 17).
These studies typically employed electronic walkways, wearable
sensors, or systems comprising multiple infrared cameras with
reflective markers attached to participants’ bodies for gait recording
(17, 18). However, their analyses were confined mainly to
descriptive statistical evaluations of gait data to identify possible
biomarkers for MCI or AD. Such gait recording systems, often
requiring specialized setup and being costly, are generally limited to

clinical environments. During gait tests, they also tend to overlook
the tracking and recording of movements across various joints and
limbs, which could yield more comprehensive insights and novel
biomarkers for MCI and ADRD detection.

The majority of these clinical studies have focused on straight
walking, primarily due to the limitations of their recording systems,
such as computerized pressure mats, or have restricted their
analyses to the Timed Up and Go test (TUG), which includes
only brief turning sequences (19, 20). While a few studies have
ventured into developing machine learning methods to detect MCI
or ADRD using straight walking data captured with these recording
systems (21, 22), they have not extensively explored gait analysis in
varied conditions like oval and straight walking paths using non-
wearable technology. Such an approach could potentially eliminate
the influence of recording systems on the natural gait pattern of
participants.

Furthermore, a comprehensive analysis comparing machine
learning techniques to objectively assess older adults’ cognitive
status through straight and oval-path walking remains unexplored.
While gait analysis combined with machine learning shows
promise as a tool for detecting MCI in older adults, there is a gap
in research regarding the application of non-wearable technologies
in diverse walking conditions and the comparative evaluation of
machine learning methods in this context.

This study introduces a novel and substantive advancement
in gait analysis by developing a new system utilizing the Kinect
v.2 camera. Traditional methods for gait analysis often rely on
computerized pressure mats, which are long force plates allowing
a person to walk as they measure gait, multicamera video-based
motion capture systems combined with markers mounted on the
body, and wearable sensors (23–25). Each of these technologies
provides valuable quantitative measurements of gait and balance,
but they also have limitations. Computerized pressure mats can
provide precise measurements but are costly and require dedicated
space, limiting their accessibility and feasibility in various settings.
Wearable sensors present challenges in consistent device placement
and calibration and may not reliably capture comprehensive gait
markers such as spatial parameters like step width. Marker-based
camera systems (multicamera video-based) require the placement
of multiple cameras and a collection of reflective markers on the
body, which can be cumbersome and invasive for participants.
Additionally, synchronizing multiple cameras and the overall cost
of such systems pose significant challenges. Given these challenges,
depth cameras offer significant potential for an accessible and
comprehensive movement assessment. Kinect v.2 depth camera, a
non-invasive and non-wearable technology developed byMicrosoft
Corporation, can track 25 body joints more than conventional
gait recording systems (see Supplementary Table S1 for detailed
features). It employs Time of Flight (ToF) technology for depth
measurement, offering enhanced performance, accuracy, and a
broader field of view. The Kinect v.2 is particularly effective within
a measurement range of 0.5 to 4.5 meters. It can simultaneously
detect and track up to six individuals, making it highly suitable
for detailed gait analysis in varied settings. It also offers the
dual advantage of not influencing natural gait patterns during
testing and addressing privacy concerns by relying solely on joint
movement data without needing actual image data. This makes our
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system less costly andmore accessible, making it suitable for clinical
and non-clinical environments.

Our proposed system’s contributions are multifold. We extract
a comprehensive set of gait features using recorded signals of
25 main body joints detected and tracked by Kinect v.2 camera,
including both macro and micro-level details, to provide richer
insights into the gait of older adults. By comparing gait patterns
in straight and oval-path walking, our approach enhances the
understanding of the sensitivity of different gait tests in detecting
MCI. The integration of signal processing, descriptive statistical
analysis, and machine learning in our methodology not only
differentiates healthy older adults and those with MCI but also
increases the accuracy and sensitivity of the diagnosis. Further, our
system optimizes the detection process by focusing on a smaller
yet more powerful set of unique gait features for MCI detection,
facilitating faster and more efficient diagnosis. Ultimately, this
novel system holds the potential to significantly increase the early
detection of cognitive impairment in older adults at the MCI stage,
potentially preventing progression to ADRD.

2 Materials and methods

2.1 Participants

A total of 55 adults 60 years or older, including 30 healthy
control (HC) without any cognitive impairment and 25 older
adults with MCI, were enrolled in the present study. The MCI
participants were the clients of Iran Dementia and Alzheimer’s
Association (IDAA) who underwent a comprehensive diagnosis
process including neuropsychological tests, Magnetic Resonance
Imaging (MRI), and EEG by a medical expert board of that
center. The HC group consisted of the clients of the IDAA who
visited the center for regular checkups, participated in prevention
programs held by the IDAA, and were community volunteers. Of
the HC participants, 17 were IDAA clients, and 13 were community
volunteers. The HC group also underwent various checkups and
diagnosis protocols by the center’s medical expert board. The
participants noticed our study using the IDAA center or responded
to notices and announcements about the study being published in
different communities.

The inclusion criteria for the participants were people who
could perform the gait tests independently. Also, they had no
stroke or knee or hip displacements, which could affect their
common gait patterns. The people who have severe depression were
excluded from the study, and the depression level was measured
by the Persian version of the Geriatric Depression Scale (GDS).
Further, the Persian version of the Mini-Mental State Examination
(MMSE) and Montreal Cognitive Assessment (MoCA) were used
for cognitive screening of participants. The demographic and
clinical information of the participants in this study who completed
all the gait tests is presented in Table 1. The ethics committee of
Semnan University of Medical Sciences of Iran confirmed the study
under Protocol No. IR.SEMUMS.REC.1398.237, date of approval
2019.12.17, and performed in line with the Declaration of Helsinki.
Before participating in the study, comprehensive information about
the study was presented to the volunteers, and they could leave the
study at any stage they wanted.

TABLE 1 Demographic and clinical information of participants.

Characteristic HC
(N = 30)

MCI
(N = 25)

p-value

Age (years) 68.33± 2.15 69.76± 6.45 0.091

Female gender, N
(%)

18 (60) 19 (76) 0.216

BMI (kg/m2) 24.51± 2.67 26.67± 2.62 <0.001∗

Years of education 13.53± 3.05 11.56± 3.00 0.008∗

MMSE 28.50± 1.17 25.60± 1.29 <0.001∗

MoCA 27.13± 2.05 22.76± 1.69 <0.001∗

GDS 1.43± 1.33 3.52± 1.29 <0.001∗

Mean ± standard deviation was shown. N, Number of participants; HC, Healthy Cognitive

Control Group; MCI, Mild Cognitive Impairment; BMI, Body Mass Index; MMSE, Mini-

Mental State Examination (maximum score, 30); MoCA, Montreal Cognitive Assessment

(maximum score, 30); GDS, Geriatric Depression Scale (maximum score, 15). The gait feature

analysis was adjusted for the confounding variables of BMI, education, and GDS. ∗Significant

difference at p-value < 0.05.

2.2 Gait measurements

The 10-meter-walking test, a standard gait test at clinics (26),
was recorded from the participants in the single-cognitive task
condition for straight and oval paths. Supplementary Section S2
provides details of the oval path. The participants were given
instructions before performing these gait tests, and they could
practice the test three times before the trial recording process.
The participants walked at their preferred gait speed without
support from the recording and healthcare team and did the
gait tests independently. They rested up to 5 min between the
recordings as they needed. Participants selected their preferred
direction–clockwise or counterclockwise–for the oval walking
test, enhancing the authenticity of gait data by accommodating
natural walking tendencies and reducing potential performance
anxiety.

A single Kinect v.2 camera, a depth camera from Microsoft
Corporation, was connected to an ASUS-FX503 laptop with
Intel Core i7-7700HQ CPU@2.80 GHz 2.80 GHz processor
and 8.00GB of Installed Memory (RAM). The Kinect camera
was mounted on a tripod next to the recording paths, and
the recording process was controlled by a Graphical User
Interface (GUI) developed in MATLAB 2019. We have included
detailed information about the open-source tools and software
packages used in our research to record and process data in the
Supplementary Section S3. The Kinect v.2 camera can detect and
track 25 joints of the participant’s body and record the RGB
and depth data (27, 28). The accuracy of pose estimation with
Kinect v2 is influenced by the type of activity, camera setup,
and environmental factors. Supplementary Section S4 details our
data collection methodology and the reliability of our analysis,
emphasizing how we carefully controlled environmental variables
and optimized camera settings to ensure reliable data collection in
a clinical research setting.

Figure 1 shows the recording tools and settings, and 25 of the
body’s joints can be detected and tracked by a Kinect v.2 camera. In
this study, we used only the skeletal data, which are the signals of
movements of the body joints detected and tracked by the Kinect
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FIGURE 1

Recording tools and sample data. (A) Kinect v.2 camera connected to a laptop. (B) Trackable joints of the body via Kinect v.2 camera. (C) RGB and

skeletal data for straight path walking. (D) RGB and skeletal data for oval path walking.

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2024.1354092
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Seifallahi et al. 10.3389/fneur.2024.1354092

FIGURE 2

General steps of the proposed algorithm for processing and analysis of recorded skeletal data for gait tests to detect MCI.

v.2 camera for further gait analysis. We used the skeletal data
because this type of data can provide comprehensive information
about the movement of 25 main body’s joints, as seen in Figure 1B,
while the privacy issue and the high-cost hardware for the following
analysis are solved. Figures 1C, D show the samples of recorded
RGB and skeletal data from a participant while performing straight
and oval walking tests, respectively. Supplementary Section S5
provides more detail for recorded straight and oval walking data,
confirming the acceptable range of error for tracking the subject’s
body joints during these tests.

As shown in Figure 1, the camera was placed frontally for
straight-path walking to ensure clear, unobstructed data capture
and laterally for oval-path walking to manage space constraints and
minimize self-occlusion issues associated with lateral movements.
It is important to note that healthy controls and MCI participants
underwent gait analysis under identical camera setups for straight
and oval path walking tests. This ensured that any differences
observed in detecting MCI were due to genuine gait variations
and not influenced by differences in camera placement. Additional
analysis was conducted and detailed in Supplementary Section S6.
This analysis examined the effect of camera view changes on
estimating ankle-foot joint distances. The results showed no
significant difference in joint distance measurements between the
camera views, confirming that the observed differences in gait
features between HC and MCI participants are not attributable to
camera placement biases.

2.3 Data processing

After recording data, a comprehensive analysis was done on
the skeletal data using signal processing algorithms, descriptive
statistical analysis, and machine learning tools. These processes
included prepossessing, feature extraction, feature selection,
and participant classification using different machine learning
algorithms. Figure 2 shows the general steps of the proposed
algorithm for data processing of the recorded data, which are
described in more detail in the following.

2.3.1 Preprocessing
The location changes of the 25 body’s joints, which were

detected and tracked by Kinect v.2 camera for gait tests, can be
presented as the signals during time. In the preprocessing step, we
applied a six-order Butterworth filter with a cut-off frequency of 3

Hz to remove noises from the movement signals of the body’s joints
(29, 30).

2.3.2 Feature extraction
We extracted a comprehensive collection of 50 gait features

(see Table 2) from the preprocessed signals of the body’s joints for
separate straight and oval path walking tests. The feature extraction
algorithms included several steps. For macro features like average
velocity, which shows the general performance of the participant
for the gait test, we used the total displacement of the foot joint
from the starting to the end point of the walking tests, and it was
divided by the duration needed to finish the test (31). However,
for 49 remaining extracted features, we needed to detect the gait
cycles and their subphases like step, stance, and swing phases, then
calculate the features like step time, step length, swing time, etc.
These types of features are usually called micro features as they can
provide more detail about the gait performance of older adults.

Several analyses were done on the right and left foot joints
to extract the micro features. Figure 3 shows the plotted signals
of the right and left foot and their distance signal for one of the
participants while performing the gait test. First, we detected the
gait cycle by plotting the distance signals of the right and left feet
and their peaks. Each gait cycle is defined as the duration a foot
contacts the ground to when the same foot again contacts the
ground (32). Each gait cycle comprises two successive steps; two
successive steps are also known as stride or a single gait cycle.
Thus, we created the distance signal of the right and left feet and
then used the duration between two successive peaks or valleys
of this signal to find the gait cycles (Figure 3B). Each peak of the
distance signal of the feet shows the steps’ location and length
(Figure 3B). To extract the features from the subphases of the gait
cycles, including the stance time, swing time, single support time,
and double support time, the derivative of the right and left foot
signals were used (31). For the stance subphase of one leg, the foot
has no location changes and remains in contact with the ground
(Figure 3A). Thus, its derivative of the foot signal is approximately
zeros. In comparison, for the swing phase of a foot, the derivative
of the movement signal is not zero because the foot’s location
changes. For the subphases of single support, the location of one
of the feet changes, and the other foot does not change, while in
the double support phase, both of the feet locations do not change
(Figure 3A). Thus, in the single support, the derivative of one foot
is zero, and the other is non-zero, while in the double support
phase, the derivative of signals for both feet’ movement are zeros.
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TABLE 2 Extracted features from straight and oval walking and their comparison results.

Feature Straight walking Oval walking

Type Name HC MCI p-value HC MCI p-value

Macro
Velocity (cm/s) 50.13± 27.92 47.39± 9.80 0.780 45.90± 8.89 39.27± 10.09 0.007*

Cadence (steps/minute) 68.22± 10.55 68.90± 9.70 0.247 62.02± 9.73 55.00± 11.67 0.018∗

M
ic
ro

te
m
po

ra
l

Stance T. me (s) 0.78± 0.24 0.83± 0.34 0.716 0.57± 0.15 0.64± 0.22 0.138

Stance T. var (%) 18.15± 20.91 23.48± 26.30 0.993 49.91± 18.75 73.08± 20.27 <0.001∗

Stance T. med (s) 0.78± 0.24 0.84± 0.33 0.729 0.53± 0.17 0.52± 0.23 0.384

Swing T. me (s) 0.71± 0.15 0.72± 0.16 0.841 0.54± 0.04 0.52± 0.07 0.211

Swing T. var (%) 12.41± 16.09 19.83± 13.89 0.053 26.10± 8.00 32.89± 11.12 0.018∗

Swing T. med (s) 0.69± 0.15 0.72± 0.16 0.742 0.51± 0.05 0.48± 0.06 0.001∗

DS T. me (s) 0.21± 0.11 0.25± 0.14 0.323 0.21± 0.04 0.31± 0.09 <0.001∗

DS T. var (%) 69.63± 38.82 80.65± 26.45 0.407 80.16± 22.57 91.91± 21.54 0.072

DS T. med (s) 0.13± 0.08 0.17± 0.10 0.080 0.17± 0.05 0.23± 0.05 <0.001∗

SS T. me (s) 0.53± 0.16 0.52± 0.15 0.498 0.40± 0.08 0.35± 0.09 0.014∗

SS T. var (%) 37.30± 23.06 45.14± 25.72 0.196 49.00± 13.07 48.56± 11.29 0.896

SS T. med (s) 0.57± 0.18 0.55± 0.18 0.496 0.36± 0.09 0.34± 0.10 0.158

Step T. me (s) 0.77± 0.13 0.78± 0.11 0.331 0.88± 0.13 1.05± 0.27 0.012∗

Step T. var (%) 18.05± 16.60 27.13± 11.29 0.042∗ 34.08± 17.07 40.51± 10.50 0.017∗

Step T. med (s) 0.76± 0.09 0.77± 0.10 0.606 0.83± 0.09 0.94± 0.20 0.013∗

Step T. sym me 0.64± 0.08 0.64± 0.06 0.680 0.83± 0.03 0.84± 0.03 0.207

Step T. sym var(%) 24.22± 20.21 34.77± 14.35 0.035* 14.64± 5.93 14.45± 5.27 0.899

Step T. sym med 0.68± 0.08 0.70± 0.08 0.452 0.87± 0.03 0.88± 0.03 0.019∗

Stride T. me (s) 1.55± 0.30 1.54± 0.22 0.254 1.77± 0.26 2.08± 0.53 0.016∗

Stride T. var (%) 13.66± 14.58 19.61± 9.54 0.049* 26.12± 12.36 29.41± 10.98 0.261

Stride T. med (s) 1.57± 0.30 1.58± 0.25 0.496 1.67± 0.18 1.92± 0.42 0.024∗

Stride T.reg me 0.94± 0.06 0.77± 0.12 <0.001∗ 0.76± 0.09 0.74± 0.09 0.414

Stride T. reg var (%) 0.37± 2.35 5.73± 10.14 0.118 21.75± 14.39 18.65± 9.16 0.729

Stride T. reg med 0.94± 0.06 0.77± 0.12 <0.001∗ 0.75± 0.11 0.74± 0.11 0.676

M
ic
ro

sp
at
ia
l

Step L. me (cm) 35.75± 5.53 31.06± 6.74 0.003* 37.58± 4.97 32.91± 3.46 <0.001∗

Step L. var (%) 21.21± 18.29 32.65± 19.51 0.016∗ 37.01± 9.97 41.84± 9.57 0.075

Step L. med (cm) 37.63± 5.12 30.99± 9.19 <0.001∗ 40.16± 5.76 34.22± 4.90 <0.001∗

Step L. sym me 0.80± 0.17 0.74± 0.19 0.106 0.70± 0.10 0.66± 0.11 0.114

Step L. sym var (%) 22.16± 31.41 21.88± 15.86 0.174 34.87± 12.43 38.87± 13.25 0.255

Step L. sym med 0.83± 0.18 0.75± 0.19 0.025∗ 0.75± 0.13 0.67± 0.16 0.030∗

Step W. me (m) 0.12± 0.03 0.13± 0.03 0.919 0.21± 0.04 0.17± 0.03 0.002∗

Step W. var (%) 30.91± 12.54 23.10± 11.13 0.013∗ 56.82± 12.33 67.09± 13.87 0.011∗

Step W. med (m) 0.13± 0.03 0.13± 0.03 0.912 0.21± 0.06 0.16± 0.04 0.022∗

Step H. me (m) 0.11± 0.04 0.08± 0.04 0.003∗ 0.12± 0.02 0.13± 0.02 0.069

Step H. var (%) 28.56± 12.18 39.24± 14.15 0.012∗ 38.65± 14.60 46.29± 11.20 0.004∗

Step H. med (m) 0.11± 0.04 0.08± 0.05 0.020∗ 0.11± 0.02 0.12± 0.02 0.114

Stride L. me (cm) 74.02± 11.16 63.62± 14.92 0.006∗ 75.84± 10.44 65.91± 6.83 <0.001∗

Stride L. var (%) 11.82± 14.75 21.45± 13.08 0.013∗ 27.84± 11.09 30.83± 12.33 0.393

Stride L. med (cm) 74.36± 12.32 63.88± 15.35 0.002∗ 76.46± 11.61 65.10± 9.50 <0.001∗

(Continued)
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TABLE 2 (Continued)

Feature Straight walking Oval walking

Type Name HC MCI p-value HC MCI p-value

Stride L. reg me 0.96± 0.06 0.79± 0.13 <0.001∗ 0.68± 0.12 0.70± 0.12 0.657

Stride L. reg var (%) 2.44± 2.72 6.60± 14.42 1.00 23.37± 15.17 24.66± 14.71 0.666

Stride L. reg med 0.96± 0.06 0.79± 0.13 <0.001∗ 0.68± 0.13 0.71± 0.15 0.369

M
ic
ro

sp
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Step V. me (cm/s) 47.26± 7.04 45.62± 13.01 0.574 46.41± 8.05 37.17± 8.08 <0.001∗

Step V. var (%) 30.75± 19.45 52.01± 21.87 <0.001∗ 47.66± 9.92 53.47± 14.37 0.083

Step V. med (cm/s) 47.65± 8.28 41.67± 12.88 0.139 46.88± 9.48 35.08± 9.92 <0.001∗

Stride V. me (cm/s) 48.08± 7.22 43.65± 12.81 0.177 45.51± 7.91 35.47± 8.51 <0.001∗

Stride V. var (%) 14.47± 14.88 28.80± 13.21 0.001∗ 37.78± 11.52 38.89± 10.05 0.704

Stride V. med (cm/s) 48.13± 7.97 43.16± 12.73 0.165 46.35± 8.48 34.15± 10.06 <0.001∗

Data are shown as mean± standard deviation; p-value is reported for comparison between two study groups; *Significant difference at p-value <0.05.

HC, healthy control without cognitive impairment; MCI, mild cognitive impairment; T, time; L, length;W, width; H, height; V, velocity; me, mean; var, variability; sym, symmetry; reg, regularity;

DS, double support; SS, single support.

Figure 3A shows the gait cycles and their subphases extracted from
the signals of the body’s joints during walking. After detecting
the various subphases of gait cycles, statistical metrics, including
the mean, median, and variability of the extracted subphases,
were calculated to provide information about the performance of
the participants during the whole process of gait tests. Various
statistical metrics were calculated for micro gait features consisting
of mean, median, variability, symmetry, or regularity. A feature’s
variability is calculated by dividing the standard deviation of a
feature by its mean, which can be presented using the percentage
(33). Equation 1 shows the variability of micro features.

var(x) =
std(x)

mean(x)
∗ 100 (1)

var(x) and std show the variability and standard deviation of a
micro feature of x, respectively.

The symmetry and regularity of step and stride features show
the similarity between the right and left feet during walking.
Equation 2 shows this similarity index (34, 35).

SI(x) = 1−
|xright − xleft|

max(xright , xleft)
(2)

SI(x) shows the index of symmetry or regularity of features x for
step or stride during walking. xright and xleft are the values of the gait
features for right and left feet, respectively. The range of this index
can change from 0 to 1. The higher value of SI(x) means higher
symmetry or regularity for the x feature.

2.3.3 Feature selection
Before determining the significant features, we investigated the

data for any confounding factors. The demographic and clinical
information of the participants, including age, Body Mass Index
(BMI), years of education, and neuropsychological test scores, were
compared between two study groups using descriptive statistical
analysis methods. Shapiro-Wilk was used for normality check
(36). Unpaired t-test and Mann-Whitney U tests were applied for

normally distributed and non-normally distributed demographic
and clinical information, which were numerical variables (37). For
categorical variables like gender, the chi-square test was used (38).
Our analysis showed significant differences between the two study
groups for confounding variables of BMI, years of education, and
GDS scores, which can affect the gait tests. Thus, we adjusted the
extracted gait features using ANCOVA (Analysis of Covariance)
and removed the effect of those confounding variables (39).

We conducted feature selection separately for straight walking
gait markers and oval pathmarkers to distinguish betweenMCI and
HC participants. We employed two strategies: traditional statistical
methods commonly used in clinical research and machine learning
techniques.

Statistical approach: Our process involves a two-step method.
Initially, we evaluate each gait feature for statistical significance.
The normality of each feature is assessed using the Shapiro-Wilk
test. Features conforming to a normal distribution are analyzed
with the unpaired t-test. At the same time, those who do not
meet this criterion are evaluated using the Mann-Whitney U test,
with a significance threshold set at p < 0.05. This first phase
identifies features with significant differences between the study
groups. We conduct a correlation analysis among the significant
features in the second phase. For any set of features demonstrating
a correlation coefficient greater than 90%, we select the feature
with the lowest p-value. This strategy reduces redundancy and
concentrates on the most discriminative features, thereby aiding
clinical experts by highlighting essential gait biomarkers for MCI
detection. This refined set of features also simplifies the input
for classification methods, potentially enhancing the accuracy and
efficiency of tools like Logistic Regression (LR) and Support Vector
Machine (SVM).

Machine learning approach: we also utilized a Random Forest
(RF) algorithm, detailed further in Section 2.3.4. The RF was
applied to all extracted features from the oval and straight-walking
datasets without preliminary selection. This approach allows the
RF model itself to determine the importance of each feature,
offering an unbiased insight into which features most effectively
differentiate between MCI and HC.
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FIGURE 3

Feature extraction using right and left foot signals and their distance. (A) Detecting the subphases of gait cycles using the stability or changes in the

locations of feet. (B) Detecting gait cycles and steps using distance signal of feet.

2.3.4 Machine learning methods
In this study, we applied three different machine learning

models to discriminate the MCI and HC participants using selected
gait features from straight and oval path walking tests separately.
Our three classifiers were LR, SVM, and RF to classify participants
into MCI and HC. We chose these different types of classifiers
because each of them uses a different method for finding the
decision boundary between two study groups.

2.3.4.1 Logistic regression

LR is a straightforward and highly effective classifier for binary
and linear classification challenges (40). Despite its simplicity, this
classifier demonstrates remarkable efficacy in addressing binary
problems and is frequently employed in medical and clinical
investigations (41). LR is a transformation of a linear regression
using a sigmoid function. The input of the logistic function is
the vector of features, while its output is the output of a Sigmoid
function ranging from 0 to 1 (42). Equation 3 shows the formula of
the LR classifier.

f (X) =
1

1+ ew0+w1x1+...+wnxn
(3)

X = x1, ..., xn shows the vectors of the input features, and the
f (X) shows the output of the sigmoid function.W = w1, ...,wn are
the weights or parameters of the LR classifier, which are optimized
using the training and validation data to fit the generalized models
on the data and then applied to the new test data.

2.3.4.2 Support vector machine

SVM represents a supervised binary classifier commonly
advocated for the analysis of clinical data, particularly when the
dimensionality of the features exceeds the number of available
samples (43). This classifier endeavors to distinguish between two
study groups by delineating a linear hyperplane, and in cases where
the data is not linearly separable, a transformation into a new space
is achieved using kernels (44). Equation 4 shows mapping samples
of Xi and Xj to a new feature space using the map φ.

K(Xi,Xj) = (8(Xi).8(Xj)) (4)

K is the kernel for mapping of Xi and Xj samples. To simplify
the mapping process, particular kernels like linear, polynomial,
or Radial Basis Function (RBF) are usually used in practical
problems. After mapping features to a space where the data can be
separated linearly, the optimal weights for a separable hyperplane
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with the maximum margin are found using the training data.
Equation 5 shows the final nonlinear decision function for the
SVM classifier.

f (X) = sign(
n∑

i=1

Wi.K(X,Xi)+ b) (5)

f(X) shows the decision (label) predicted for the sample of X. n is the
dimension of the features for each sample of data. K is the kernel for
mapping the data. W = w1, ...,wn are the weights (coefficients) of
the decision hyperplane, and b is the intercept. These hyperplane
parameters are found using the training data to maximize the
distance between the hyperplane and the training samples. The
optimal hyperplane is called the maximal margin hyperplane and
is used to make decisions about the test data.

The optimization of the SVM model for subsequent
applications to test data involves the adjustment of critical
parameters, such as the selection of the kernel type, its associated
parameters, and regularization, all of which are fine-tuned utilizing
the training and validation data in the training step.

2.3.4.3 Random forest

RF is a classifier that combines the output of several decision
trees to achieve a single final decision (45). This algorithm is an
extension of the bagging method, which uses bagging and feature
randomness to create an uncorrelated forest of decision trees (46).
Given a training set D = X1, ...,Xm with the labels Y = y1, ...., ym,
bagging selects a random subset of training data for b = 1, ...,B
(B times) to make different trees. The results of the B trees are
combined with the majority voting for classification and averaging
for the regression problem to predict the output for the test sample.
Considering fb as a decision tree classifier and Ensemble E =

f1, ..., fB is the collection of classifiers. The decision of the bth

classifier (fb) is denoted by db,j ∈ {0, 1} while j = 1, 2, ...,Q and
k is the number of classes. The decision tree of fb will produce
db,j = 1 if that classifier predicts a class or label of j, and is db,j = 0
otherwise. The final decision about sample X using majority voting
of B classifiers can be shown by Equation 6.

Ŷ = argmax
j
(

B∑

b=1

db,j) (6)

Ŷ is the final predicted label using the majority voting. j and b show
the available classes and tree classifiers. db,j shows the decision of
each tree whether the sample belongs to class j or not.

The critical difference between the random forest and the
decision tree is that the random subsets of features are generated in
RF. In contrast, all the possible feature splits are considered in the
decision tree (47). As the RF chooses subsets of features randomly,
it ensures low correlation among the decision trees. The main
parameters of RF models, like the number of trees, the maximum
depth of each decision tree, minimum samples per leaf, minimum
samples per split, and maximum number of features for the best
split, were found using the training and validation set of data during
the training process.

2.3.4.4 Experiment setup

We used the 5-fold cross-validation methods for all the above
classifiers to divide the available data to train and test data. To find

the generalized model before applying it to the test data, the train
data was split into 80% for training and 20% for validation. Also, the
grid search strategy was used for all the classifiers to find the optimal
parameters of the models. Various quantitative metrics of accuracy,
sensitivity, precision, specificity, and F-score evaluated the results
of the classifiers for discrimination of MCI and HC.

3 Results

The demographic and clinical information of the participants
in this study who completed all the gait tests is presented in Table 1.
There were significant differences in BMI and years of education
between MCI and HC participants, but no differences in age or
gender. Participants with MCI had higher levels of depression on
the GDS score, with lower MMSE and MoCA than the HC group.
To ensure the robustness of our findings, we adjusted the gait
feature analysis for these confounding variables, including BMI,
education, and GDS.

To examine the straight and oval path walking sensitivity for
detecting MCI, we extracted a comprehensive collection of 50
features. This collection included 2 macro, 24 micro temporal, 18
micro spatial, and 6 micro spatiotemporal features. Table 2 shows
the extracted gait features for gait tests in different paths. The values
of the gait features are presented as the mean, standard deviation,
and the p-values of each gait feature for the comparison between
the study groups.

3.1 Feature selection outcome

3.1.1 Statistical approach
3.1.1.1 Significant gait features

Our comparative analysis of extracted gait features
demonstrated significant differences between MCI and HC
participants, which were more pronounced in oval path walking
than in straight walking. Specifically, in the oval path conditions, 27
out of 50 extracted features showed significant differences, whereas,
in straight walking, only 20 features were significant. Notably, the
significant features in oval walking included two macro features
(average velocity and cadence) and various micro gait features
12 temporal, 9 spatial, and 4 spatiotemporal. In contrast, straight
walking yielded significant results primarily in micro gait features
5 temporal, 13 spatial, and 2 spatiotemporal.

Macro features such as average velocity and cadence
significantly differed in oval path walking, with MCI participants
exhibiting lower average speed (39.27 ± 10.09 cm/s) and cadence
(55.00 ± 11.67 steps/min) compared to HC participants (45.90 ±

8.89 cm/s and 62.02 ± 9.73 steps/min), with p-values of 0.007 and
0.018, respectively. Similar changes were observed for step and
stride velocity betweenMCI andHCwhen the walking test changed
from straight to oval path walking, and only the significantly lower
step and stride velocity for MCI than HC were observed in oval
path walking. This suggests a greater impact of the walking path
shape on gait dynamics in MCI patients. Figure 4A compares the
average velocity and the step and stride velocity between two study
groups in straight and oval path walking conditions.
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A B

FIGURE 4

Comparison of the gait between two study groups in di�erent conditions. (A) Comparison of average velocity and the velocity of steps and strides for

MCI vs. HC. (B) Comparison of the variability of gait cycle subphases for MCI vs. HC. *Significant di�erence at p-value < 0.05.

Furthermore, changes in gait cycle duration were observed
when switching from straight to oval walking. For MCI
participants, the gait cycle increased from 1.54 ± 0.22 seconds
to 2.08 ± 0.53 seconds (p-value = 0.016), compared to a
more stable change from 1.55 ± 0.30 seconds to 1.77 ± 0.26
seconds among HC participants (p-value = 0.254). Examining
the subphases of the gait cycles provided more information
on the participant’s gait for comparison. Older adults with
MCI generally had more variability for the subphases of
the gait cycles, such as stance and swing time and the
single and double support time. The differences between the
variability of these subphases increased in oval walking, and
even significant differences were observed for stance and swing
times in oval path walking between MCI and HC participants
(Figure 4B). This indicates a significant deterioration in gait
coordination for MCI participants under more challenging
walking conditions.

3.1.1.2 Selected gait features

Following our feature selection algorithm, we focused on
a smaller set of unique gait features that showed the most
substantial differences between the two study groups without
high inter-feature correlation. Figure 5 illustrates this with
a heatmap of correlation matrices for significant features
from straight and oval path walking. This visualization
confirms significant correlations among certain features,
guiding our selection towards those with the lowest p-values,
indicative of pronounced differences between MCI and HC
participants.

Ultimately, from the oval path walking test, we selected 19 out
of 27 significant features, including twomacro (average velocity and
cadence), 8 micro temporal (mean of single and double support
time, the median of stance and swing time, and stride time, the
variability of stance and swing time, and the median of the step
time symmetry), 7 micro spatial (mean of step length and width,
the median of step and stride length and the symmetry of step
length, and the variability of step height and width), and 2 micro
spatiotemporal features (mean of step velocity and the median of
stride velocity).

From straight walking, 13 out of 20 significant features were
retained, including 3 micro temporal (mean and median of stride
time regularity and the variability of step time symmetry), 8 micro
spatial (mean of step height and stride length regularity, median
of step length and stride length regularity, and the variability
of step length, width, and height, and the stride length), and
2 micro spatiotemporal features (variability of step and stride
velocity).

For the straight walking, the selected feature consisted of
3 micro temporal features (mean and median of stride time
regularity and the variability of step time symmetry), 8micro spatial
features (mean of step height and stride length regularity, median
of step length and stride length regularity, and the variability
of step length, width, and height, and the stride length), and
two micro spatiotemporal features (variability of step and stride
velocity). Table 3 summarizes the number of different types of
extracted, significant, and selected features for straight and oval
path walking.

3.1.2 Machine learning approach
We employed the RF algorithm to assess the importance of

gait features from straight and oval path walking conditions,
each analyzed separately, to distinguish between MCI and HC
participants. Figure 6 displays the results from the RF classifier,
highlighting the importance scores of gait features under both
walking conditions. As illustrated in Figure 6, the features
garnered higher importance scores predominantly identified by
our statistical approach, which utilized descriptive statistics and
correlation analysis for feature selection. For instance, in straight
walking (Figure 6A), the five features with the highest importance
scores were the mean and median of stride time and length
and variability of stride velocity. These features correspond to
those selected through our proposed feature selection algorithm.
Similarly, in oval walking, the top-ranked features by RF, such as the
median of stride velocity, variability of stance time, mean of double
support time, stride velocity, and average velocity (Figure 6B),
aligned closely with those identified through our feature selection
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FIGURE 5

Correlation heatmaps of significant features for straight and oval path walking. (A) Correlation heatmap of significant features for MCI vs. HC during

straight walking. (B) Correlation heatmap of significant features for MCI vs. HC during oval path walking.

TABLE 3 The numbers of various types of extracted, significant, and selected gait features using the statistical and ML approaches in both conditions.

Type of feature Extracted Statistical approach RF approach

Significant Selected Straight Oval

Straight Oval Straight Oval

Macro 2 0 2 0 2 0 1

Micro temporal 24 5 12 3 8 3 7

Micro spatial 18 13 9 8 7 5 4

Micro spatiotemporal 6 2 4 2 2 2 4

Total 50 20 27 13 19 10 16

RF, random forest.

method. Table 3 lists the features with an RF importance score
greater than 0.03.

3.2 MCI detection using machine learning

We designed three different classifiers to discriminate the HC
and MCI participants using selected features of straight and oval
paths walking separately. It is important to note that for the
SVM and LR classifiers, our statistical feature selection method
was applied within a 5-fold cross-validation framework. This
means that feature selection was conducted separately on the
training data of each fold, ensuring that only the features identified
from the training data were used to train the models, thereby
preventing information leakage to the test data. We used the
entire set of features for the RF classifier, allowing the algorithm
to autonomously select the most predictive features within each
cross-validation fold. We chose 5-fold cross-validation because it
balances computational efficiency and validation accuracy (48).

This approach is optimal for our dataset size, reducing the risk
of overfitting and variance compared to 10-fold or leave-one-out
methods, which can be computationally intensive and less stable
for moderate sample sizes.

As seen in Table 4, the classification accuracy of participants
to MCI and HC groups using straight walking features were
65.8%, 76.1%, and 78.2% for LR, SVM, and RF, respectively.
Also, the F-scores were 61.7%, 72.6%, and 75.9% for those
classifiers in the same walking condition. In comparison, the
results generally improved in oval path walking. The classification
accuracy increased to 74.2%, 80.1%, and 85.50% for LR, SVM,
and RF, respectively, when the features of oval path walking were
used. Similar improvements were also seen for F-scores and other
evaluation metrics, where the F-scores of these classifiers rose to
72.4%, 77.9%, and 83.9%. The comparison of the classification
results using different classifiers and gait tests showed that the RF
classifier on the oval path walking data had the best performance
for discrimination of MCI and HC with accuracy and F-score of
85.5% and 83.9%. The other evaluation metrics, such as sensitivity,
precision, and specificity, confirmed this finding, too.
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FIGURE 6

Analysis of the importance of features using the RF classifier. The purple dash line shows the threshold of 0.03 for the scores of the importance of the

features provided by RF classifier. (A) Ranking the importance of straight walking features for discrimination of MCI and HC. (B) Ranking the

importance of oval path walking features for discrimination of MCI and HC.

4 Discussion

Early detection of AD and dementia is pivotal in slowing or
potentially preventing their progression to more severe stages,
especially given the current lack of a cure for these degenerative
diseases. Identifying MCI, a key precursor to AD, is therefore
crucial. Individuals with MCI convert to AD at a higher annual
rate than their cognitively healthy counterparts, as highlighted
in Shigemizu et al. (7). Conventional clinical methods for MCI
detection, including neuropsychological tests, brain imaging, EEG,

and blood tests, are often time-consuming and costly, and the
practitioner’s experience can influence their effectiveness. To
address these limitations, our study introduces a novel method
for MCI detection employing comprehensive gait analysis during
both oval and straight walking patterns, captured using a Kinect
v.2 depth camera. This approach integrates signal processing,
descriptive statistical tools, and machine learning techniques.
Our method presents an objective, non-invasive, and easy-to-
implement alternative for MCI detection, offering a low-cost
and less time-intensive solution suitable for both clinical and
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TABLE 4 Classification results for di�erent types of classifiers and gait tests.

Evaluation metrics (%)
Gait test Classifier

Accuracy Sensitivity Precision Specificity F-score

Straight

LR 65.8 60.0 63.6 71.7 61.7

SVM 76.1 68.0 78.2 84.2 72.6

RF 78.2 73.0 79.2 83.3 75.9

Oval

LR 74.2 75.0 70.1 73.3 72.4

SVM 80.1 76.0 80.2 84.2 77.9

RF 85.5 81.0 87.1 90.0 83.9

LR, logistic regression; SVM, support vector machine; RF, random forest.

non-clinical settings. Data was collected from 55 older adults,
comprising 25 individuals with MCI and 30 HC, to validate this
approach.

4.1 Main findings and implications

The study highlighted significant gait performance differences
between MCI and HC groups. Older adults with MCI showed
weaker performance, especially in oval path walking, resulting
in more noticeable differences between MCI and HC groups
than straight walking (Table 2). In oval path walking, 27 out
of 50 features showed significant differences between MCI and
HC, compared to 20 features in straight walking (Table 3).
Older adults with MCI demonstrated significantly lower average
velocity and cadence during oval walking, while these macro
gait features showed no significant differences in straight walking
(Figure 4A). Similar trends were observed for step and stride
velocity, with significant differences in oval walking but not
straight walking conditions (Figure 4A). Analyzing gait subphases
revealed increased variability in stance, swing, single support, and
double support among MCI individuals, especially during oval
walking, resulting in significant differences in stance and swing
time between MCI and HC (Figure 4B). These results are backed
by previous research in the clinical field, showing that various
factors contribute to these outcomes. When walking along curves
like an oval path, individuals with MCI face heightened cognitive
demands, necessitating additional time to adapt to changes in
direction and maintain their balance (49, 50). Additionally, they
exhibit more cautious movement along oval paths due to increased
worries about falling, difficulties in spatial awareness, and intricate
motor planning (51, 52). Our findings and this clinical evidence
emphasize how gait features can detect the difficulties presented
by various types of curved walking around an oval path and
their potential role in indicating cognitive impairment. Also, our
findings align with previous clinical research, which reported no
significant differences in average velocity and cadence during
straight walking between MCI and HC (53, 54). Despite a lack of
comprehensive studies comparing oval and straight walking tests
between MCI and HC, previous research analyzing other curved
walking aspects, such as the turning part of the TUG test, showed
significant differences between MCI and HC (19, 55). Our study
extends these findings, highlighting the higher sensitivity of oval

walking compared to straight walking in detecting MCI, providing
a detailed gait analysis over a longer curved path than previous
studies.

Another main observation was that we identified optimal gait
features with enhanced sensitivity in distinguishing between MCI
and HC through a two-step feature selection algorithm involving
descriptive statistics and correlation analysis. This process yielded
a reduced set of gait features suitable for efficient MCI detection
in both oval and straight walking tests, with 19 features for oval
walking and 13 for straight walking (Figure 5 and Table 3). These
selected features serve as focal points for clinicians, streamlining
MCI detection and expediting machine learning procedures by
eliminating redundant features. Further validation using the RF
classifier corroborated the effectiveness of our feature selection
methods. RF highlighted the most influential features for MCI
detection, aligning with those identified through our selection
algorithms (Figure 6).

Furthermore, various classifier models were employed to
detect MCI in different oval and straight walking conditions,
highlighting the higher sensitivity of oval walking for MCI
detection. The Random Forest model demonstrated superior
performance among the classifiers. In oval walking, RF
achieved an accuracy and F-score of 85.5% and 83.9%,
while in straight walking, these metrics were slightly lower
at 78.2% and 75.9% (Table 4). RF’s enhanced performance
can be attributed to its ensemble learning method, which
combines multiple decision trees and aggregates their predictions,
thereby reducing overfitting and enhancing model diversity
(5, 47, 56, 57).

4.2 Comparison with previous studies

Our literature review revealed a scarcity of studies examining
detailed gait analysis in oval and straight walking conditions
using sensor technology and machine learning methods. However,
several studies have developed systems to analyze the gait
of older adults with cognitive impairment using machine
learning for disease assessment (Supplementary Table S2,
Supplementary Section S7).

In the context of AD versus HC detection, which typically
shows higher performance due to more pronounced differences,
Wang et al. (58) used inertial-sensor-based devices to record

Frontiers inNeurology 13 frontiersin.org

https://doi.org/10.3389/fneur.2024.1354092
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Seifallahi et al. 10.3389/fneur.2024.1354092

the gait of 30 AD and 30 HC participants. They achieved
a 66.7% accuracy in distinguishing between the two groups
using probabilistic neural networks, without considering gender
differences (58). Varatharajan et al. further demonstrated this with
wearable sensors and dynamic time-warping methods, classifying
150 HC and 173 AD older adults with an accuracy of 94.5% and a
sensitivity of 95.9% (59). Zhang et al. (60) combined the skeletal
map of single and dual-task gait recorded with a Kinect camera
and fed to a Convolutional Neural Network (CNN) to classify older
adult participants (HC = 106, Dementia = 194) to older adults with
dementia and without dementia. Their developedmethods used the
features extracted using the CNN instead of the feature engineering
methods to extract the features and then feed them to the classifier.
They reported a sensitivity 74.1% for detecting older adults with
dementia (60). Seifallahi et al. (61) suggested a comprehensive
analysis of the Timed Up and Go test (TUG) via recorded data with
a Kinect v.2 camera combined with signal processing and machine
learning for the detection of AD at the mild to moderate stages
while the overall duration of TUG test commonly is measured at the
clinic with a stopwatch. Their suggested methods provided more
detail about the performance of older adults with mild to moderate
AD compared to HC older adults and reported the discrimination
of 38 AD and 47 HC participants with accuracy and F-scores of
97.7% and 97.7%, respectively (61).

MCI detection, which involves subtler gait differences than
AD, presents greater challenges. Gwak et al. (21) proposed a gait
measurement system using a smartwatch, employing processing
algorithms based on two gait features and statistical features. They
achieved 88.0% accuracy for distinguishing between 27 individuals
with MCI and 26 HC participants using logistic regression (21).
Ghoraani et al. (22) analyzed gait in single and dual-task conditions
using an electronic walkway, extracting features for 32 HC vs.
26 MCI and 20 AD older adults. Applying SVM, they reported
an average accuracy and F-score of 88.0% and 90.0% for HC vs.
MCI/AD classification (22). Shahzad et al. (62) proposed recording
the 10-meter straight walking in single and dual cognitive tasks
of counting backward from 70 by 1’s and speaking out animal
names with a single wearable sensor of Shimmer mounted on
the mid-shank of each subject. Their analysis using descriptive
statistical analysis for comparison between two study groups
(MCI = 30 and HC = 30) revealed a significant difference for
all gait tests from single to dual cognitive tasks, even though
more numbers of significant features were observed for the dual
cognitive task of naming animals during 10-meter straight walking.
They used various feature engineering classifiers, including the
DT, RF, and ANN, with different feature selection algorithms like
correlation and mutual information to automatically detect MCI.
They reported the highest performance based on the sensitivity
of MCI detection with the sensitivity of 83.3% and accuracy of
71.7% for the SVM and the mutual information feature selection
algorithm (62). More recently, Jeon et al. (63) utilized wearable
sensors for gait measurement in 68 MCI and 77 HC older
adults during straight walking. Their proposed ensemble algorithm
showed improved MCI detection with a 73.0% accuracy (63).
Russo et al. (8) recorded the straight walking using an optical
system equipped with six IR cameras, two video cameras, two force
plates, and a set of 26 passive reflective markers mounted on the

participant’s body to discriminate 40 PD patients with MCI and
without MCI. The participants performed the single straight 10
meters, dual motor gait with carrying a tray with two filled glasses
with water, and dual cognitive gait of subtracting from 100 by 7’s
during walking. They extracted 16 Spatio-temporal gait features
from each of the different types of gait tests (48 gait features
in total). After finding significant gait features and applying the
feature selection, variousML feature engineeringmodels consisting
of RF, KNN, NB, and DT were applied to the extracted features, and
they reported the highest accuracy of over 80% via SVM and RF for
the classification of participants to two study groups as PD-MCI
and PD-No MCI. Also, they used the Wrapper method to find the
selected features with the most power to discriminate PD-MCI and
PD-NoMCI and reported 17 selected features while the majority of
them belonged to dual cognitive gait (8)

Our study contributes to the growing body of research on
gait analysis and machine learning for MCI detection, resonating
with findings from prior studies (8, 21, 22, 58–63). Unlike
earlier research that primarily relied on wearable sensors or
complicated and expensive systems made up of several IR cameras
and reflective markers on the participant’s body, which might
influence gait patterns and suffer from signal inconsistencies
due to sensor movement or user-induced changes (8, 21, 58,
59, 62, 63), our approach utilized a single Kinect v.2 camera.
This non-wearable device enables an unobtrusive setup, providing
comprehensive data from 25 body joints without impacting
natural gait.

Furthermore, while some studies employed electronic
walkways that faced limitations in space requirements, setup
complexity, and specific gait feature extraction (22), our method
overcomes these challenges by capturing a wider range of gait
features, including step and stride height. Our focus on MCI
detection, a subtler and more challenging transitional stage to
ADRD, also sets our study apart from those mainly targeting
dementia detection (58–61). The size of our study population was
comparable to that of Gwak et al. (21), Ghoraani et al. (22), and
Shahzad et al. (62), but smaller than the cohort in Jeon et al. (63).
Like these studies (21, 22, 63), we tackled the intricate task of
detecting less pronounced gait defects in MCI, compared to studies
focusing on AD and HC (58, 59, 61).

Moreover, our study uniquely contributes by directly
comparing the sensitivity of gait detection between oval and
straight walking patterns for MCI detection. This specific
comparison has not been thoroughly examined in existing
literature, distinguishing our research in its approach to
understanding how different walking paths may influence the
detection of MCI. Previous studies only examined the straight
walking for MCI, AD, or ADRD detection (8, 21, 22, 58–60, 62, 63)
or a short duration of turning of the TUG test for AD detection
(61). Oval walking, more reflective of daily activities, demonstrated
higher sensitivity in identifying MCI. Moreover, we pinpointed
a smaller, more effective set of gait features, enhancing the
efficiency of MCI detection a finding not fully explored in previous
studies (22).

In terms of machine learning performance, our Random
Forest model achieved 85.50% accuracy and 83.9% F-score in oval
walking for MCI detection, on par with some previous studies
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(21, 22), but outperforming others (62, 63). Notably, our analysis
focused solely on single-task oval walking and accounted for
confounding factors, unlike Ghoraani et al., who combined single
and dual-task walking data (22), and Gwak et al., who did not
adjust for confounders (21). These distinctions underscore the
potential of single-task oval walking for MCI detection, warranting
further investigation.

4.3 Clinical implications

Our study marks a pivotal advancement in the screening
of MCI. Utilizing a Kinect v.2 camera, we have developed
a non-invasive, cost-effective, and efficient method to analyze
gait patterns in both oval and straight walking tests. This
technique stands out for its practicality in clinical settings,
where it can serve as an initial screening tool for MCI.
Its primary advantage is detecting subtle gait irregularities,
often early indicators of cognitive decline, that may not
be evident in standard clinical evaluations. From a clinical
perspective, this approach could significantly streamline the
early detection process of MCI, facilitating prompt intervention.
Integrating this method into standard geriatric assessments could
revolutionize the early detection process for MCI, enabling
healthcare professionals to swiftly identify and subsequently guide
at-risk individuals toward comprehensive cognitive assessments
and timely intervention.

4.4 Study limitations and future work

The sample size of this study, while consistent with similar
research in the field (see Supplementary Table S2), is relatively
small, with a high feature-to-sample size ratio, which may
limit the generalizability of our findings and heighten the
risk of overfitting. Our future studies aim to include larger
cohorts to validate and potentially enhance the reliability of
the machine learning approaches described herein. Expanding
the sample size will be crucial for confirming the efficacy
of our method and its applicability to a broader population,
particularly for clinical applications in detecting MCI among
diverse groups. Our MCI diagnoses were based on clinical criteria,
rather than biomarker confirmation so it is unknown if the
MCI group in this study had AD as the underlying etiology.
Similarly, the HC group could be contaminated with preclinical
AD cases. Future studies should include biomarker confirmed
groups.

Additionally, we will explore a wider array of gait and balance
evaluations, such as the Timed Up and Go (TUG) test, to refine
our screening methodology further. In line with technological
advancements, we are also considering the integration of regular
cameras, combined with deep neural network models, for gait
analysis. This potential enhancement could make our method
more versatile and accessible, suitable for various clinical and non-
clinical settings. These future initiatives are anticipated to augment
the effectiveness of our current approach and make substantial
contributions to the fields of geriatric care and neurodegenerative
disease research. Ultimately, through these advancements, we aim
to improve patient outcomes by facilitating earlier detection and

intervention strategies for neurodegenerative diseases like MCI
and ADRD.

While the Kinect v.2 camera is sensitive to environmental
conditions like lighting and has a limited operational range
of 0.5 to 4.5 meters, it remains a practical choice for gait
analysis due to its affordability, ease of use, and non-invasive
tracking of multiple joints without wearable sensors. These features
are particularly advantageous for studies involving older adults
or individuals with cognitive impairments. Acknowledging its
limitations, we plan to enhance our research methodology by
integrating newer technologies, such as the Azure Kinect, which
offers improved depth sensing and tracking capabilities (see
Supplementary Section S1). Additionally, exploring hybrid systems
that combine Kinect’s capabilities with high-precision motion
capture technologies will aim to overcome current limitations and
refine the accuracy of our gait analysis. These future directions
are geared toward developing more reliable diagnostic tools for
cognitive impairments.

5 Conclusion

This study represents a significant stride forward in early
ADRD detection during the MCI stage. We have introduced a
novel, cost-effective tool leveraging a single Kinect v.2 camera
to accurately track 25 body joints during both oval and straight
walking patterns. Our comprehensive approach, which combines
advanced signal processing, meticulous statistical analysis, and
sophisticatedmachine learning techniques, facilitates the extraction
of critical gait features. These features are then adeptly analyzed by
machine learning models, particularly focusing on MCI detection.
Our findings reveal a notable sensitivity in oval walking, where
27 significant gait features were identified in distinguishing MCI
from HC, compared to 20 in straight walking. The Random Forest
classifier demonstrated exceptional performance in analyzing oval
walking gait measurements, achieving a notable 85.5% accuracy
and an 83.9% F-score in detecting MCI. Furthermore, aligning
the most important features identified by the Random Forest
classifier with those selected through our feature selection methods
suggests the potential to refine our model to focus on a smaller
yet more effective set of gait characteristics for early ADRD
detection. This study underscores the viability of using the Kinect
v.2 camera and gait analysis as a powerful tool for early ADRD
detection at the MCI stage. Characterized by its affordability,
efficiency, simple setup, and non-invasiveness, this method is
highly suitable for clinical and non-clinical environments. Its
use in routine gait screening could significantly advance early
ADRD detection, enabling timely interventions and potentially
altering the trajectory of cognitive decline. Our research opens
new avenues in geriatric care and neurodegenerative disease
management, marking a shift in approaching early AD detection
and prevention.
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