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Background: Meniere’s disease (MD) is defined by episodic vertigo, unilateral 
sensorineural hearing loss and fluctuating aural symptoms. Due to the variable 
clinical presentation, objective tests of MD may have significant diagnostic 
utility. Head kinematics derived from a head-mounted display (HMD) have 
demonstrated to be sensitive to vestibular dysfunction. The purpose of this pilot 
study was to investigate whether head sway can differentiate between patients 
with MD, vestibular hypofunction (VH) and healthy controls.

Materials/methods: 80 adults (30 healthy controls, 32 with VH, and 18 with 
MD) were recruited from a tertiary vestibular clinic. All underwent a postural 
control assessment using the HTC Vive Pro Eye HMD that recorded head sway 
in the anterior–posterior (AP), medio-lateral (ML), pitch, yaw and roll direction. 
Participants were tested with 2 levels of visual load: a static versus oscillating star 
display. Each scene lasted 60  s and was repeated twice. Sway in each direction 
was quantified using root mean square velocity (VRMS) for the first 20  s and full 
60  s of each scene.

Results: Static visual: participants with VH showed significantly larger head 
VRMS than controls in the AP (60  s and 20  s) and pitch (20  s) directions. Dynamic 
visual: participants with VH showed significantly larger head VRMS than controls 
all directions for both the 60 and 20  s analysis. Participants with MD did not 
differ significantly from the control or the VH group.

Conclusion: While limited in numbers, Patients with MD had a high variability in 
head sway in all directions, and their average head sway was between controls 
and those with VH. A larger sample as well as patients with worse symptoms 
at time of testing could elucidate whether head sway via HMD could become 
a viable test in this population. A similar finding between 20- and 60-s scene 
and the full portability of the system with an in-clinic testing setup could help 
these future endeavors. Head sway derived from HMD is sensitive to VH and can 
be clinically useful as an outcome measure to evaluate sensory integration for 
postural control.
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Introduction

Meniere’s disease (MD) is a clinical syndrome that presents with 
recurrent, spontaneous episodic vertigo lasting 20 min to 12 h, 
fluctuating unilateral sensorineural hearing loss (SNHL) and 
ipsilateral, fluctuating aural symptoms (fullness and tinnitus). 
Incidence of MD has been estimated to be between 13 to 190 per 
100,000 people with the larger estimate reported in the US (1, 2). The 
current international classification system adopted by both the Barany 
Society and the American Academy of Otolaryngology—Head and 
Neck Surgery (AAO-HNS) has two categories of diagnosis—‘definite’ 
and ‘probable’ (1, 3) both of which require that the symptoms are “not 
more likely to be  due to an alternative diagnosis.” Indeed, the 
differential diagnosis of MD is challenging as it can mimic a myriad 
of other episodic vestibular disorders, such as vestibular migraine, 
labyrinthitis and autoimmune inner ear disease (3, 4). Additionally, 
between episodes, both audiovestibular testing and clinical exam 
findings may be normal (2). Though audiometric patterns of low-to 
moderate frequency SNHL are cited in the international diagnostic 
criteria, clinical diagnosis relies heavily upon patient history to 
separate MD from its mimics (5). For these reasons, any objective 
marker of MD can be  highly clinically useful and increase the 
opportunity for timely and appropriate medical management.

Unlike MD, which is a fluctuating condition, unilateral vestibular 
hypofunction (VH) is defined as reduced function of one of the 
peripheral vestibular sensory organs and/or vestibular nerves with 
characteristic symptoms of dizziness and imbalance (6). It has been 
estimated that VH affects between 53 and 95 million adults in Europe 
and the US (7). The annual incidence of VH varied by countries from 
3.5 to 15.5 per 100,000 (8, 9). Imbalance, a common characteristic of 
VH, is not included in the diagnostic criteria of MD, even though it is 
a predominant complaint among these individuals. In a retrospective 
quality of life survey of 539 people with MD, 44.4% reported balance 
related problems, 58% reported hearing problems, 50% reported 
tinnitus and aural fullness, and 39.5% reported vertigo (10). 
Concordant with the high degree of clinical variability, complaints of 
imbalance and abnormalities of postural control in MD are poorly 
characterized, likely at least partially because of the episodic nature of 
the disorder. A handful of studies demonstrated greater dependence 
on visual and somatosensory information in maintaining an upright 
posture in people with MD compared with healthy controls (11–13) 
suggesting abnormalities of postural control may persist 
between episodes.

Prior research has suggested that head sway is sensitive to changes 
post-surgery (14) or rehabilitation (15) in vestibular disorders, and 
may assist in the differential diagnosis of vestibular disorders in the 
clinical setting (16–18). Specifically, prior studies have observed 
differences in head sway measured by Head Mounted Displays 
(HMD) between patients with vestibular hypofunction (VH), 
Persistent Postural Perceptual Dizziness (PPPD) and controls in 
response to visual perturbations. In patients with VH, head sway was 
increased as the balance task became more challenging (such as 
standing on foam) (15–17, 19, 20). In contrast, differences in head 
sway between patients with PPPD and healthy controls decreased with 
the increased challenge of the task (visual or cognitive) (21). The 
authors hypothesized that high levels of symptoms pre and post 
assessment or high anxiety explained participants’ reduction of head 
movement (“freezing”). These findings suggest that head sway may 

serve as an objective marker to differentiate between some vestibular 
disorders, however little is known about its application to MD.

The purpose of the current pilot study was to investigate whether 
head sway during an in-clinic, HMD-based postural control 
assessment can differentiate between patients with MD, unilateral 
peripheral VH and healthy controls. While individuals with VH have 
a known deficit in sensory integration for postural control (15, 21–23), 
MD is a fluctuating condition with inconsistent results on clinical 
exam. This may result in larger differences between VH and controls 
than between MD and controls. A secondary aim was to determine 
whether data acquired over 20 s is similar to results from a 60-s 
assessment. Historically, studies using similar HMD paradigms used 
60–180 s scenes to allow for entrainment to the visual stimulus (24–
26). However, clinical assessments of postural steadiness with visual 
changes (such as standing with eyes closed) typically measure balance 
for 20–30 s. If shorter conditions show similar findings, this will have 
important implications to the translation of this assessment and its 
feasibility in a clinical setting.

Materials and methods

Participants with unilateral vestibular hypofunction (VH) and 
unilateral Meniere’s disease (MD) were recruited from a tertiary, 
urban, academic, otology practice and outpatient vestibular 
rehabilitation clinic at the Ear Institute at New  York Eye and Ear 
Infirmary of Mount Sinai. Diagnosis of peripheral vestibular 
hypofunction was made by either bedside clinical exam from a 
physical therapist trained in vestibular rehabilitation (positive findings 
on bedside head impulse test, head shaking nystagmus or gaze evoked 
nystagmus consistent with peripheral loss) or from VNG results with 
caloric difference > 25% (8, 27). Diagnosis of definite Meniere’s disease 
was made by a neurotologist based upon current clinical practice 
guidelines (1, 3). Controls were recruited from community or 
academic hospital/university settings. This study was approved by 
both the Mount Sinai IRB 18–00431 and the NYU IRB-FY2016-155.

Participants were excluded if they had any neurological condition 
or orthopedic condition that could influence balance, if they used an 
assistive device for ambulation, or if they had an uncorrected vision 
impairment. All participants signed an informed consent form and 
passed a visual screen using the ETDRS to confirm normal or 
corrected to normal vision. Adequate vision was considered a visual 
acuity of 20/60 (the NYS acceptable standard for driving). They then 
completed the following validated metrics: the Dizziness Handicap 
Inventory (DHI), the Activities Specific Balance Confidence Scale 
(ABC), Visual Vertigo Analog Scale (VVAS), Symptom Sickness 
Questionnaire (SSQ; pre and post postural control assessment) and a 
demographic questionnaire. The VVAS is a subjective scale where the 
participants mark the intensity of their dizziness on a scale of 0 to 
10 cm for each of 9 situations of visual motion that typically provoke 
dizziness (28). The score is calculated by measuring each item in 
centimeters, averaging the scores and multiplying by 10. Symptom 
severity can be  classified as none (0), mild (0.1 to 40), moderate 
(40–70) or severe (above 70) (29, 30). The ABC is a validated subjective 
measure of a participant’s confidence in performing specific activities 
without falling. Each item is scored from 0% (no confidence in one’s 
balance) to 100% (full confidence in one’s balance) (31). A score of less 
than 67% indicates increased fall risk in community dwelling adults 
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(32). The DHI is a well-recognized, 25 item validated questionnaire 
querying dizziness handicap across functional, emotional, and 
physical domains. Each item is scored as ‘no’, ‘sometimes’ or ‘yes’ to 
evaluate self-perceived disability imposed by dizziness (31, 33). The 
DHI is classified as mild (under 30), moderate (31–60) or severe 
(61–100) disability due to dizziness (34). The SSQ is a self-reported 
questionnaire given both before and after the session, which includes 
questions beginning with “are you  experiencing any “and then 
different symptoms such as fatigue, general discomfort, blurred vision, 
dizziness etc. (35). Items are scored as “none” (0), “slight” (1), 
“moderate” (2) or “severe” (3). The participants then completed the 
following functional outcome measures: the Four Square Step Test 
(FSST) and the Timed up and Go test (TUG). The TUG is a 
standardized walking test to measure walking ability and fall risk, in 
which participants are instructed to rise up from a chair, walk at their 
comfortable speed for 10 feet, turn around a cone, walk back and sit 
down (36). We  recorded the faster of two trials. The FSST is a 
multidirectional stepping test of dynamic balance and coordination. 
Participants are asked to step over 4 canes on the floor in a clockwise 
and then counterclockwise direction while being timed (37). 
Participants completed one practice trial and then we recorded the 
faster performance out of two trials. A result over 12 s on the TUG and 
over 15 s on the FSST reflects increased fall risk in community-
dwelling older adults (34, 37).

For the postural control assessment, participants stood on the 
floor barefoot, hips-width apart, and wore the HTC Vive Pro Eye 
(HTC, Taoyuan City, Taiwan) HMD (portable virtual reality headset) 
with the HMD’s built-in headphones. They were asked to look straight 
ahead and do whatever felt natural to them to maintain their balance. 
The well-established protocol consists of a visual surround 3-wall 
display of a ‘stars’ scene (38, 39). We then displayed 2 levels of visual 

load: static (the walls did not move) or dynamic (the walls were 
moving anterior–posterior (AP) at 0.2 Hz and 0.032 meters). They 
were guarded by either a licensed physical therapist or a physical 
therapy student during the postural control assessment. The entire 
session took 30 min. See Figure 1 for the experimental setup.

Data processing

We used a custom-made Unity software written for the HTC Vive 
to record head sway data at 90 Hz and MATLAB R2023a (MathWorks, 
Natick, MA) to process and analyze data. We calculated head Root 
Mean Square Velocity (VRMS, cm/s or rad/s) in 5 directions 
(Anterior–posterior, Medio-lateral, Pitch, Yaw, Roll) (15): VRMS is the 
difference in position between two consecutive data points divided by 
the average time interval after a low-pass 4th order Butterworth filter 
with a cutoff frequency at 10 Hz is applied (40). The velocity at each 
point is then squared and summed. The square root of the sum is then 
divided by the number of data points (41).

Statistical analysis

We used descriptive statistics (mean, median, SD, min, max) for 
all variables (demographic, self-reported, functional and head sway). 
We  used scatterplots and Pearson’s correlations to evaluate the 
relationship between demographics variables and head sway. For 
each of the datasets (60 s and 20 s), we used 10 Independent Sample 
Kruskal-Wallis Tests to evaluate the main effect of ‘group’ on VRMS 
for the static scene and the dynamic scene separately in 5 directions 
(AP, ML, Pitch, Yawl, Roll). If a significant main effect of ‘group’ was 
observed we  conducted pairwise comparisons (control to VH, 
control to MD, VH to MD) with Dunn-Bonferroni corrections. To 
evaluate the effect of change in visual load on VRMS in each 
direction (AP, ML, Pitch, Yaw, Roll) within a group, we  used 
Wilcoxon Signed Ranks Test. We also report a median, 25th (Q25) 
and 75th (Q75) percentile and Cohen’s D effect size (ES) for each 
significant main effect.

Results

Sample

80 adults (30 healthy controls, 32 with VH, and 18 with MD) were 
recruited (Table 1). Patients with VH had the following diagnoses: 
vestibular neuritis, acoustic neuroma, and labyrinthitis. Overall, the 
control group was younger whereas the VH and MD group were the 
same age on average. Average self-reported dizziness (VVAS, DHI) 
was a little higher for the VH group than the MD group, Participants 
with MD covered the entire range of the VVAS scale (from 0 to 100) 
and also had participants with 0 DHI. Functionally, the groups were 
similar on the TUG and FSST and below established cut-offs for fall 
risk (37, 42). None of the demographic variables, including age, 
correlated with head sway on any condition with all correlations 
ranging between 0.03 to 0.2 except for VVAS values that correlated at 
0.4 with AP sway. Figure  2 shows AP and ML VRMS by age 
(correlations ranging from 0.026 to 0.174).

FIGURE 1

Experimental setup.
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TABLE 1 Description of the sample.

Variable Controls (N  =  30) Peripheral vestibular 
hypofunction (VH, N  =  32)

Meniere’s disease (MD, 
N  =  18)

Age Mean = 34.47

Median = 27.5

SD = 11.37

Min = 23

Max = 60

Mean = 52.59

Median = 55.00

SD = 16.06

Min = 21

Max = 76

Mean = 53.40

Median = 54.50

SD = 14.37

Min = 28

Max = 75

Gender (N of females, %) N = 16

53%

N = 17

53%

N = 4

22.2%

Weight (Kg) Mean = 69.17

Median = 69.63

SD = 16.23

Min = 47.63

Max = 127.01

Mean = 73.82

Median = 74.16

SD = 14.20

Min = 45.36

Max = 102.06

Mean = 87.40

Median = 90.27

SD = 19.27

Min = 46.72

Max = 120.20

Height (cm) Mean = 168.52

Median = 167.64

SD = 10.63

Min = 149.86

Max = 195.58

Mean = 167.05

Median = 166.37

SD = 10.00

Min = 149.86

Max = 187.96

Mean = 173.43

Median = 176.53

SD = 11.94

Min = 147.32

Max = 195.58

DHI Mean = 0.13

Median = 0.00

SD = 0.73

Min = 0

Max = 4

Mean = 48.19

Median = 47.00

SD = 23.60

Min = 4

Max = 100

Mean = 34.11

Median = 25.00

SD = 30.44

Min = 0

Max = 82

ABC (%) Mean = 98.79

Median = 99.19

SD = 1.24

Min = 96.25

Max = 100

Mean = 71.24

Median = 74.38

SD = 21.02

Min = 8.13

Max = 100

Mean = 82.21

Median = 90.00

SD = 22.60

Min = 20.00

Max = 99.00

VVAS Mean = 1.56

Median = 0.00

SD = 3.45

Min = 0.00

Max = 15.78

Mean = 34.38

Median = 31.11

SD = 23.72

Min = 0.78

Max = 88.89

Mean = 22.48

Median = 12.28

SD = 25.10

Min = 0.00

Max = 100.00

TUG (sec) Mean = 6.19

Median = 6.36

SD = 1.14

Min = 3.24

Max = 8.65

Mean = 8.16

Median = 8.20

SD = 2.14

Min = 4.72

Max = 14.56

Mean = 8.40

Median = 7.99

SD = 1.77

Min = 5.91

Max = 13.40

FSST (sec) Mean = 6.69

Median = 6.53

SD = 2.23

Min = 3.18

Max = 14.92

Mean = 10.71

Median = 10.41

SD = 3.54

Min = 5.07

Max = 21.60

Mean = 11.02

Median = 9.64

SD = 4.71

Min = 6.12

Max = 25.05

SSQ pre Mean = 0.20

Median = 0.00

SD = 0.61

Min = 0

Max = 3

Mean = 3.97

Median = 3.00

SD = 3.38

Min = 0

Max = 10

Mean = 2.72

Median = 1.00

SD = 4.13

Min = 0

Max = 16

SSQ post Mean = 0.23

Median = 0.00

SD = 0.68

Min = 0

Max = 3

Mean = 4.16

Median = 4.00

SD = 4.35

Min = 0

Max = 14

Mean = 2.78

Median = 1.00

SD = 5.38

Min = 0

Max = 20
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60  s analysis

For descriptive statistics of 60 seconds performance see Table 2. 
We observed a significant increase in VRMS between static and 
dynamic visuals only in the AP direction (p < 0.001). See Figure 3.

Static Scene: We observed a significant main effect of ‘group’ in 
the AP direction only (p = 0.004; Figure 3). Pairwise comparisons 
showed that the VH group had significantly higher AP VRMS than 
controls (Med 0.98 Q25, 0.8, Q75 1.3 vs. Med 0.7 cm/s Q25 0.64, Q75 
0.88 cm/s, Adjusted p = 0.003, ES = 0.73). A difference between MD 
and controls (MD: Med 0.8, Q25 0.71, Q75 1.2, cm/s, p = 0.045, 

ES = 0.73) was not significant after Bonferroni correction (Adjusted 
p = 0.134). There were no significant differences between MD and VH 
(ES = 0.23).

Dynamic Scene: We observed a significant main effect of ‘group’ 
in all directions: (ML: p = 0.003; AP: p = 0.005; Pitch: p = 0.015; Yaw: 
p = 0.006; Roll: p = 0.017; see Figure  3 for AP; Figure  4 for ML). 
Pairwise comparisons showed that the VH group had significantly 
higher VRMS than controls in all directions (ML: Med 0.62, Q25 0.45, 
Q75 0.99 vs. Med 0.38, Q25 0.32, Q75 0.52, cm/s, p = 0.003, ES = 0.93; 
AP: Med 1.1, Q25 0.85, Q75 1.52 vs. Med 0.79, Q25 0.72, Q75 1.03, 
cm/s, p = 0.004, ES = 0.91; Pitch: Med 0.025, Q25 0.021, Q75 0.050 vs. 

FIGURE 2

Scatterplots demonstrating no relationship between head VRMS and age for the three groups. A representative example is shown for 60  s AP (left-hand 
side) and ML (right-hand side).

TABLE 2 Descriptive statistics for 60  s analysis.

ML 
static 
cm/s

ML 
dynamic 

cm/s

AP 
static 
cm/s

AP 
dynamic 

cm/s

Pitch 
static 
rad/s

Pitch 
dynamic 

rad/s

Yaw 
static 
rad/s

Yaw 
dynamic 

rad/s

Roll 
static 
rad/s

Roll 
dynamic 

rad/s

Control

Mean 0.54 0.45 0.81 0.86 0.03 0.02 0.03 0.02 0.02 0.02

SD 0.37 0.20 0.33 0.25 0.02 0.01 0.03 0.01 0.01 0.01

Median 0.41 0.38 0.70 0.79 0.02 0.02 0.02 0.02 0.01 0.01

Min 0.21 0.23 0.45 0.54 0.01 0.01 0.01 0.01 0.01 0.01

Max 1.80 0.97 2.14 1.82 0.09 0.07 0.14 0.07 0.08 0.06

Vestibular hypofunction

Mean 0.76 0.71 1.11 1.28 0.04 0.04 0.03 0.03 0.02 0.02

SD 0.50 0.34 0.48 0.60 0.03 0.03 0.03 0.02 0.02 0.01

Median 0.51 0.62 0.98 1.10 0.04 0.03 0.02 0.02 0.02 0.02

Min 0.26 0.27 0.51 0.59 0.01 0.01 0.01 0.01 0.01 0.01

Max 2.21 1.40 2.29 2.86 0.17 0.18 0.20 0.10 0.09 0.06

Meniere’s disease

Mean 0.66 0.63 0.97 1.07 0.03 0.03 0.03 0.03 0.02 0.02

SD 0.61 0.62 0.42 0.51 0.02 0.01 0.03 0.03 0.01 0.01

Median 0.46 0.42 0.42 0.94 0.02 0.02 0.02 0.02 0.02 0.02

Min 0.23 0.29 0.35 0.47 0.01 0.02 0.01 0.01 0.01 0.01

Max 2.81 2.87 1.94 2.61 0.09 0.08 0.12 0.12 0.05 0.06
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FIGURE 3

Velocity Root Mean Square (VRMS) in the anterior posterior (AP) direction in centimeters/s (y axis) for static and dynamic visual scenes (x-axis) for the 
three groups over 60  s. A significant increase between static and dynamic was observed for all groups (p  <  0.001). The VH group had significantly higher 
VRMS AP compared to controls on both static and dynamic conditions (p  <  0.01).

FIGURE 4

Velocity Root Mean Square (VRMS) in the medio-lateral (ML) direction in centimeters/s (y axis) for static and dynamic visual scenes (x-axis) for the three 
groups over 60  s. The VH group had significantly higher VRMS ML compared to controls on the dynamic condition (p  =  0.003).
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Med 0.020, Q25 0.017, Q75 0.024 rad/s, p = 0.015, ES = 0.62; Yaw: Med 
0.024, Q25 0.017, Q75 0.039 vs. Med 0.017, Q25 0.013, Q75 0.022, 
p = 0.007, ES = 0.69; and Roll: Med 0.0196, Q25 0.0136, Q75 0.0261 vs. 
Med 0.0132, Q25 0.0105, Q75 0.0169 rad/s, p = 0.016, ES = 0.48). There 
were no significant differences between MD and VH (ES: ML = 0.18; 
AP = 0.36; Pitch = 0.40; Yaw = 0.25; Roll = 0.21) or MD and controls 
(ES: ML = 0.44; AP = 0.60; Pitch = 0.21; Yaw = 0.35; Roll = 0.24). A 
difference between MD and VH in ML (MD Med 0.42, Q25 0.31, Q75 
0.66 cm/s, p = 0.045, ES = 0.18) was not significant after Bonferroni 
correction (Adjusted p = 0.135) A difference between MD and VH in 
yaw (MD Med 0.0177, Q25 0.0142, Q75 0.0271 rad/s, p = 0.047 
ES = 0.25) was not significant after Bonferroni correction (Adjusted 
p = 0.14).

20  s analysis

For descriptive statistics of 60 seconds performance see Table 3. 
We observed a significant increase in VRMS with dynamic visuals 
only in the AP direction (p = 0.005). See Figure 5.

Static Scene: We observed a significant main effect of ‘group’ in the 
AP (p = 0.035) and Pitch directions (p = 0.02). Pairwise comparisons 
showed that the VH group had significantly higher AP (Med 0.95, 
Q25 0.75, Q75 1.27 vs. Med 0.70, Q25 0.63, Q75 0.92 cm/s, ES = 0.65, 
Adjusted p = 0.03) and Pitch VRMS (Med 0.0275, Q25 0.0195, Q75 
0.0428 vs. Med 0.020, Q25 0.0154, Q75 0.0249 rad/s, ES = 0.47, 
Adjusted p = 0.02) than controls. There were no significant differences 
between MD and VH (ES: AP = 0.24; Pitch = 0.61) or MD and controls 
(ES: AP = 0.40; Pitch = 0.07).

Dynamic Scene: We observed a significant main effect of ‘group’ 
in all directions: (ML: p = 0.004; AP: p = 0.002; Pitch: p = 0.013; Yaw: 
p = 0.008; Roll: p = 0.007). Pairwise comparisons showed that the VH 

group had significantly higher VRMS than controls in all directions: 
ML: Med 0.65, Q25 0.44, Q75 0.98 vs. Med 0.38, Q25 0.32, Q75 
0.51 cm/s, Adjusted significance p = 0.006, ES = 0.85; AP: Med 1.13, 
Q25 0.83, Q75 1.62 vs. Med 0.79, Q25 0.66, Q75 1.04 cm/s, p = 0.001, 
ES = 0.94; Pitch: Med 0.0286, Q25 0.020, Q75 0.0389 vs. Med 0.0195, 
Q25 0.0177, Q75 0.0231 rad/s, p = 0.012, ES = 0.58; Yaw: Med 0.0244, 
Q25 0.0177, Q75 0.0379 vs. Med 0.017, Q25 0.0141, Q75 0.0212 rad/s, 
p = 0.008, ES = 0.60; and Roll: Med 0.0196, Q25 0.0138, Q75 0.0275 vs. 
Med 0.0133, Q25 0.0108, Q75 0.0173 rad/s, p = 0.005, ES = 0.48. There 
were no significant differences between MD and VH (ES: ML = 0.17, 
AP = 0.22, Pitch = 0.2, Yaw = 0.3, Roll = 0.12). VH trended toward 
higher ML VRMS than MD (MD Med 0.40, Q25 0.29, Q75 0.67 cm/s, 
p = 0.022, Adjusted p = 0.067, ES = 0.25). See Figure  6 for a 20-s 
comparison in the ML direction.

Discussion

In this study, we employed a brief, HMD-based test of postural 
control to investigate head sway among patients with VH and MD as 
compared to ‘normal’ performance in healthy controls. We  found 
significant differences in head sway between participants with VH 
compared to healthy controls, even when analyzing 20 s, particularly 
when the visual environment was dynamic. Note that the participants 
with VH were, on average, older than the healthy controls by 18 years. 
While no correlations were observed between head sway and age, age 
could still be a factor in these findings. Consistent with prior studies 
(14–16), these findings suggest that deficits in sensory integration 
associated with VH can be captured in a mild immersive balance 
assessment. Our findings that the results were similar when analyzing 
60 or 20 s of the task further support the possibility for a clinical 
translation of this assessment. Vision influenced head sway 

TABLE 3 Descriptive statistics for 20  s analysis.

ML 
static 
cm/s

ML 
dynamic 

cm/s

AP 
static 
cm/s

AP 
dynamic 

cm/s

Pitch 
static 
rad/s

Pitch 
dynamic 

rad/s

Yaw 
static 
rad/s

Yaw 
dynamic 

rad/s

Roll 
static 
rad/s

Roll 
dynamic 

rad/s

Control

Mean 0.56 0.45 0.81 0.84 0.03 0.02 0.03 0.02 0.02 0.02

SD 0.42 0.22 0.32 0.24 0.02 0.02 0.04 0.01 0.02 0.01

Median 0.38 0.39 0.70 0.79 0.02 0.02 0.02 0.02 0.01 0.01

Min 0.21 0.22 0.46 0.48 0.01 0.01 0.01 0.01 0.01 0.01

Max 1.80 1.18 1.95 1.62 0.10 0.12 0.18 0.05 0.12 0.08

Vestibular hypofunction

Mean 0.76 0.70 1.04 1.25 0.03 0.03 0.03 0.03 0.02 0.02

SD 0.55 0.33 0.39 0.56 0.02 0.02 0.04 0.02 0.01 0.01

Median 0.48 0.65 0.95 1.13 0.03 0.03 0.02 0.03 0.02 0.02

Min 0.25 0.27 0.50 0.55 0.01 0.01 0.01 0.01 0.01 0.01

Max 2.42 1.35 2.00 3.03 0.07 0.10 0.19 0.16 0.05 0.07

Meniere’s disease

Mean 0.58 0.58 0.95 1.06 0.02 0.03 0.02 0.02 0.02 0.02

SD 0.41 0.59 0.39 0.56 0.01 0.02 0.01 0.02 0.01 0.01

Median 0.48 0.40 0.88 0.94 0.02 0.02 0.02 0.02 0.01 0.02

Min 0.24 0.27 0.39 0.54 0.01 0.01 0.01 0.01 0.01 0.01

Max 2.03 2.76 1.75 2.99 0.05 0.08 0.07 0.09 0.04 0.06
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significantly only in the AP direction, likely because the visual 
movement was in that direction. Despite that, the differences between 
groups, particularly between VH and controls were more evident with 
dynamic versus static visuals in all 5 directions supporting increased 
visual dependence in those with VH. The largest effect sizes were in 
the AP and ML directions, suggesting that an analysis of all five 
directions may not be necessary, but both static and dynamic scenes 
should be tested. VH is an intrinsic permanent hypofunction of the 
vestibular system, whereas MD is a fluctuating condition. Indeed, 
we observed large variability of head sway in patients with MD such 
that the group’s overall head sway was not significantly higher than 
controls but also not significantly lower than VH. Performance of the 
MD group appeared to be in-between the controls and VH.

Why did MD patients perform “better” than VH? Participants 
with MD in the current study had low SSQ before and after testing 
(Median = 1), ruling out the possibility that the reduction of movement 
was due to increased symptoms. As seen with PPPD (21), perhaps the 
limited head movement of MD patients in the current study was 
related to fear of developing symptoms (given the fluctuating nature 
of MD) rather than symptoms induced at time of testing, although 
fear was not measured directly in this study. Participants with MD 
displayed values that ranged from the lowest velocity among controls 
to the highest velocity among the VH group. This variability in head 
sway, also reflected in the clinical tests, such as self-reported dizziness, 
provides additional objective evidence for the challenges in diagnosis 
of MD patients, a condition known for its variability in clinical 
presentation (1–3). Overall, VH and MD groups were not significantly 
different, even though VH was higher than controls and MD was not. 
These results are consistent with Hong et  al. that observed no 
significant difference between MD and VH on the Sensory 

Organization Test although 62% of the VH group showed abnormal 
vestibular ratio and only 26% of the MD (43) given the known clinical 
heterogeneity of MD, it is possible that a larger sample size is needed 
to determine if we can establish characteristic patterns of head sway 
for these two distinct vestibular disorders. Though all Meniere’s 
patients met diagnostic standards for definite MD, significant 
heterogeneity in symptom severity, disease progression, and individual 
symptomatic burden likely still exists among any MD population. 
None of the participants in the present study were tested during an 
acute Meniere’s episode. It is possible that the brevity of the test 
paradigm (20 s) may facilitate future recruitment of patients with 
active MD. While the clinical presentation and episodic nature can 
lead to difficulty with differential diagnosis for MD, an assessment of 
head sway can offer some clinical data in between MD episodes. This 
would allow for more portable and accessible in clinic options for 
differential diagnosis which do not induce symptoms, require long 
lengths of time, or clinical specialization (i.e., vestibular diagnostic 
testing—videonystagmography or vestibular evoked myogenic 
potentials). Our findings continue to build in the body of literature 
that this specific assessment is a mild perturbation which can 
be performed on all patients with vestibular disorders including an 
episodic vestibular disorder like MD.

What does the head represent in a postural response? The inverted 
pendulum model suggests that in quiet stance, head trajectories 
should correspond to movement around the ankle joint and are 
therefore an adequate representation of body sway (44, 45). In past 
work using simultaneous recording of head sway and center-of-
pressure data we observed high cross correlations in young adults (46) 
and similar responses to visual and surface perturbations, as well as 
between-group differences in people with VH, people with unilateral 

FIGURE 5

Velocity Root Mean Square (VRMS) in the anterior posterior (AP) direction in centimeters/s (y axis) for static and dynamic visual scenes (x-axis) for the 
three groups over the first 20  s of the scene. A significant increase between static and dynamic was observed for all groups (p  =  0.005). The VH group 
had significantly higher VRMS AP compared to controls on both static and dynamic conditions (p  <  0.05).
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hearing loss and healthy adults (22). Given that, it is reasonable to 
assume that the inverted pendulum model applies in this case as well, 
when participants were standing hips-width apart and were explicitly 
instructed to look straight ahead. Nevertheless, one must not 
generalize the model to other balance tasks such as dynamic 
movement (e.g., dodging a ball) (17), standing in a more challenging 
stance (e.g., tandem position) (16) or even adding an additional 
cognitive task that involves speaking (46). In these instances, 
we observed a separation between head and center-of-pressure such 
that the head may provide additional information but cannot use 
interchangeably with a force platform.

Limitations

Our study was limited by the small sample size of the MD group, 
inability to test the MD group during an episode and heterogeneity of 
MD patients with respect to disease stage and progression. VH and 
MD differed from controls in demographics, specifically age and 
gender, although we observed no relationship between head sway and 
age, suggesting that age is not a likely confounding factor. It is known 
that anxiety and fear may influence postural control in vestibular 
disorders, and we did not measure either in this study.

Conclusion

For participants with vestibular hypofunction, this work joins a 
growing body of literature suggesting that head sway derived from 

HMD is sensitive to their condition and can be clinically useful as an 
outcome measure to evaluate sensory integration for postural control. 
The assessment presented here is short, does not provoke loss of 
balance or symptoms and differentiates between people with VH and 
healthy controls even within static immersive visual environments. 
Increasing sensory load (here a dynamic visual environment) is 
associated with increased differences between groups. This work also 
adds to the body of literature illustrating the challenges in finding 
objective biomarkers to differentiate Meniere’s Disease. We observed 
large variability in a small MD group on head sway metrics, as well as 
other self-reported questionnaires. A larger sample as well as patients 
with worse symptoms at time of testing could elucidate whether head 
sway via HMD could become a viable test in this population. The 
similar finding between 20- and 60-s scene and the full portability of 
the system with an in-clinic testing setup could help these 
future endeavors.
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