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Objective: To construct radiomics models based on MRI at different time points 
for the early prediction of cystic brain radionecrosis (CBRN) for nasopharyngeal 
carcinoma (NPC).

Methods: A total of 202 injured temporal lobes from 155 NPC patients with 
radiotherapy-induced temporal lobe injury (RTLI) after intensity modulated 
radiotherapy (IMRT) were included in the study. All the injured lobes were 
randomly divided into the training (n  =  143) and validation (n  =  59) sets. Radiomics 
models were constructed by using features extracted from T2WI at two different 
time points: at the end of IMRT (post-IMRT) and the first-detected RTLI (first-
RTLI). A delta-radiomics feature was defined as the percentage change in a 
radiomics feature from post-IMRT to first-RTLI. The radiomics nomogram was 
constructed by combining clinical risk factors and radiomics signatures using 
multivariate logistic regression analysis. Predictive performance was evaluated 
using area under the curve (AUC) from receiver operating characteristic analysis 
and decision curve analysis (DCA).

Results: The post-IMRT, first-RTLI, and delta-radiomics models yielded AUC 
values of 0.84 (95% CI: 0.76–0.92), 0.86 (95% CI: 0.78–0.94), and 0.77 (95% CI: 
0.67–0.87), respectively. The nomogram exhibited the highest AUC of 0.91 (95% 
CI: 0.85–0.97) and sensitivity of 0.82 compared to any single radiomics model. 
From the DCA, the nomogram model provided more clinical benefit than the 
radiomics models or clinical model.

Conclusion: The radiomics nomogram model combining clinical factors and 
radiomics signatures based on MRI at different time points after radiotherapy 
showed excellent prediction potential for CBRN in patients with NPC.
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1 Introduction

Radiotherapy remains the mainstay of treatment for 
nasopharyngeal carcinoma (NPC) due to its complicated anatomic 
location and unique radiotherapy-sensitivity (1). Since NPC often 
represents close proximity and infiltration to skull base, temporal lobes 
are inevitably included into the target volume, which will impose high 
radiation dose on brain tissue. Radiotherapy-induced temporal lobe 
injury (RTLI) is one of the late-latency and most serious complications 
(2, 3). White matter lesions (WMLs), contrast-enhanced lesions 
(CELs) and cystic brain radionecrosis (CBRN) are considered as three 
types of MRI manifestations of RTLI (4). WMLs and CELs are the 
most common patterns of RTLI and can be reversible, whereas CBRN 
is the least frequent injury pattern arising in the late stage of RTLI and 
rarely can be reversible (4, 5). According to a previous report (6), the 
occurrence of CBRN was about one-tenth of all the RTLI. Although 
rare, CBRN is likely to be life-threatening with increasing intracranial 
pressure related to mass effect and developing brain necrosis (7). 
Furthermore, corticosteroid, as the primary treatment for RTLI, is 
unlikely to provide significantly clinical benefit when liquefaction 
necrosis develops extensively (6, 7). In addition, the role of surgery for 
CBRN is limited by the bilaterality of the involvement for NPC 
patients. Therefore, early prediction of CBRN may be particularly 
important for treatment decision making and adjustment.

Currently, the imaging diagnosis of RTLI mainly depends on 
MRI. However, existing conventional magnetic resonance imaging 
(MRI) techniques can only differentiate RTLI at the relatively late 
stage. Radiomics turns the deep-seated feature information hidden in 
conventional medical images into quantitative data invisible to naked 
eyes (8, 9). At present, there have been several studies that use MRI at 
different time points to construct radiomics models for predicting 
RTLI in NPC (10–16). Some studies have developed radiomics 
nomogram models based on MRI at the end of intensity modulated 
radiotherapy (IMRT) to predict the RTLI in NPC patients, and these 
models have shown outstanding predictive performance (11, 13, 15). 
Zhang Bin et al. established MRI-based radiomics models at three 
time points before RTLI confirmation to early predict RTLI (14). Their 
results revealed that the model constructed based on T2WI nearest to 
the first time point of RTLI confirmation had the highest prediction 
efficiency compared with the other two models which were far from 
the first time point of RTLI confirmation. As far as we know, there 
seems to be  no report that surveyed the potential of MRI-based 
radiomics model for the early prediction of CBRN. As the most 
serious type of RTLI, CBRN is clinically warranted to be predicted as 
early as possible in order to adjust the treatment decision and make 
timely clinical intervention. However, it is now unknown which time 
point is the earliest and most appropriate for predicting CBRN.

Therefore, the purpose of this study was to investigate the efficacy 
of MRI-based radiomics models in predicting CBRN in patients with 
NPC, as well as to determine the optimal time point for predicting the 
occurrence of CBRN.

2 Materials and methods

2.1 Study design and patients

This study was approved by the institutional review board of the two 
participating hospitals (approval numbers: KYJJ-2021-095 and 

B2020-417-Y01). Due to its retrospective nature, written informed 
consent was waived. A total of 44 patients with CBRN, involving 53 
temporal lobes, were included in this study from Hunan Cancer 
Hospital between January 2014 and December 2021 and Sun Yat-Sen 
University Cancer Center between January 2011 and December 2021. 
To reduce the imbalance between CBRN and non-CBRN samples, 111 
non-CBRN samples with 149 injured lobes WMLs and/or CELs were 
selected randomly. Finally, 155 eligible patients with 202 injured 
temporal lobes were included in this study.

The inclusion criteria were as follows: (1) pathologically confirmed 
diagnosis of NPC, (2) received IMRT, and (3) confirmed presence of 
RTLI through careful review of follow-up MRI images of the head and 
neck. Patients were excluded if they had (1) other abnormalities in the 
central nervous system, such as cerebral infarctions, tumors, infections, 
or NPC invasion into the middle cranial fossa, (2) no regular follow up 
MRI data, or (3) had CBRN at the first MRI-detected RTLI.

We extracted the patient’s clinical data from the picture archiving 
and communication system (PACS). Patient data included age, sex, 
latency period, hypertension history, drinking history, smoking 
history, TNM stage, T stage, N stage, M stage, and pathological 
differentiation degree. Dosimetric parameters for each temporal lobe 
including mean dose (Dmean), maximum dose (Dmax) and minimum 
dose (Dmin) were obtained from dose-volume histogram (DVH).

The clinical stages of all patients with NPC were determined 
according to the American Joint Committee on Cancer (AJCC) TNM 
classification system (17). According to the guidelines 
recommendation for NPC, radiotherapy alone was performed for I-II 
stage (T1N0, T2N0), concurrent chemoradiotherapy was for II stage 
(T1-2N1, T3N0), and concurrent chemoradiotherapy combined with 
induction/adjuvant chemotherapy was for III-IVA stages.

2.2 MRI appearances of RTLI

All patients enrolled in the present study received regular 
follow-up and MRI scans at 3 months intervals in the first year, 
6 months intervals in the second year, and once every year intervals 
thereafter according to the NCCN guideline (18). The latency of RTLI 
was calculated from the end of IMRT to the date of RTLI firstly 
detected by MRI. For each patient, the two temporal lobes were 
analyzed separately. The diagnosis of CBRN is based on the presence 
of a round or oval well-defined lesion exhibiting very high signal 
intensity on T2WI, with a thin or imperceptible wall. WMLs refers to 
the lesion in white matter with homogeneously high signal intensity 
on T2WI and low signal intensity on T1WI. CELs is defined as lesion 
with high signal intensity on T2WI and enhancement on post-
contrast T1WI with or without necrosis.

2.3 MRI protocols

In Hunan Cancer Hospital, the MRI examinations were performed 
using a 1.5-Tesla MRI scanner (Optima MR360, GE Healthcare, 
Milwaukee, WI) equipped with a head and neck combined coil. The 
MRI protocols consisted of the following sequences: (1) axial 
T1-weighted imaging (repetition time (TR)/echo time (TE) 
580 ms/7.8 ms, slice thickness 5 mm, slice number 36, slice space 
1 mm, number of excitations (NEX) 2); (2) axial T2-weighted imaging 
with fat suppression (TR/TE 6289 ms/85 ms, slice thickness 5 mm, 
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slice number 36, slice space 1 mm, NEX 2); and (3) axial contrast-
enhanced T1-weighted (CET1-w) spin-echo images (TR/TE 
500 ms/8 ms, field of view (FOV) 22 × 22 cm, NEX 2, slice thickness 
4 mm, interslice gap 0.8 mm).

In Sun Yat-Sen University Cancer Center, the MRI examinations 
were also performed on a 1.5-Tesla MRI canner (Signa, GE, CV/i). The 
protocols were as follows: (1) axial T1-weighted fast spin-echo images 
(TR/TE 420-450/min full, slice thickness 6 mm, slice number 36, slice 
space 1 mm, NEX 2); (2) axial T2-weighted fast spin-echo images with 
fat suppression (TR/TE 3200–3500 ms/85 ms, slice thickness 6 mm, 
slice number 36, slice space 1 mm, NEX 2); and (3) axial contrast-
enhanced T1-weighted spin-echo images (TR/TE 320-350/min full, 
FOV 22 × 22 cm, NEX 2, slice thickness 6 mm, interslice gap 1 mm).

For radiomics analysis, the axial T2WI images at the end of IMRT 
(post-IMRT) and the first-detected RTLI (first-RTLI) were used to 
construct CBRN prediction model (Figure  1). In addition, delta-
radiomics feature was defined as the percentage change in a radiomics 
feature from post-IMRT to first-RTLI.

2.4 MRI pre-processing, segmentation, and 
feature extraction

To minimize heterogeneity and differences in MRI images across 
different institutions, pre-processing was conducted. MRI 
pre-processing was performed using AK software (Analysis Kit, GE 
Healthcare), which has been registered and approved. The 
preprocessing steps included resampling, skull stripping, and intensity 
standardization. The image resolution for this study was adjusted to 
1 mm × 1 mm × 1 mm through resampling. The slice thickness of all 
MRI images was converted to 1 mm, through the linear difference 
value. Non-brain tissues were removed from the T2WI images 
through skull stripping. Then, image gray unified adjustment to 0–255 
was done for standardization.

T2WI segmentation was performed by two radiologists (radiologists 
A and B, with 7 years and 12 years of experience in head and neck MRI, 
respectively) using ITK-SNAP software (version 3.6.0)1 to sketch region 
of interests (ROIs). Both radiologists were blinded to the CBRN results. 
They independently delineated along the boundaries of the white matter 
of bilateral temporal lobes layer by layer from the lowest to midbrain 
levels. Subsequently, these ROIs were automatically converted to volume 
of interests (VOIs) and saved as NII format file.

Inter-and intra-class correlation coefficients (ICCs) was applied 
to assess the reproducibility of intra-observer and inter-observer 
segmentation. Two abovementioned radiologists randomly drew 50 
temporal lobes independently. After 1 month, radiologist A repeated 
the same procedure again. An ICC greater than 0.75 was considered 
as good consistency. A good ICC result was obtained in our study and 
all the rest of the images were segmented by radiologist A.

396 radiomics features were extracted from each VOI via AK 
software. These features were involved with six categories, including 
six types of texture parameters, i.e., histogram, gray-level size zone 
matrix (GLSZM), formfactor, haralick, gray-level co-occurrence 
matrix (GLCM) and run-length matrix (RLM).

1 www.itksnap.org

2.5 Feature selection and radiomics 
signature construction

All temporal lobes were randomly divided into the training and 
validation sets in a proportion of 7:3. Two feature selection methods, 
namely the minimum redundancy maximum relevance (mRMR) (19) 
and the least absolute shrinkage and selection operator (LASSO), were 
applied to select the most predictive features in the training set (20). 
Firstly, mRMR method was applied to eliminate the redundant and 
irrelevant features according to their relevance-redundancy indexes rank 
upon a heuristic scoring criterion. In the mRMR algorithm, the heuristic 
scoring criterion typically consists of two parts, namely Maximum 
Relevance (MR) and Minimum Redundancy (MR). The former evaluates 
the relevance of each feature to the target variable, and the latter evaluates 
the redundancy among the selected features. If two features provide 
similar information, they are considered redundant. After mRMR, the 
top 20 features with high relevance were retained. Next, LASSO classifiers 
were performed to choose the optimized subset of features, and 10-fold 
cross-validation was applied to avoid overfitting. Through LASSO 
regression, the coefficients for each feature can be  obtained. The 
radiomics signature (radscore) was calculated by summing the selected 
the texture features that were weighted by their respective coefficients.

2.6 Radiomics nomogram construction and 
validation

For clinical variables, firstly, univariate logistic analysis was 
carried out to determine the characteristics with significant association 
with CBRN. Variables with P greater than 0.05 in univariable analysis 
were excluded. Then, variables significantly associated with CBRN in 
univariate analysis were subsequently subjected to the stepwise 
multivariate logistic regression analysis applying the minimum value 
of Akaike’s information criterion (AIC) as the stopping rule. Finally, 
to construct the radiomics nomogram, the significant clinical variables 
and the radscores were introduced into the multivariate logistic 
regression analysis.

The area under the curve (AUC) value based on receiver operating 
characteristic (ROC) curve analysis was used to quantificationally 
evaluate the predictive performance of the clinical, radiomics and 
radiomics nomogram models. A calibration curve was generated to 
estimate the performance of the radiomics nomogram model. 
Hosmer-Lemeshow test was applied to investigative the goodness-
of-fit of the radiomics nomogram model. The clinical significance of 
individual prediction model was evaluated by decision curve analysis 
(DCA), which quantifies the net benefits at different threshold 
probabilities in the training and validation sets. The workflow of the 
radiomics analysis is shown in Figure 2.

2.7 Statistical analysis

All the statistical analyses of the study were conducted by the R 
software (version 3.3.3).2 In two-tailed analysis, a p value less than 

2 http://www.Rproject.org
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0.05 was defined as statistically significant. Mann–Whitney U test 
and Chi-square test were used to evaluate the continuous variables 
and categorical variables between groups, respectively. The 
univariate and multivariate logistic regression analysis were 
performed to identity the independent clinical predictors. The 
predictive performances of all models were estimated by AUC 
value, sensitivity and specificity based on ROC curve. The AUC 
values among different models were compared by DeLong’s test. The 
sensitivity and specificity values among different radiomics models 
were compared by McNemar test.

3 Results

3.1 Baseline characteristics of the patients

155 RTLI patients were recruited in the present study (121 men 
and 34women; mean age 43 ± 12.7 years). The median latency time 
from IMRT completion to the first MRI detection of RTLI and CBRN 
were 31 months (range, 16–63 months), 49 months (range, 
33–109 months), respectively. Among the 155 RTLI patients, 44 cases 
were diagnosed as CBRN (bilateral, 9; unilateral, 35), and 111 cases 

FIGURE 2

Flow chart of the radiomics analysis.

FIGURE 1

All NPC patients included in the study underwent regular MRI follow-up. NPC, nasopharyngeal carcinoma; IMRT, intensity modulated radiotherapy; 
RTLI, radiotherapy-induced temporal lobe injury.
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were diagnosed as non-CBRN (bilateral, 38; unilateral, 73). The 
numbers of CBRN and non-CBRN lobes were 53 and 149, respectively. 
The patient characteristics are summarized in Table 1. These lobes 
were randomly divided into training (n = 143) and validation (n = 59) 
sets. In the training set, there were 38 CBRN lobes and 105 non-CBRN 
lobes. In the validation set, there were 15 CBRN lobes and 44 
non-CBRN lobes. There were not significant differences in sex, year, 
smoking history, drinking history, hypertension history, pathological 
differentiation, clinical stages, Dmin, Dmax, and Dmean between the 
training and validation groups (Table 1).

The intra-reader ICC between the two measurements by radiologist 
A ranged from 0.776 to 0.918. The inter-reader ICC between the two 
radiologists ranged from 0.814 to 0.905. These results indicated a 
favorable inter-and intra-observer reproducibility for feature extraction.

3.2 Clinical model

Univariate and multivariate logistic regression analysis were 
used to identity the independent predictors among all the clinical 

TABLE 1 Basic characteristics of RTLI patients and temporal lobes in the training and validation sets.

Characteristics No. of patients 
(N  =  155)

No. of temporal lobes p

Training (N  =  143) Validation (N  =  59)

Sex

Male 121 (78.06) 117 (81.58) 44 (73.3) 0.331

Female 34 (21.94) 26 (18.2) 15 (25.4)

Age (mean ± sd) years 43.0 (12.7) 49.4 (9.0) 49.5 (9.3) 0.965

Smoking (mean ± sd) years 10.3 (13.0) 11 (13.2) 8.6 (12.3) 0.238

Drinking (mean ± sd) years 3.9 (9.7) 4.5 (10.7) 2.6 (6.6) 0.205

Hypertension (mean ± sd) years 0.5 (1.9) 0.5 (1.8) 0.3 (1.5) 0.262

Differentiation degree

Undifferentiated 90 (58.0) 82 (57.3) 36 (61.0)

Differentiated 65 (42.0) 61 (42.7) 23 (39.0) 0.630

Pathological type

II/III 153 (98.7) 142 (99.3) 58 (98.3)

I 2 (1.3) 1 (0.7) 1 (1.7) 0.495

TNM stage

I 1 (0.6) 1 (0.7) 0 (0.0)

II 4 (2.6) 1 (0.7) 3 (5.1)

III 51 (32.9) 48 (33.6) 22 (37.3)

IV 99 (63.9) 93 (65.0) 34 (57.6) 0.147

T stage

T1 7 (4.5) 6 (4.2) 4 (6.8)

T2 24 (15.5) 24 (16.8) 10 (16.9)

T3 38 (24.5) 36 (25.2) 16 (27.1)

T4 86 (55.5) 77 (53.8) 29 (49.2) 0.849

N stage

N0 10 (6.5) 9 (6.3) 5 (8.5)

N1 31 (20.0) 24 (16.8) 9 (15.3)

N2 92 (59.3) 87 (60.8) 36 (61.0)

N3 22 (14.2) 23 (16.1) 9 (15.3) 0.947

M stage

M0 152 (98.1) 139 (97.20) 57 (96.6)

M1 3 (1.9) 4 (2.80) 2 (3.4) 1.000

Dmin (Gy) 2.6 (1.7) 2.7 (1.8) 2.5 (1.3) 0.411

Dmax (Gy) 73.8 (9.7) 73.6 (9) 74.3 (11.3) 0.629

Dmean (Gy) 22.1 (7.1) 21.8 (7.2) 22.8 (7.1) 0.370

NPC, nasopharyngeal carcinoma; RTLI, radiotherapy-induced temporal lobe injury; Dmax, maximum dose; Dmin, minimum dose; Dmean, mean dose. P-values are calculated using T-tests or 
U-tests for quantitative data, and chi-square tests for qualitative data.
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variables. The univariate logistic analysis revealed that N stage 
(p = 0.002), Dmean (p = 0.045), and drinking (p = 0.003) were 
significantly associated with CBRN and were retained for further 
analysis. Following stepwise multivariate logistic regression analysis 
with AIC, only drinking history (OR: 0.17, 95% CI: 0.04–0.75, 
p = 0.019) was retained as the independent predictor of CBRN 
(Supplementary Table 1). The clinical model had poor predictive 
performance, with an AUC value of 0.60 (95%CI: 0.54–0.65) and 
0.60 (95%CI: 0.54–0.66) in the training cohorts and validation 
cohorts, respectively.

3.3 Post-IMRT, first-RTLI, and 
delta-radiomics model

396 texture features were extracted by AK software for each 
temporal lobe. After mRMR and LASSO procedure for feature 
selection, 11, 10 and 7 features were eventually retained to construct 
the final post-IMRT, first-RTLI, and delta-radiomics models, 
respectively (Supplementary Figures 1–3). The calculation formulas 
of radscore were presented in the Supplementary material.

The median of radscore for the CBRN group was significantly 
higher than that for the non-CBRN group in the training for the post-
IMRT, first-RTLI, and delta-radiomics models, respectively (0.332 vs. 
−1.671, p < 0.001; −0.062 vs. −1.677, p < 0.001; −0.617 vs. −1.289, 
p < 0.001). The significant differences were also found in the validation 
cohorts for the post-IMRT, first-RTLI, and delta-radiomics models 
(0.989 vs. −1.644, p < 0.001; −0.862 vs. −1.595, p < 0.001; −0.498 vs. 
−1.208, p < 0.001) respectively (Supplementary Tables 2–4 and 
Supplementary Figures 4–6).

In the training cohorts, the optimal post-IMRT, first-RTLI, and 
delta-radiomics models yielded AUC values of 0.84 (95% CI: 0.76–
0.92), 0.86 (95% CI: 0.78–0.94), and 0.77 (95% CI: 0.67–0.87), 
respectively. In the validation cohorts, the corresponding AUC value 
was 0.86 (95% CI: 0.74–0.98), 0.83 (95% CI: 0.67–1.00), and 0.73 (95% 
CI: 0.55–0.91). The threshold values of the post-IMRT, first-RTLI, 
delta-radiomics models are −0.936, −1.051 and −0.573, respectively. 
There were no significant differences in the AUCs of the three 
radiomics models, in either the training or validation cohorts 
(p > 0.05).

3.4 Nomogram model

The calculation formula for the nomogram is also presented in the 
Supplementary material. The nomogram model that incorporated the 
above independent clinical predictors and radiomics signatures is 
presented in Figure  3A. The calibration curve of the nomogram 
demonstrated good calibration performance in both the training and 
validation sets at the end of IMRT and the first-detected RTLI 
(Figures 3B,C). The Hosmer-Lemeshow test yielded no significant 
difference for the nomogram model in both the training and validation 
sets (p > 0.05), indicating favorable agreement between the predicted 
and actual results. The decision curve analysis showed that the 
nomogram model provided the best performance among the five 
models (Figure 4).

ROC curves were used to evaluate the prediction efficacy of the 
radiomics, clinical and radiomics nomogram models in the training 

and validation sets (Table 2 and Figure 5). The nomogram model 
demonstrated superior predictive performance in the training set 
(AUC: 0.91, 95% CI: 0.85–0.97) as well as in the validation set (AUC: 
0.90, 95% CI: 0.79–1.00). The threshold value of the nomogram model 
is 0.242. There were significant differences in the AUC values between 
the nomogram and clinical models in both the training and validation 
cohorts (both p < 0.001). Additionally, a significant difference was also 
found in the AUC values between the nomogram and delta radiomics 
models in the training cohort (p = 0.005), but not in the validation 
cohort (p = 0.066). However, there were no statistically significant 
differences in the AUC values observed between the nomogram and 
post-IMRT radiomics model, nor between the nomogram and first-
RTLI radiomics model (p > 0.05). The sensitivity of the nomogram is 
significantly higher than that of post-IMRT (p = 0.002), first-RTLI 
(p = 0.002) and delta radiomics (p = 0.001) models. Although the 
specificity of the nomogram (0.88) is significantly lower than that of 
the post-IMRT (0.94), first-RTLI (0.97), and delta radiomics (0.95) 
models, it is still a good result. The accuracy of the nomogram (86.0%) 
is similar excellent to that of the post-IMRT (83.9%), first-RTLI 
(86.0%), and delta radiomics (83.2%) models.

4 Discussion

In this study, we developed and validated post-IMRT, first-RTLI, 
delta radiomics models, as well as a nomogram model that combined 
clinical factors with the MRI-based radiomics signatures based on 
MRI at different time points after radiotherapy. The nomogram 
model exhibited the highest potential for predicting CBRN, although 
its predictive efficacy did not demonstrate significant statistical 
differences compared to the post-IMRT and first-RTLI radiomics 
models. From the DCA, the nomogram model provided more 
clinical benefit than the radiomics models or clinical model. In 
addition, the nomogram model has a significantly higher sensitivity 
compared to any radiomics models. Therefore, the radiomics 
nomogram model could predict CBRN excellently, which provide 
early opportunity for clinicians to make timely personalized 
intervention based on the predicted risk, thereby improving 
patient outcomes.

In this study, we observed that the post-IMRT and first-RTLI 
radiomics models exhibited significantly better predictive 
performance for CBRN compared to the clinical model. Although 
certain clinical variable was selected as independent prediction factors 
for CBRN, incorporating the clinical variable with the radiomics 
signatures did not significantly improve the predictive efficacy of the 
radiomics models, indicating that clinical factors may have limited 
efficacy in predicting CBRN. Notably, the final nomogram model did 
not include dosimetric parameters. Previous research has indicated 
the considerable impact of radiation dose on the occurrence of RTLI 
(21, 22). However, there have been noticeable variations and 
discrepancies in the results across different studies. For instance, some 
studies reported that Dmax and D1CC were independent predictors of 
temporal lobe necrosis (23–26). On the other hand, Wang et  al. 
reported that only D0.5cc and D10 were reliable factors for predicting 
temporal lobe necrosis (27). Our previous stud demonstrated that 
Dmax and Dmean were independent predictive indicators of RTLI (13). 
Additionally, Wang et al. reported that clinical parameters such as age, 
gender, stage, and history of diabetes and hypertension did not 
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directly impact temporal lobe necrosis (27). Therefore, the predictive 
value of radiation dosimetric parameters and clinical factors in CBRN 
remains to be further explored.

We selected T2WI at the end of IMRT and the first-detected RTLI 
to construct radiomics models and radiomics nomogram for 
predicting the occurrence of CBRN. Our results demonstrated that 
both radiomics models based on MRI at different time points had 
similarly outstanding prediction performance for CBRN. However, 
our results differed somewhat from the study conducted by Zhang 
et al. (14), in which the model based on T2WI nearest to the time 
point of RTLI confirmation had the highest prediction efficiency 
compared with the other two models whose time points were far from 
RTLI confirmation. In our study, we selected the time point at the end 
of IMRT completion as a candidate for early prediction of CBRN 
based on the following consideration: when radiotherapy has finished 
at the end of IMRT, the externally imposed injury factor leading to 
RTLI has already reached its peak and will no longer increase. 
We hypothesized that radiotherapy-induced brain damage at the end 
of IMRT is different between the bilateral temporal lobes of the same 

patient, which may have significant impacts on the occurrence of 
CBRN. Encouragingly, our hypothesis was supported by the results 
that there were significant differences in radscore values between the 
CBRN and non-CBRN groups in both the training and validation sets 
at the end of IMRT. This suggests that clinicians may have the 
opportunity to predict CBRN occurrence in advance, rather than 
waiting for RTLI to manifest.

Radiomics approach enables the identification of imaging 
phenotypes and can reflect pathophysiological changes (9). We found 
that for a certain NPC patient, CBRN may present unilaterally instead 
of bilaterally during the follow-up, even though the same MRI 
manifestations such as WML or contrast-enhanced lesion appear 
bilaterally at the first detection of RTLI. Previous MRI investigations 
found that the evolution of RTLI may be different between the bilateral 
temporal lobes in the same patient (4, 5). In our speculative opinion, 
this might be due to the possibility that the underlying microscopic 
characterization of tissue has undergone different changes caused by 
radiotherapy even though the morphological manifestation of the 
initial brain injury were the same. Our speculation was supported by 

FIGURE 3

Nomogram for the prediction of CBRN in patients with NPC (A). Calibration curve of nomogram model in the training (B) and validation sets (C). CBRN, 
cystic brain radionecrosis; NPC, nasopharyngeal carcinoma.
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the results that there were significant differences in radscore values 
between the CBRN and non-CBRN groups in both the training and 
validation sets at the first-detected RTLI.

In this study, only T2WI was selected for feature extraction. The 
reasons are as follows: firstly, in a study by Zhang et al. (14), three 
radiomics models based on MRI at different times before the onset 

of RTLI were constructed. The study concluded that the three 
radiomic models using T2WI images demonstrated better 
predictive performance than those using CET1-w images. Secondly, 
we previously developed an early prediction model for RTLI in 
patients with NPC based on T2WI at the end of radiotherapy, which 
showed satisfactory predictive capabilities for RTLI (13). 

TABLE 2 Performance of radiomics scores and radiomics nomogram in the prediction of CBRN in the training and validation sets.

Models AUC (95%CI) P value Sensitivity P value Specificity P value Accuracy (%)

Training set

Post-IMRT 

radiomics 0.84 (0.76–0.92)

0.056 0.55 0.002 0.94 0.035 83.9

First-RTLI 

radiomics 0.86 (0.78–0.94)

0.108 0.55 0.002 0.97 0.035 86.0

Delta radiomics 0.77 (0.67–0.87) 0.005 0.50 0.001 0.95 0.021 83.2

Radiomic 

nomogram 0.91 (0.85–0.97)

Ref. 0.82 Ref. 0.88 Ref. 86.0

Validation set

Post-IMRT 

radiomics 0.86 (0.74–0.98)

0.541 0.60 0.083 0.93 0.025 84.7

First-RTLI 

radiomics 0.83 (0.67–1.00)

0.137 0.67 0.157 1 0.005 91.5

Delta radiomics 0.73 (0.55–0.91) 0.066 0.53 0.046 0.95 0.014 84.7

Radiomic 

nomogram 0.90 (0.79–1.00)

Ref. 0.80 Ref. 0.82 Ref. 81.3

CBRN, cystic brain radionecrosis; IMRT, intensity modulated radiotherapy; RTLI, radiotherapy-induced temporal lobe injury; AUC, area under the curve.

FIGURE 4

Decision curve analysis for the radiomics, clinical and radiomics nomogram models for the prediction of CBRN in patients with NPC. CBRN, cystic 
brain radionecrosis; NPC, nasopharyngeal carcinoma.
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Additionally, we  have reviewed a substantial number of studies 
(10–12, 15), and it is evident that some of these studies used T2WI 
and T1WI or CET1-w as feature extraction sequences. However, 
after feature selection, the final model incorporated more features 
from T2WI than from CET1-w. Therefore, based on these reasons, 
only T2WI images were selected for the construction of the 
radiomics model in this study. However, it is a fact that different 
MRI measures contain different and complementary information, 
CET1-w images reflect heterogeneity and architecture which are 
related to radiation necrosis in a histology of RTLI analysis. A 
combination of these measures may improve the predictive 
performance of CBRN. In future studies, the prediction model will 
be constructed by combining multiple MRI measures and exploring 
the best measure for predicting CBRN.

Our study has several limitations. Firstly, the number of CBRN 
cases was relatively small due to its low incidence rate, as well as some 
NPC patients who have no regular follow-up after IMRT. Secondly, 
the combination of MRI images from two different institutions to 
construct the prediction model may have been affected to a certain 
extent by differences in technical and protocols factors, despite the fact 
that all images had undergone preprocessing and standardization. 
Therefore, future studies are needed that include both internal and 
external test with larger sample sizes in multicenter 
observational studies.

In conclusion, we constructed and validated radiomics models 
and radiomics nomogram model based on T2WI at the end of IMRT 
and the first-detected RTLI for the early prediction of CBRN in 
patients with NPC. The radiomics nomogram model combining 
clinical factors and radiomics signatures based on MRI at different 
time points after radiotherapy showed excellent prediction potential 
for CBRN in patients with NPC.
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