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Causal association between 
depression and intracranial 
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Background: Although observational studies have suggested a bidirectional 
relation between depression and intracranial aneurysms (IAs), their causal 
relations remain unclear. Thus we  aimed to assess the causal association 
between depression and IAs.

Methods: We conducted a bidirectional two-sample Mendelian randomization 
(MR) study using summary-level data from publicly available genome-wide 
association studies of depression (n  =  500,199), IAs (n  =  79,429), unruptured 
intracranial aneurysm (uIA) (n  =  74,004), and subarachnoid hemorrhage (SAH) 
(n  =  77,074). MR analyses included the inverse-variance weighted (IVW) method 
as the primary analytic, plus weighted-median, simple mode, weighted mode, 
MR-Egger, and MR PRESSO.

Results: Genetically predicted depression was strongly positively related to IAs 
(odds ratio [OR]  =  1.69, 95% confidence interval [CI] 1.19–2.39, p  =  0.003), uIA 
(OR  =  1.96, 95% CI 1.06–3.64, p  =  0.032), and SAH (OR  =  1.73, 95% CI 1.14–2.61, 
p  =  0.009). Reverse MR analyses showed that while genetically predicted uIA 
was positively related to depression (OR  =  1.02, 95% CI 1.00–1.05, p  =  0.044), no 
causal relations were observed for either IAs or SAH for depression.

Conclusion: Our findings provide evidence of a causal effect of depression on 
IAs, uIA, and SAH. For the reverse MR analyses, we found a causal impact of uIA 
on depression, but no causal influence of either IAs or SAH for depression.
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1 Introduction

Intracranial aneurysm (IA), localized pathological dilations at major bifurcations of 
cerebral arteries, is characterized by internal elastic lamina loss and media disruption (1). In 
a global study of individuals with a mean age of 50 years, IA incidence was ~3.2% (2). IAs are 
susceptible to rupture, which causes ~85% of spontaneous subarachnoid hemorrhage (SAH) 
(3). Poor prognosis and high death and disability rates are common features of aneurysmal 
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SAH (4, 5). Consequently, it is important to pinpoint the causes of IA 
development to launch early, targeted interventions.

Depression is a primary cause of disability, accounting for over 
300 million cases globally (6). Those with depression are at increased 
risk for a host of medical conditions in later life (7). Observational 
studies have shown a connection between IA and depression (8–10). 
For instance, a nine-year cohort study by Marijnissen et al. revealed 
depression to be a stroke (including IA) risk factor (11). However, as 
has been frequently noted, these observational studies have been 
limited by confounding factors and reverse causality. Because 
development of both depression and IA have vague, subtle onsets, it is 
challenging to establish their temporal order. One study revealed a 
lack of genetic support for a causal relation between major depressive 
disorder and IA (12), possibly because of confounding factors and 
differences in data sources. There has also been insufficient evidence 
to determine the direction of such causality (12); thus, the potential 
causality of depression in IA risk, and vice versa, has remained elusive.

Mendelian randomization (MR), which uses genetic variation in 
non-experimental data to identify causal relations between exposure 
and outcome, can lessen the statistical influence of social, behavioral, 
psychological, and other factors (13). By utilizing genome-wide 
association study (GWAS) summary statistics, MR studies have 
emerged as a powerful, effective tool for determining causal relations 
between exposure and outcome phenotypes (14, 15). Using single 
nucleotide polymorphisms (SNPs) extracted as instrumental variables 
(IVs) from a GWAS, a two-sample MR analysis can be  used to 
determine causal links between two traits (16). Herein, we analyzed 
the causal relations between depression and IAs with two-sample MR 
with recently published GWAS summary data for depression and IAs.

2 Methods

To assess the causal association between depression and IAs, 
we  performed a bidirectional two-sample MR analysis for each 
exposure–outcome pair. All GWAS summary data analyzed herein are 
publicaly available. All included studies obtained ethical approval and 
informed consent. Figure  1 shows a brief description of this 
bidirectional MR design. Summary GWAS data for depression and 
IAs were assembled from published studies using samples from the 
most significant European populations (Table 1).

2.1 Genetic instrument selection for MR 
analyses

The three major MR assumptions were used to filter the SNPs for 
each exposure factor. For assumption 1, we performed the following 
three steps. First, SNPs that met a threshold for genome-wide 
significance (p < 5 × 10−8) and were associated with the exposure were 
included as IVs. Second, based on linkage disequilibrium (LD) as 
determined by r2 and window size (when r2 < 0.001 and window 
size = 10,000 kb in the European 1,000 Genome reference panel), 
we  retained variations with the lowest p-values as independent 
instruments. Third, we calculated F-statistics to quantify the power of 
IVs; F-statistics >10 is commonly advised for MR analysis. For 
assumption 2, the IVs did not include SNPs that were significantly 
(p < 1 × 10−5) linked to confounders. We controlled for confounding 

factors, including body mass index, alcohol intake frequency, and 
smoking (Supplementary Table S1). For assumption 3, SNPs related 
to outcomes were eliminated from the IVs.

2.2 Depression data

The three largest GWAS including various depression phenotypes 
from 23andMe, PGC, and UK Biobank were included in the 
depression meta-analysis by Howard et al. (17). However, in only PGC 
and UK Biobank are the meta-analyses of depression summary 
statistics for all assessed variants publicly available; these are based on 
170,756 cases and 329,443 controls, all of whom are of European 
ancestry. Therefore, the primary analysis herein examined the 
association between depression and IAs based on 500,199 individuals 
with depression, as defined by the PGC and UK Biobank meta-
analyses. Using the p < 5 × 10−8 threshold, 20 SNPs were found to 
be associated with depression for IVs (Supplementary Table S2). The 
reverse-direction MR analyses also used the summary-level PGC and 
UK Biobank data for 500,199 individuals.

2.3 IAs, uIA and SAH data

Summary statistics IAs data among individuals of European 
ancestry originated from a GWAS of 23 different cohorts, comprised of 
7,495 cases and 71,934 controls (18). Within these, 4,471,083 SNPs met 
the quality control standards. Among these, there were 69% with 
ruptured IAs, 28% with unruptured IA (uIA), and 3.8% with unknown 
rupture status; specifically, there were 5,140 SAH (i.e., ruptured IA) 
cases and 2,070 unruptured IAs cases of European ancestry. Therefore, 
the MR analyses herein used the three summary datasets, all including 
individuals of European ancestry, separately: GWAS of IAs (unruptured 
and ruptured) cases (n = 7,495) vs. controls (n = 71,934); GWAS of 
unruptured IA-only cases (n = 2,070) vs. controls (n = 71,934); and 
GWAS of SAH-only cases (n = 5,140) vs. controls (n = 71,934). For 
reverse MR analyses, since few SNP–IA associations met the genome-
wide association threshold (i.e., p < 5 × 10−8), a suggestive level of 
significance (p < 1 × 10−6) was used to extract IVs. Eight independent 
genetic SNPs associated with IAs (Supplementary Table S3), 4 SNPs 
associated with uIA (Supplementary Table S4), and 8 SNPs associated 
with SAH (Supplementary Table S5) were identified at this genome-
wide significance level.

2.4 MR analysis

Herein, R2 was the proportion of variance in an exposure factor 
explained by each IV, and the F-statistic was calculated to measure the 
strength of each IV (19). The F-statistic used the following formula: 
F = R2 (N − 2) / (1 − R2), where N = the GWAS sample size for the 
exposure association.

MR analyses used the random-effects inverse-variance weighted 
(IVW) method as the primary analysis to assess the potential 
bidirectional causal relations between depression and IAs, because it 
gives a reliable causal estimate in the absence of directional pleiotropy 
(20). We also performed sensitivity analyses using weighted median, 
simple mode, weighted mode, MR-Egger, and MR-PRESSO. These 
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robust analytics provide valid causal inferences under weaker 
assumptions than does the standard IVW (21, 22). The intercept of 
MR-Egger (23) and the global test from MR-PRESSO (24) were used 
to assess horizontal pleiotropy. To detect and correct horizontal 
pleiotropic outliers, we also used the MR pleiotropy residual sum and 
outlier (MR-PRESSO) approach (24). We  assessed potential 
heterogeneity with Cochran’s Q (25). Leave-one-out analysis was 
conducted by sequentially excluding each SNP, and an IVW approach 
was applied to the remaining SNPs to determine whether a specific 
variant would impact the estimations. MR results are presented as 
odds ratios (OR) of the outcome risk for the corresponding unit 
changes in exposure, and 95% confidence intervals (CI).

All statistical analyses were performed using R (v4.3.1) statistical 
software. R package TwoSampleMR was used to perform MR analyses.

3 Results

3.1 Causal effects of depression on IAs, uIA, 
and SAH

MR analyses of the causal effect of depression on IAs, uIA, and 
SAH, and pleiotropy effect assessments, are presented in Table  2. 

Supplementary Figures S1A–C shows scatter plots of the causal 
connections between depression and IAs, uIA, and SAH, with colored 
lines denoting the slopes of each regression analysis. In the scatter 
plots, each point represents a IV SNP, and lines of different colors 
represent different MR analysis methods. Results shown in the three 
scatter plots indicate that the lines representing different MR analysis 
methods generally slope upwards, suggesting that as depression 
increases, risk of developing IAs, uIA, and SAH increases. Forest plots 
(Figure 2) show MR estimates for the effects of the SNPs related to 
depression on IAs, uIA, and SAH. In the forest plots, each solid 
horizontal line represents a single SNP; because of the lack of 
robustness of the individual SNP results, it was necessary to integrate 
them (combined red line at bottom). The red lines below the three 
forest plots indicate that an increase in depression can increase the risk 
of IAs, uIA, and SAH.

There were no weak IVs, as each F-statistic was not <30. 
Genetically predicted depression was strongly positively related to IAs, 
uIA, and SAH. With 20 genetic instruments in the major analysis, the 
IVW method demonstrated that genetically doubling the odds of 
depression increased the risk of IAs, SAH, and uIA by 69, 73, and 96%, 
respectively (IAs: OR = 1.69, 95% CI 1.19–2.39, p = 0.003; SAH: 
OR = 1.73, 95% CI 1.14–2.61, p = 0.009; uIA: OR = 1.96, 95% CI 1.06–
3.64, p = 0.032). MR-Egger regression showed no horizontal pleiotropy 

FIGURE 1

Overview of bidirectional MR study design. SNPs, single nucleotide polymorphisms; IVs, instrumental variables; IAs, intracranial aneurysms; uIA, 
unruptured intracranial aneurysm; SAH, subarachnoid hemorrhage; MR, Mendelian randomization. MR analysis depends on three major assumptions: 
Assumption 1, IVs are strongly associated with exposure; Assumption 2, IVs are independent of confounders; Assumption 3, IVs are not directly related 
to outcomes.

TABLE 1 GWAS data details.

Phenotype Total sample size Cases, n Controls, n Population Consortium PMID

Depression 500,199 170,756 329,443 European Howard et al. 30718901

IAs 79,429 7,495 71,934 European Bakker et al. 33199917

uIA 74,004 2,070 71,934 European Bakker et al. 33199917

SAH 77,074 5,140 71,934 European Bakker et al. 33199917

IAs, intracranial aneurysms; uIA, unruptured intracranial aneurysm; SAH, subarachnoid hemorrhage.
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in the analysis of the causal effect of depression on IAs, SAH or uIA 
(IAs: egger_intercept = 0.0, p = 0.91; SAH: egger_intercept = 0.0, 
p = 0.79; uIA: egger_intercept = 0.09, p = 0.69). Nor was horizontal 
pleiotropy found in the MR-PRESSO global test (IAs: p = 0.88; SAH: 
p = 0.82; uIA: p = 0.70) and MR-PRESSO failed to find any notable 
outliers. Cochran’s Q indicated no significant heterogeneities (IAs: 
Q = 12.5, p = 0.86; SAH: Q = 13.9, p = 0.79; uIA: Q = 15.5, p = 0.69); this 
is shown in the funnel plots (Supplementary Figures S2A–C), on 
which points on either side of the IVW line are roughly symmetrical. 
The leave-one-out test revealed that the causal estimate was not driven 
by any single SNP (Supplementary Figures S3A–C); that the overall 
error line does not change significantly after excluding each SNP 
indicates reliable results.

3.2 Causal effects of IAs, SAH, and uIA on 
depression

Results of the reverse MR analysis of the causal effect of IAs, SAH, 
and uIA on depression and the evaluation of pleiotropic effects are in 
Table  3. We  also created scatter and forest plots for each pair of 
associations (Supplementary Figures S1D–F; Figure 3). MR results 
showed that only uIA was causally associated with depression in the 
IVW models (OR = 1.02, 95% CI 1.00–1.05, p = 0.044), which was 
positively associated with depression. No significant relations were 

found for IAs or SAH (IAs: OR = 1.01, 95% CI 0.99–1.04, p = 0.288; 
SAH: OR = 1.00, 95% CI 0.97–1.05, p = 0.667). Regarding the causal 
relations between uIA or SAH and depression, no horizontal 
pleiotropy was detected in the MR-Egger regression (uIA: egger_
intercept = 0.0, p = 0.89; SAH: egger_intercept = 0.0, p = 0.92) or the 
MR-PRESSO global test (uIA: p = 0.43; SAH: p = 0.06). For the causal 
relation between IAs and depression, while MR-Egger regression 
suggested no horizontal pleiotropy (egger_intercept = 0.0, p = 0.64), 
MR-PRESSO found evidence of pleiotropy (p = 0.03). MR-PRESSO 
did not show any significant outliers of horizontal pleiotropy. 
Cochran’s Q and funnel plots (Supplementary Figures S2D–F) 
indicated no heterogeneities, except for the relation between SAH and 
depression risk. Leave-one-out analyses showed no significant SNPs 
aside from those for uIA (Supplementary Figures S3D–F).

4 Discussion

Herein, we assessed the causal relations between depression and 
IAs. Two-sample bidirectional MR analyses detected that genetic 
propensity for depression was positively associated with IAs, SAH, and 
uIA risks. Reverse MR analyses showed that only genetic link to uIA 
was associated with increased depression risk. No evidence was found 
to indicate a genetic link with either IAs or SAH in association 
with depression.

TABLE 2 Effect estimates of associations between genetic instrumental variables for depression and aneurysm risk.

Depression IVW MR-Egger MR PRESSO (outlier-corrected)

OR (95% CI) Q (p value) OR (95% CI) Intercept (p value) Outlier OR (95%CI) p for global test

IAs 1.69 (1.19, 2.39) 12.5 (0.86) 1.36 (0.03, 6.08) 0.0 (0.91) 0 NA 0.88

SAH 1.73 (1.14, 2.61) 13.9 (0.79) 2.91 (0.03, 2.60) 0.0 (0.79) 0 NA 0.82

uIA 1.96 (1.06, 3.64) 15.0.5 (0.69) 0.08 (0.0, 6.83) 0.09 (0.69) 0 NA 0.70

IAs, intracranial aneurysms; uIA, unruptured intracranial aneurysm; SAH, subarachnoid hemorrhage; OR, odds ratio; 95% CI, 95% confidence interval; Q, Cochran’s Q; NA, not applicable.

FIGURE 2

Forest plots of causal effects of depression on IAs, uIA, and SAH. IAs, intracranial aneurysms; uIA, unruptured intracranial aneurysm; SAH, subarachnoid 
hemorrhage; IVs, instrumental variables; IVW, inverse-variance weighted; MR, Mendelian randomization; OR, odds ratio; 95% CI, 95% confidence 
interval.
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Observational studies have revealed bidirectional correlations 
between depression and IAs. Marijnissen et  al. discovered that 
depression is a risk factor for IAs (11), consistent with our results. 
Individuals diagnosed with depression exhibit a 43% elevated risk of 
stroke and have an average two-point higher National Institutes of 
Health Stroke Scale score than do those without pre-stroke depression 
(26, 27). Pre-stroke depression is likely a substantial modifiable risk 
factor for post-stroke depression and functional impairment (28, 29). 
A meta-analysis of a cumulative ~700,000 participants by Barlinn et al. 
found that depression increases the risk of first-ever stroke by 40% in 
the general population (26). A further registry study reported evidence 
of an association between hospitalization for depression and 
subsequent stroke (30). Pharmacological interferences with platelet 
aggregation caused by antidepressant medication may increase stroke 
risk in those with depression (31). Hypothalamic–pituitary–adrenal 
(HPA) axis dysregulation related to stress and depression may increase 

circulating catecholamines, endothelial dysfunction, and platelet 
activation, resulting in a hypercoagulable condition and raising stroke 
risk (32, 33). Previous studies have also suggested that depression has 
unique underlying cerebral pathomechanisms, including cerebral 
inflammation, HPA axis dysregulation, increased platelet reactivity, 
and autonomic dysfunction (34). The causal relations between 
depression and IAs, uIA, and SAH herein thus reinforce the notion 
that depression prevention and early diagnosis may help prevent 
IAs,uIA, and SAH. The distinct clinical prognosis of uIA and SAH 
suggest that alleviating depression may reduce IAs rupture risk, 
particularly in patients with uIA in whom long-term observation or 
watchful waiting is preferred over surgical intervention. However, the 
exact mechanisms underlying the causal association between 
depression and IAs remains unclear. Subsequent studies should thus 
concentrate on the specific mechanisms mediating these associations, 
and on pharmacological treatments for depression.

TABLE 3 Effect estimates of associations between genetic instrumental variables for aneurysm and depression risk.

IAs IVW MR-Egger MR PRESSO (outlier-corrected)

OR (95% CI) Q (p value) OR (95% CI) Intercept 
(p value)

Outlier OR (95% CI) p for global 
test

Depression 1.01 (0.99, 1.04) 13.3 (0.06) 1.05 (0.93, 1.18) 0.0 (0.64) 0 NA 0.03

SAH

IVW MR-Egger MR PRESSO (outlier-corrected)

OR (95% CI) Q (p value) OR (95% CI)
Intercept 
(p value)

outlier OR (95% CI)
p for global 

test

Depression 1.00 (0.97, 1.05) 11.3 (0.02) 1.02 (0.80, 1.30) 0.0 (0.92) 0 NA 0.06

uIA

IVW MR-Egger MR PRESSO (outlier-corrected)

OR (95% CI) Q (p value) OR (95% CI)
Intercept 
(p value)

Outlier OR (95% CI)
p for global 

test

Depression 1.02 (1.00, 1.05) 3.5 (0.32) 0.98 (0.53, 1.81) 0.0 (0.89) 0 NA 0.43

IAs, intracranial aneurysms; uIA, unruptured intracranial aneurysm; SAH, subarachnoid hemorrhage; OR, odds ratio; 95% CI, 95% confidence interval; Q, Cochran’s Q; NA, not applicable.

FIGURE 3

Forest plots of causal effects of IAs, uIA, and SAH on depression. IAs, intracranial aneurysms; uIA, unruptured intracranial aneurysm; SAH, subarachnoid 
hemorrhage; IVs, instrumental variables; IVW, inverse-variance weighted; MR, Mendelian randomization; OR, odds ratio; 95% CI, 95% confidence 
interval.
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Regarding the reverse direction, living with uIA without treatment 
may lower quality of life and lead to mental health issues like anxiety 
and depression (35, 36). Chinese patients with untreated uIA tend to 
suffer from short-term depression, anxiety, and reduced quality of life 
after diagnosis (37). These findings are consistent with our study 
results showing that uIA is positively related to depression risk. 
Patients diagnosed with uIA may develop depression from concerns 
about the uIA rupturing. In patients with uIA, rupture risk is the most 
apparent cause of preoperative anxiety and depression (37). Recent 
studies emphasize the significance of psychological factors and quality 
of life in uIA management strategies (38, 39). Our findings support the 
notion that attending to the occurrence of depression in patients with 
uIA is warranted. Furthermore, long-term depressive symptoms 
persist after SAH in 72% of patients (40). Depression after stroke is 
generally considered a chronic illness, with prevalence and incidence 
of ~30% and ~ 15%, respectively, for 1–15 years post-stroke (41). After 
SAH, up to one in three patients may develop pituitary dysfunction 
(42), which may facilitate development of depression (43). Patients 
with depression after SAH also have lower basal cortisol levels (44). 
Yet our MR analyses revealed no evidence of support for causal effects 
of IAs or SAH on depression, indicating that the previously observed 
associations may be due to confounds. Studies of the development of 
depression after SAH have found that comorbid cognitive impairment, 
fatigue, post-traumatic stress disorder, and physical disability increase 
depression risk (9).

This study had several major strengths. First, it is the first 
two-sample MR study to identify a causal effect between depression 
and IAs, allowed by genotype-based random distribution. Second, this 
design avoids the possible effects of reverse causation and potential 
confounding factors in conventional studies, allowing investigation of 
causal relations. Third, each exposure had an F-statistic >10, indicating 
an absence of weak instrument bias. Finally, we tested MR model 
assumptions through several primary sensitivity analyses.

Several limitations must also be acknowledged. First, our results 
were derived only from populations of European ancestry; it is 
therefore essential to exercise caution when applying them to 
non-European populations, as environment and ethnicity may 
influence these relations. Second, a relatively small number of strongly 
correlated SNPs were selected for MR analysis of reverse causality; 
invalid results may be due to deficient SNPs, which would limit our 
ability to identify genuine causal relations. Third, not all SNPs were 
examined; some may have been removed due to LD, potentially 
impacting the results. Finally, as is true of nearly all MR analyses, it is 
possible that the IV SNPs we  used were related to 
unmeasured confounders.

5 Conclusion

These two-sample bi-directional MR analyses of depression and 
IAs, based on large-scale GWAS summary statistics, provide strong 
evidence of a causal association between depression and IAs, including 
IAs, SAH, and uIA. Reverse MR analyses support a causal effect of uIA 
on depression, though not of IAs or SAH on depression. These 
findings support the recommendation that depression prevention and 
treatment may mitigate IAs occurrence and progression, and that 
depression should be closely monitored among patients diagnosed 
with uIA.
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