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Introduction: The methylation status of oxygen 6-methylguanine-DNA 
methyltransferase (MGMT) is closely related to the treatment and prognosis of 
glioblastoma. However, there are currently some challenges in detecting the 
methylation status of MGMT promoters. The hematoxylin and eosin (H&E)-
stained histopathological slides have always been the gold standard for tumor 
diagnosis.

Methods: In this study, based on the TCGA database and H&E-stained Whole slide 
images (WSI) of Beijing Tiantan Hospital, we constructed a weakly supervised 
prediction model of MGMT promoter methylation status in glioblastoma by 
using two Transformer structure models.

Results: The accuracy scores of this model in the TCGA dataset and our independent 
dataset were 0.79 (AUC = 0.86) and 0.76 (AUC = 0.83), respectively.

Conclusion: The model demonstrates effective prediction of MGMT promoter 
methylation status in glioblastoma and exhibits some degree of generalization 
capability. At the same time, our study also shows that adding Patches automatic 
screening module to the computational pathology research framework of 
glioma can significantly improve the model effect.
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1 Introduction

Glioma is the most prevalent primary malignant tumor in the central nervous system. 
Glioblastoma (GBM) is the most common glioma subtype and an important cause of 
morbidity and mortality. It progresses rapidly and has the worst prognosis with a 5-year 
survival rate of less than 7% (1). For individuals newly diagnosed with GBM, the current 
standard treatment remains gross total resection followed by a combination of radiation 
therapy and temozolomide (TMZ) (2). O6-methylguanine–DNA methyltransferase (MGMT) 
is a DNA repair enzyme that reverses the DNA damage caused by alkylating agents, resulting 
in tumor resistance to TMZ and nitrosourea-based systemic therapy. Epigenetic silencing of 
the MGMT gene by promoter methylation makes the tumor more sensitive to treatment with 
alkylating agents and has been associated with longer overall survival in patients with GBM 
who received TMZ chemotherapy (3). There are multiple ways to detect MGMT promoter 
methylation, including methylation-specific PCR, methylation-specific high-resolution 
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melting, and pyrosequencing. However, these methods are often time-
consuming and labor-intensive, and not all patients have the 
conditions to undergo relevant examinations. Obtaining an accurate 
diagnosis swiftly remains a significant challenge (4).

Histopathological biopsy, particularly hematoxylin and eosin (H&E)-
stained slides, is still a gold standard for tumor diagnosis (5). However, 
accurate diagnosis of tumors requires high professionalism from 
pathologists. The clinical experience and subjectivity of the pathologist 
can also affect the diagnostic results (6). With the advancement of digital 
imaging and computer technology in recent years, computational 
pathology based on whole slide images (WSI) for artificial intelligence 
(AI)-assisted analysis is rapidly developing (7). For example, 
computational pathology can predict tumor classification (8, 9), prognosis 
(10), and molecular mutations based on histopathological images, etc. (11, 
12). However, as far as we know, research regarding MGMT promoter 
methylation in glioma using pathological images remains relatively 
limited. Li introduced a weakly supervised primary brain tumor classifier 
VIT-WSI based on digital pathology slides. Within this framework, the 
MGMT promoter methylation status of gliomas was predicted with an 
accuracy of 0.7916 and an AUC of 0.845 (13). However, it is essential to 
note that the primary focus of the study was not on the prediction of 
MGMT promoter methylation. This study included only 71 patients with 
known MGMT methylation status, and 53 of those were determined by 
immunohistochemistry (IHC). Though IHC is a common and 
inexpensive assay used in clinical, the value of using IHC to determine 
MGMT status has been controversial. Due to the inconsistency between 
MGMT promoter methylation status and MGMT protein expression, the 
IHC results may not be accurate, thus affecting patients’ treatment and 
prognosis (4). This indicates that it is of great clinical significance for us 
to develop a novel predictive model for the MGMT promoter methylation 
status. A study published in 2022 by Kim et al. (14) showed that MGMT 
promoter methylation was significantly associated with ATRX gene 
deletion in IDH wild-type glioblastoma. Moreover, ATRX is involved with 
the telomerase-independent alternative lengthening of telomeres (ALT) 
mechanism, and the ATRX gene is also involved in the regulation of the 
tumor microenvironment in glioma (15). Therefore, we hypothesized that 
MGMT promoter methylation in glioblastoma may cause subtle changes 
in tumor cell morphology through interactions with other genes, which 
can be captured by the neural network model to obtain corresponding 
predictions. Hence, we proposed a weakly supervised prediction model 
for MGMT promoter methylation status in glioblastoma based on 
computational pathology with H&E-stained histopathological slides. 
We used two models based on transformer architecture to achieve the 
end-to-end prediction of MGMT promoter methylation status and 
confirmed the generalization of the overall model using datasets from 
different sources. The contribution of this study is 2-fold: one is to confirm 
the possibility of predicting the methylation status of MGMT promoter 
in gliomas by WSI; second, an end-to-end model was established to 
simplify the cost of MGMT promoter status detection in glioma patients.

2 Materials and methods

2.1 Dataset

At present, the existence of an open database is very important. 
The complexity of cancer disease requires a large amount of data as a 
supporting basis, and the existence of an open database can accelerate 
related research and save researchers’ resources (16). Therefore, this 

retrospective study included histopathological slides of H&E-stained 
tissue samples from two cohorts of glioblastoma patients. The first 
cohort comprised patients from The Cancer Genome Atlas (TCGA) 
project, accessible through the National Institutes of Health Genome 
Data Sharing Portal (17–19) (TCGA cohort). The second cohort 
comprised patients with glioblastoma diagnosed in Beijing Tiantan 
Hospital from 2019 to 2023 (TianTan cohort). As cryopreservation 
destroys the original morphological structure of cells and tissues, all 
histopathological slides collected in this study were preserved by 
formalin-fixed paraffin embedding. Specific data inclusion and 
exclusion criteria are listed below:

Inclusion criteria were as follows: (1) precise diagnosis of 
glioblastoma by surgical pathology; (2) clear methylation status of the 
MGMT promoter by genetic testing; and (3) no other brain lesions. 
Exclusion criteria were as follows: (1) unclear images of 
histopathological slides; and (2) missing baseline information or 
unknown medical history.

All pathological images in the TCGA cohort were confirmed to 
be glioblastoma by secondary diagnosis by a pathologist with extensive 
experience in pathological diagnosis. All histopathological slides in 
the TianTan cohort were scanned using a Lecia Aperio CS2 scanner 
into WSIs of digital pathology in standard file format (the “svs” 
format). The scanning magnification was 20X. All data from the 
TianTan cohort were only used as an external independent test set to 
verify the generalization of the model and were not used in the 
training or hyperparameter adjustment process. Data in the TCGA 
cohort were divided into the training set and the test set according to 
certain standards: If multiple WSIs originated from the same patient, 
then all those WSIs from that patient were assigned to the training set. 
This approach ensured that slides from the same tumor sample were 
not used for both training and testing at the same time.

This study was approved by the Ethics Committee of Beijing 
Tiantan Hospital (ethical approval no: YW2022-025).

2.2 Overall model architecture

Our study achieved end-to-end prediction of MGMT promoter 
methylation status in glioma patients based on H&E-stained WSIs 
through three main modules. First, the scanned WSIs were divided 
into several patches using the preprocessing module. After that, the 
glioblastoma region of interest (ROI) patches prediction module was 
used to filter the sliced patches. Finally, the molecular status of patients 
was predicted by the MGMT promoter status prediction module. The 
main body model framework adopts the modular design of 
openMMLab (20). The details are described below. The complete 
process diagram is shown in Figure 1.

2.3 Preprocessing module

This module is crucial for pre-processing WSIs. It consisted of two 
parts. The first part is the patch segmentation. This part is responsible for 
splitting the complete WSI into patches. A complete WSI consists of 
billions of pixels through a pyramid structure. It is difficult to directly 
input such large image data into a neural network or machine learning 
model for training. Therefore, we used the sliding window method to 
divide the tissue image in WSI into several patches of 512 pixels × 512 
pixels for subsequent data analysis and processing (21). The second part 
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is the color normalization. This part is dedicated to the color normalization 
of the patches. Color variation can arise due to several factors, including 
variations introduced by the operator during the H&E staining and 
differences in staining reagents. Such color variations can significantly 
interfere with subsequent modeling predictions. Thus, we  used the 
Vahadane method to normalize the colors presented in H&E pathology 
images to eliminate the influence of staining differences, ensuring 
consistent and reliable data for further analysis (22).

2.4 ROI patches prediction module

This module is used to screen the patches obtained in the 
Preprocessing module. As a WSI may encompass diverse elements 
such as hemorrhage and normal tissue, potentially interfering with the 
final prediction, we employed the ROI patches prediction model to 
screen the patches generated in the preprocessing module to avoid the 
interference of confusing information as much as possible. The 
module utilized transfer learning, employing a Vision Transformer 
model pre-trained on the ImageNet dataset (23). We optimized the 
model’s performance using the AdamW optimizer (24). To further 
enhance model convergence during training, we  employed the 
CosineAnnealingLrUpdater strategy for optimal learning rate 
adjustments (25). The initial learning rate is set at 1.75 × 10−3, with a 
minimum of 1.75 × 10−5 imposed during the learning rate adjustment 
process. We also employed linear preheating for the learning rate. 
Model training and prediction used the LabelSmoothLoss as the loss 
function (26).

In this process, the training data for the Vision Transformer 
model were derived from the annotations of pathologists. Additionally, 
pathologists screened patches to ensure that the training dataset 
exclusively includes ROI patches exhibiting typical 
tumor characteristics.

In addition, to investigate the potential impact of refined 
annotation on the results, we explored other two methods to filter the 
patches generated by the Preprocessing Module. This included relying 
on the pathologist’s annotation for filtering (Tumor Only) and only 
removing the blank background (Whole Tissue). The implementation 
details for each method are described below:

 1. Tumor only: For this method, two highly experienced 
pathologists annotated ROI regions. When the annotated ROI 
regions were inconsistent, a third more senior pathologist 
made the final judgment. When screening the patches, if a 
patch does not completely exist in the ROI area, we will discard 
it. Only patches fully contained within the ROI area will 
be retained.

 2. Whole tissue: In this approach, while screening the patch, 
we first evaluate its overall color threshold. Given the RGB 
color distribution ranging from 0 to 255, where values closer to 
255 represent colors closer to white. Therefore, patches with an 
overall RGB value greater than 220 were considered blank 
backgrounds and were discarded. The rest of the patches were 
retained for further analysis.

Through the above method, we obtained three groups of patches 
annotated in different ways. These three groups of patches were input 
into the final MGMT Predict Module to obtain diverse results and to 
compare the impact of these three annotation methods on the results.

2.5 MGMT promoter status prediction 
module

The ROI patches output by the second module were used as the 
input of this module to predict the final MGMT promoter methylation 

FIGURE 1

Overview process of the model. (A) Preprocessing module: responsible for data pre-processing. (B) ROI patches prediction module: responsible for 
automatically annotating ROI patches. (C) MGMT promoter status prediction module: responsible for acquiring the patient’s MGMT prediction results.
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status. The processing flow of this module involved considering each 
WSI as a package, which is then sliced into numerous ROI patches. 
Each ROI patch is treated as an instance, with the package’s label being 
assigned to each patch within it. In this part, the main structure of our 
model adopts the Swin Transformer v2 structure (27). After position 
encoding of input data using PatchEmbed, the four stages are passed. 
Except for the first stage, each stage consists of a PatchMerging 
module and several Swinblock V2 modules. Then, the features are 
processed by the linear normalization layer and global average pooling 
layer and then predicted and classified by a fully connected layer. Each 
SwinBlockV2 module consists mainly of multi-head attention 
mechanisms with feedforward neural networks and linear 
normalization layers. In the four stages, the number of SwinBlockV2 
is [2, 2, 18, 2], respectively, and the number of attention heads for each 
SwinBlockV2 is [3, 6, 12, 24], respectively. In this way, for each WSI, 
we could get the prediction probability of several patches and perform 
a weighted average of all the prediction results to obtain the final 
patient-level prediction. This ensured that each patch’s predictions 
contributed appropriately to the patient-level result. The weighting 
formula was as follows:

 1

|pred _ score 0.5 |Weight
| pred _ score 0.5 |

i
i n

ii=

−
=

−∑

Weighti represents the weight that the prediction result of the 
i-th patch contributes to the final weighted average, and pred _ scorei  
signifies the prediction result of the i patch.

For patch-level results, weights were assigned based on the degree 
of deviation of their prediction probability from 0.5. This strategic 
weighting reduced the influence of results with prediction probabilities 
near 0.5 on the final average, thereby strengthening the reliability of 
model predictions.

2.6 Statistical analysis

We used SPSS 26 to analyze the differences in clinical baseline 
data of patients using a t-test and chi-square test. Python (3.7.9) was 
used for data processing and analysis and overall model construction. 
We  employed the PyTorch framework to construct the neural 
network, and the hardware platform for model training was the 
NVIDIA A40 GPU with 48G of memory.

3 Results

3.1 Clinical baseline characteristics

According to the inclusion and exclusion criteria, we included 29 
WSIs from 29 patients in the TianTan cohort and 632 WSIs from 199 
patients in the TCGA cohort. A total of 57 patients in the TCGA 
database had only one WSI based on the previously described criteria, 
so 57 WSIs from these 57 patients were used as an independent test 
set for the TCGA cohort. The remaining 575 WSIs from 142 patients 
were used as the training set. According to the fifth edition of the 
WHO Classification of Tumors of the Central Nervous System (WHO 
CNS5) (5), we excluded patients with IDH mutation from the test set. 

Therefore, 25 patients with corresponding 25 WSIs were finally 
included in the TianTan cohort.

There were no statistically significant differences between the two 
cohorts regarding age, sex, and MGMT promoter methylation status. 
Basic clinical characteristics are presented in Table 1.

3.2 Model training and evaluation results

Our primary evaluation metrics included accuracy and the area 
under the curve (AUC) value of the receiver operating characteristic 
(ROC) curve. These metrics were used to assess the performance of 
the models in both the glioblastoma ROI patches prediction module 
and the MGMT promoter status prediction module.

In the ROI patches recognition module, the training dataset 
comes from the 100 WSIs in the training set of the TCGA cohort 
described earlier. After segmentation and color normalization, 14,000 
patches with typical characteristics were selected under the guidance 
of professional pathologists. There were 7,000 patches each in the ROI 
area and non-ROI area. The dataset was divided into training, 
validation, and test sets in a 6:2:2 ratio. During training, a batch size 
of 224 and 100 epochs were used for the parameter settings of the 
model. The model reached the highest accuracy of 97.88% in the 
validation set at the 80th epoch, and the model parameters at this time 
were saved for testing in the test set. The final accuracy of the ROI 
patches prediction module in the test set is 97.03%, and the AUC value 
is 0.9940 (Figure 2). The results show that the module has a superior 
ability to identify ROI patches, which can meet the screening needs of 
the subsequent modules.

In the MGMT promoter status prediction module, we first used 
the Swin Transformer V2 model for training. The ROI patches output 
by the ROI patches prediction module was used as the training data 
of this module. Whether the patient’s MGMT promoter was 
methylated or not was taken as the label of the patches cut out from 
that patient. Therefore, we finally obtained 59,945 MGMT promoter 
methylated patches and 97,431 MGMT promoter 
unmethylated patches.

To address the issue of category imbalance, we employed random 
rotation and mirroring to expand both categories to 100,000, with a 
total of 200,000 patches for model training. The dataset was divided 
into training, validation, and test sets in a 6:2:2 ratio. We set the batch 
size to 148 for training parameters and the number of epochs to 500. 

TABLE 1 Clinical and demographic characteristics of patients.

TianTan 
(n  =  25)

TCGA 
(n  =  199)

p value

Age, mean ± SD (years) 58.40 ± 12.50 57.24 ± 14.39 0.365

Sex 0.822

  Male 15 (60%) 121 (61%)

  Female 10 (40%) 78 (39%)

MGMT promoter 

status
0.167

  Methylated 13 (52%) 75 (38%)

  Unmethylated 12 (48%) 124 (62%)
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Remarkably, during the 493rd epoch, the model achieved its highest 
accuracy of 91.38% in the validation set. We saved the model weights 
at this time for testing on the test set. In the end, the model exhibited 
an accuracy of 91.12% in the test set, with an AUC of 0.98 (Figure 3). 
At the same time, we compared it with the current commonly used 
Resnet50 model, and the comparison results are shown in Table 2. 
These results show the ability of the model to accurately distinguish 
whether the MGMT promoter is methylated at the patch level.

To enhance the model’s interpretability, we utilized a class gradient 
activation heatmap to visualize the model’s recognition of patches. In 
this visualization, regions with a redder color indicate a higher 
probability that those areas are methylated. As depicted in Figure 4A, 
represents a WSI with MGMT promoter methylation, while Figure 4B 
represents a WSI without MGMT promoter methylation. Each image’s 
upper left corner displays the corresponding patch’s gradient class 
activation heatmap. The results demonstrate that the models correctly 
identify their respective patches.

Hence, we  aimed to extrapolate the patch-level results to the 
patient level. The patches obtained by three different methods were 
input into the MGMT promoter status prediction module for testing. 
According to the ROC curve of previous patch-level evaluation, 
we calculated that the best cutoff value for judging whether MGMT 
promoter methylation exists at the patch level was 0.52; that is, when 

the probability of methylation of a patch MGMT promoter judged by 
the model was greater than 0.52, we think it has MGMT promoter 
methylation. We  use this cutoff value for patient-level model 
evaluation. To obtain patient-level results, we aggregated the patch-
level outcomes using the probability-weighted average method as 
previously described. The results are presented in Table 3.

In both TCGA and TianTan test sets, the approach combining the 
ROI patches prediction module with the MGMT promoter status 
prediction module demonstrates the highest AUC values. Moreover, 
the approach combining the ROI patches prediction Module with the 
MGMT promoter status in the Tiantan cohort and the TCGA cohort 
T achieved the same highest balance accuracy. The ROC curves for 
these three methods in the test set are depicted in Figure 5. These 
comprehensive results demonstrate that the overall process 
we  designed can effectively determine the presence or absence of 
MGMT promoter methylation in patients through the H&E-stained 
histopathological slides.

4 Discussion

In this study, we introduced a weakly supervised deep learning 
model based on H&E-stained histopathological slides to determine 
the MGMT promoter methylation status of glioblastoma. The 
methylation status of MGMT gene promoter has a significant impact 
on histological typing and diagnosis as well as predicting patient 
survival and response to treatment. Although there is much evidence 
that it plays an important role in prognosis and treatment, its routine 
implementation in clinical practice has been challenging (3, 28). The 
best method and optimal cutoff definitions for MGMT status 
determination remain under debate. Thus, there is an urgent need to 
explore a simpler and faster way to obtain the status of the 
MGMT promoter.

Current research on AI-assisted prediction of MGMT promoter 
methylation in glioma mainly focuses on radiomics. However, the 
efficacy of MRI imaging measurement indicators to predict the 
methylation status of the MGMT promoter remains controversial. For 
instance, Choi et  al. (29) reported that there was no significant 
difference between the apparent diffusion coefficient (ADC) values 
and MGMT promoter methylation status. This finding is consistent 
with the latest research results of Ma et al. (30), which suggest that 
specific MRI measures such as ADC may not reliably distinguish from 
MGMT promoter methylation status. In contrast, a study conducted 
by Han et al. in 2018 reported different findings. They observed a 
significant increase in ADC values in preoperative MRI scans of 
primary glioblastoma with MGMT promoter methylation. 
Furthermore, they utilized this difference as a classification predictor, 
achieving an AUC value of 0.86 (31). Indeed, machine learning and 
deep learning approaches have gained significant attention in recent 
years for predicting MGMT promoter methylation status in 

FIGURE 2

Patch-level ROI prediction ROC curve.

FIGURE 3

Patch-level MGMT promoter status prediction ROC curve.

TABLE 2 Comparison between the Swin transformer V2 and Resnet50.

Model Accuracy Precision Recall
F1 

score
AUC

Swin_

trans_V2

0.91 0.92 0.91 0.91 0.98

Resnet50 0.72 0.74 0.70 0.72 0.80
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TABLE 3 Patient-level test results.

Tumor 
only

Whole 
tissue

Module 
predict

TCGA Test (n = 57)

  Balance_Accuracy 0.79 0.75 0.79

  AUC 0.81 0.84 0.86

  Recall 0.84 0.74 0.74

  Specificity 0.74 0.76 0.84

  Precision 0.62 0.61 0.70

  F1 score 0.71 0.67 0.72

TianTan Test (n = 25)

  Balance_Accuracy 0.76 0.69 0.76

  AUC 0.75 0.69 0.83

  Recall 0.69 0.46 0.69

  Specificity 0.83 0.92 0.83

  Precision 0.82 0.86 0.82

  F1 score 0.75 0.60 0.75

glioblastoma. Pasquini et  al. (32) employed a machine learning 
approach to forecast the methylation status of the MGMT promoter 
in glioblastoma patients using MRI, achieving an accuracy of 70.8% 
and an AUC value of 0.688. Chen et al. (33) extracted MRI-related 
features from diffuse gliomas and utilized a ResNet network for 
training. The model achieved an impressive AUC value of 0.90 and an 
accuracy of 91.0% in the test set (33). Therefore, we believe that more 
innovative and effective methods and approaches for MGMT 
promoter methylation prediction models are imperative. Our 
investigation employed two neural networks with transformer-like 
architectures to predict the MGMT promoter methylation status in 
glioblastoma. Our findings align with Li′s study and prove the 
feasibility of utilizing histopathological images for MGMT promoter 
methylation status prediction (13). At the same time, we noticed that 
some recent studies used HE-stained pathological sections to predict 
MGMT promoter methylation. For example, Mili et al. (34) proposed 

a MobileNetV2 model that introduced a spatial attention correlation 
mechanism to predict grade II and III gliomas, but their results only 
stayed at the patch level. No predictions were made for the patients. 
In addition, the study by Krebs et al. (35) also proposed the method 
of comparing self-supervised learning (SSL) and dual-stream multi-
instance learning (DSMIL) to predict the methylation state of MGMT 
promoter by using HE-stained slices and achieved good results. Our 
research further suggests that adding an automatic data screening 
module in the process of model training and prediction may achieve 
better results.

In future research, WSI, as a different kind of data from MRI, may 
exhibit more accurate predictions of the molecular status of brain 
tumors. The large amount of information carried by WSI is more 
suitable for the use of deep learning models. Furthermore, the 
inherently two-dimensional characteristics of WSI offer more 
opportunities for widely interdisciplinary collaboration with the latest 
image classification algorithms in the computer field, such as 
transformer-based architectures. Additionally, the proposal of 
advanced deep learning techniques such as multiple instances learning 
and graph neural networks has further promoted the development of 
deep learning based on WSI (36, 37). Especially when WSI and MRI 
are combined, it may produce remarkable prediction effects in 
building brain tumor classification prediction models. However, it is 
also worth noting that the results obtained from simple MRI data and 
pathological section images are not enough to be directly applied to 
clinical applications (38). In the future, we must incorporate more 
clinical and even genetic characteristics of patients to build a multi-
dimensional predictive model. To improve the reliability of our results. 
In addition, the disadvantage of the current deep learning model is 
that it is easy to become a black box. We do not know what features in 
the pathological sections make the model final, which is a problem for 
clinicians. To solve the problem of explainability of models, the 
development of explainable computational pathology combined with 
explainable AI in recent years may be  an important direction for 
future research (39).

Indeed, this study has some limitations, including the relatively 
limited samples from Beijing TianTan Hospital and the utilization of 
data from a single source. In the future, we will try to incorporate 
more sources of data for analysis and combine MRI data to build 

FIGURE 4

Gradient-weighted class activation mapping. Redder colors in the graph indicate a greater likelihood of methylation. (A) WSI with MGMT promoter 
methylation. (B) MGMT promoter unmethylated WSI.
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multimodal models to further enhance the accuracy and robustness 
of predictions.

5 Conclusion

Our weakly supervised prediction model based on H&E-stained 
histopathological slides proves to be  an effective approach for 
predicting the MGMT promoter methylation status in glioblastoma. 
Additionally, accurate annotation of the tumor region can significantly 
enhance the predictive performance of the model.
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