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Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency 
disorder (PID) caused by biallelic mutations occurring in the serine/threonine 
protein kinase (ATM) gene. The major role of nuclear ATM is the coordination 
of cell signaling pathways in response to DNA double-strand breaks, oxidative 
stress, and cell cycle checkpoints. Defects in ATM functions lead to A-T 
syndrome with phenotypic heterogeneity. Our study reports the case of a 
Tunisian girl with A-T syndrome carrying a compound heterozygous mutation 
c.[3894dupT]; p.(Ala1299Cysfs3;rs587781823), with a splice acceptor variant: 
c.[5763-2A>C;rs876659489] in the ATM gene that was identified by next-
generation sequencing (NGS). Further genetic analysis of the family showed that 
the mother carried the c.[5763-2A>C] splice acceptor variant, while the father 
harbored the c.[3894dupT] variant in the heterozygous state. Molecular analysis 
provides the opportunity for accurate diagnosis and timely management in A-T 
patients with chronic progressive disease, especially infections and the risk of 
malignancies. This study characterizes for the first time the identification of 
compound heterozygous ATM pathogenic variants by NGS in a Tunisian A-T 
patient. Our study outlines the importance of molecular genetic testing for 
A-T patients, which is required for earlier detection and reducing the burden of 
disease in the future, using the patients’ families.
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Introduction

Ataxia-telangiectasia (A-T) is an autosomal recessive multisystem disorder characterized 
by progressive cerebellar degeneration, variable immunodeficiency, oculocutaneous 
telangiectasia, cancer susceptibility, and sensitivity to radiation (1, 2).
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A-T patients represent a wide range of clinical manifestations, 
including progressive cerebellar ataxia, radiosensitivity, 
susceptibility to malignancies, and metabolic disorders. Other 
abnormalities, such as growth failure, poor pubertal development, 
insulin-resistant diabetes, gonadal atrophy, lung disease, cutaneous 
abnormality, and cardiovascular disease, have also been reported in 
A-T patients (3, 4). A-T patients have poor prognosis, and their 
survival time is approximately 25 years. The two most common 
causes of death in these patients are chronic pulmonary diseases 
and malignancy (5).

This syndrome is caused by biallelic pathogenic mutations in the 
ataxia-telangiectasia (ATM) gene containing 66 exons; of which, 62 
are coding exons, spread over 150 kb of genomic DNA, with an open-
reading frame of 9,168 nucleotides (6). This gene encodes a large 
protein (∼350 KDa) belonging to the phosphatidylinositol 3-kinase–
related protein kinase (PIKK) family including ATR, DNAPKcs, 
mTOR, and SMG1 genes (6, 7). As a member of the PIKK family, ATM 
contains a kinase domain positioned between conserved C-terminal 
domains known as FAT (FRAP, ATR, and TRRAP proteins), PIKK 
kinase, and FATC domains (7). These domains control ATM’s kinase 
activity by interacting with regulatory proteins and inducing 
posttranslational modifications (7).

ATM function is important to B-and T-cell receptor development 
and class switch recombination (CSR) in activated B cells (8). In 
addition, ATM plays a critical role in the repair of DNA double-strand 
breaks, the regulation of the cell cycle, the stability of the genome, and 
the survival of cells (9).

The majority of ATM pathogenic variants are single-nucleotide 
variant (SNV) alterations, such as frameshift or nonsense variants, 
which are predicted to truncate the ATM protein (8). Patients 
carrying these types of ATM mutations develop the classic form of 
A-T (10, 11).

Other SNV pathogenic variants of ATM include missense and 
splicing variants. According to the Human Gene Mutation Database, 
the copy number variation (CNV) or large genomics alterations are 
detected in approximately 1%–10% of A-T patients (12, 13). 
However, limited information is available on the co-occurrence of 
SNV and CNV and its identified role or phenotype burden in A-T 
patients (8).

This study reports for the first time a case of a Tunisian child 
diagnosed with A-T syndrome, who carried compound heterozygous 
ATM pathogenic variants, detected by targeted NGS. The 
co-segregation of both mutations was analyzed in the parents.

Patient and methods

The proband in this study is a 16-year-old girl who had been 
followed up since the age of 6 years when she first presented with 
ocular telangectasia, foot drop, and proximo-distal deficit of both 
inferior extremities as addressed first to the Pediatric Neurology 
Department and then to Genetic Department of Hedi Chaker 
Hospital-Sfax Tunisia. The family pedigree information was gathered, 
and blood samples were collected from the patient and her parents. 
The proband had been the subject of various diagnostic tests, 
including magnetic resonance imaging (MRI) of the brain and 
cervical region, ultrasound examinations of the heart and abdomen, 
electroencephalogram (EEG), and blood biochemical analysis 

involving α-fetoprotein (AFP), immunoglobulin (Ig), and 
ceruloplasmin level detection.

Written informed consent was obtained from all participants.

DNA extraction and targeted sequencing

The QIAamp DNA Blood Mini kit (Qiagen) was used to extract 
genomic DNA from 0.4 mL of peripheral blood obtained from the 
patient and her parents. The instructions of the manufacturer were 
followed during the extraction process. The resulting DNA was 
quantified using Qubit 3.0 (Thermo Fisher Scientific).

Briefly, 200 ng of genomic DNA was used to prepare the library 
using the OncoRisk panel kit, according to the protocol provided by 
Celemics. This panel includes 31 genes: APC, ATM, BARD1, BLM, 
BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, 
EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, 
PMS2, PRSS1, PTEN, RAD50, RAD51C, RAD51D, SLX4, SMAD4, 
STK11, TP53, and VHL.

Subsequently, the library was quantified with the Qubit® dsDNA 
HS Assay Kit (Life Technologies). The DNA library was pooled and 
prepared for sequencing using the MiSeq Reagent Kit v3 (300 cycles) 
according to the manufacturer’s instructions to generate paired-end 
reads with a read length of 151 bp (Illumina, San Diego, CA). Reads 
were trimmed to remove low-quality sequences and then aligned to 
the human reference genome (GRCh37/hg19) using the Burrows–
Wheeler alignment (BWA) package. The ATM (NM_000051.3) 
sequence from the National Center for Biotechnology Information 
(NCBI) database1 was used as the reference, and NGS data were 
analyzed using the BaseSpace Variant Interpreter.2 SplicAI and SPIP 
prediction tools were used to evaluate the effect of the splice site 
acceptor variant (14, 15).

Sanger sequencing

Sanger sequencing was used to confirm the presence of the 
variants identified by NGS and to investigate co-segregation analysis 
in the family members. Forward and reverse primers were designed 
using Primer 3.0 software to amplify the fragments covering the 
variant region and provided upon request. PCR products were 
purified and labeled using the BigDye Terminator V3.1 Cycle 
Sequencing Kit and sequenced on SeqStudio (Applied Biosystems). 
Sequence analysis was performed using BioEdit software.

Results

Case presentation

The proband (IV-3) is a 16-year-old girl who had no pre-, peri-, 
or post-natal complications and normal cognitive and motor 
development. She was consulted at the age of 6 years for abnormal 

1 http://www.ncbi.nlm.nih.gov

2 https://basespace.illumina.com
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movements and has since then followed up for cerebellar ataxia at 
the Department of Pediatric Neurology and Department of 
Genetics, at the CHU Hedi Chaker of Sfax, Tunisia. The proband 
(IV-3) had choreic abnormal movements affecting the upper and 
lower extremities since the age of 4.5 years, and upon examination, 
she had no facial dysmorphia, normal measurements, dysarthric 
speech, oculomotor apraxia, and static and kinetic cerebellar 
syndrome. She had difficulties at school, and due to worsening 
instability, she became bedridden at the age of 10 years. Ocular 
telangectasia was observed at 10 years of age, and after a year, she 
had developed foot drop and proximo-distal deficit of both inferior 
extremities and choreo-athetosis movements. Brain MRI performed 
at 3 years of age showed discrete cerebellum atrophy (Figure 1). 
EMG at the age of 12 years showed no neuropathy but was in favor 
of myoclonic dystonia. The EEG at the age of 11 years was well-
organized, without abnormalities.

Concerning biochemical parameters, the serum alpha-FP levels 
were significantly increased from 125.2 ng/mL at the age of 6 years to 
370 ng/mL at the age of 15 years, whereas the serum level of IgA was 
significantly decreased. Other biological analyses showed all normal 
levels of cholesterol, creatinine alkaline, lactate dehydrogenase (LDH), 
and ceruloplasmin.

The older sister (IV-2) experienced similar symptoms but showed 
a delay in language and walking ability. She also had tachycardia and 
suffered from immune deficiency, which was treated with 
venoglobulin transfusions. She died at the age of 16 years after a 
cardiac arrest.

There was no known consanguinity in the family, but there were 
a few cases of blindness. The proband’s mother (III-6) and aunt (III-8) 
both had breast cancer, and her paternal cousin was treated for autism 
(Figure 2).

Genetic testing

The blood DNA of the proband was analyzed by NGS using a 
panel covering 31 genes (Oncorisk and Celemics) related to human 
malignancies. Approximately 99.9% of target regions were covered 

with at least 50X, and the mean region coverage depth was 3570.5. 
After filtering, two variants in the ATM gene, namely, NM_000051.3 
c.[3894dupT];p.(Ala1299Cysfs3;rs587781823) and c.[5763-2A>C; 
rs876659489], were identified in the patient. According to the 
ClinVar database and ACMG criteria, the frameshift c.[3894dupT] 
is located in exon 26/63 and is classified as pathogenic (class 5, 
PVS1, PM2, and PP5_Very Strong). This mutation led to a frameshift 
at residue 1,299, which produced a truncated protein of 1,312 
amino acids p. (Ala1299Cysfs3) lacking the FAT, PI3K/PI4K 
catalytic, and FATC domains. This variant is rare, with a population 
frequency equal to 0.00000796 (exomes) and 0.000163 (GnomAD).

On the other hand, the c.[5763-2A>C; rs876659489] variant is 
expected to disrupt RNA splicing by affecting an acceptor splice site 
in intron 38 of the ATM gene; thereby, it is classified as a class 5 
pathogenic variant according to the ClinVar database and ACMG 
criteria (PVS1_Moderate, PM2, PP3_Strong, and PP5_Very_Strong). 
The SpliceAI and SPIP tools predicted that the c.[5763-2A>C] variant 
results in an acceptor loss with scores = 1 and −0.99, respectively. The 
population frequency of this variant is 0.000009, as indicated 
by GnomAD.

In addition, the proband (IV-3) carried six other variants in the 
ATM gene: one synonymous missense variant c.[5948A>G];p.
(Ser1983=rs659243) and five intronic variants, all classified as benign. 
No other pathogenic variant has been identified in genes included in 
the NGS panel in the present study.

Furthermore, the DNA of the proband (IV-3) and her parents 
(III-5 and III-6) were subjected to Sanger sequencing to (i) confirm 
the variants found by NGS in the proband and (ii) investigate the 
heredity of both variants in the parents. Both variants were successfully 
verified in the proband; in addition, we found that the c.[3894dupT];p.
(Ala1299CysfsTer3;rs587781823) variant, in the exon 26 of the ATM 
gene, was inherited from her father, and the c.[5763-2A>C 
rs876659489] splice site acceptor variant (intron 38) was inherited 
from her mother (Figure 3). It is important to mention that in these 
families, the first-degree relatives over two generations were affected 
by breast cancer, namely, the proband’s mother (III-6), her aunt (III-8), 
and her grandmother (II-5), but unfortunately, their DNA samples 
were not available for genetic testing (Figure 2).

FIGURE 1

Magnetic resonance images (MRIs) of the patient’s brain showing discrete cerebellum atrophy. (A) Sagittal T1-weighted brain MRI. Axial T1- (B) and 
T2- (C) weighted brain MRI.
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Discussion

Ataxia-telangiectasia (A-T) is a rare disorder affecting multiple 
body systems. Typically, the degeneration of the nervous system 
begins between 6 and 18 months of age, resulting in being confined to 
a wheelchair by the age of 10 years. Cerebellar degeneration causes 
symptoms such as unsteady trunk movements, difficulty walking, lack 
of coordination, weak muscles, and sudden falls (16). The involuntary 
movements in A-T patients worsen over time, starting mildly in 
childhood and becoming more noticeable in adulthood. Movement 
disorders characterized by reduced movement are less common 
compared to those with excessive movement. Some patients might 
develop symptoms resembling Parkinson’s disease, such as stiffness 
and tremors when at rest (17).

It is well known that the mode of inheritance for A-T is autosomal 
recessive and caused by biallelic mutations in the ATM gene. The ATM 
protein plays a pivotal role in regulating several tumor suppressor 
proteins, mainly TP53, BRCA1, Chek2, RAD17, RAD9, and NBS1 (18, 
19). These proteins, along with ATR kinase, are considered master 
controllers of cell cycle checkpoint signaling pathways, essential for 
the cell’s response to DNA damage and maintenance of genome 
stability (19, 20). Thus, when both copies of the ATM gene are 
inactivated (biallelic inactivation), it leads to A-T.

It is important to mention that in Tunisia, only two studies have 
investigated the clinical, immunological, and molecular 
(chromosomal instability) features without identifying the causal 
ATM gene mutation (21, 22). Therefore, our study is the first one that 
reports a Tunisian A-T patient harboring compound heterozygous 

FIGURE 2

Family pedigree diagnosed with the compound heterozygous ATM pathogenic variant. The arrow in the pedigree member shows the A-T patient. The 
sister of the proband had A-T associated with immunodeficiency (A-T  +  ID). Black half-filled pedigree members indicate cancer cases (cancer types are 
mentioned in the pedigree).

FIGURE 3

Chromatograms showing the frameshift mutation c.[3894dupT]; p.(Ala1299CysfsTer3; rs587781823), in ATM exon 26 identified in the A-T patient 
(A) and her father (C) and the splice site acceptor mutation c.[5763-2A>C; rs876659489] in ATM exon 39 identified in the A-T patient (B) and her 
mother (D).
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mutations in the ATM gene, namely, a frameshift c.[3894dupT];p.
(Ala1299CysfsTer3;rs587781823) and a splice site acceptor variant 
(c.[5763-2A>C],rs876659489). According to the literature, the 
frameshift variant had been previously identified in a homozygous 
state in Italian and Polish A-T patients (23, 24).

Globally, most ATM gene mutations involve frameshift or 
nonsense mutations located in the proximal, central, and distal regions 
of the ATM gene (25). Barone et al. demonstrated that the majority of 
ATM missense mutations in A-T are functionally linked to defects in 
expression and/or inactivation of kinase activity (26). Additionally, 
Jacquemin et al. showcased that, aside from resulting in the under-
expression of the ATM protein, ATM missense mutations caused 
abnormal cytoplasmic localization of the protein (27).

A recent study on Iranian A-T patients reported that ATM 
nonsense and frameshift mutations are most frequent, leading to a 
more severe phenotype than missense or splice-site mutations (28). 
However, in Chinese A-T patients, the mutational spectrum of ATM 
is likely to be diverse and different, when largely compared to other 
ethnic areas (29). Biallelic ATM mutations combining the splice site 
variant with frameshift, nonsense, or missense mutations were less 
frequent than other compound mutations. Despite this, there is a 
recent case report that described a Chinese A-T patient diagnosed at 
7 years of age with the compound heterozygous ATM genotype 
(frameshift combined with splice site ATM variant), who is similar to 
the proband in our case (30). This Chinese girl presented with growth 
retardation, ataxia, medium ocular telangiectasia, cerebellar atrophy, 
elevated serum alpha-fetoprotein (AFP) level, and normal serum 
levels of immunoglobulins, which are all similar to our proband.

Altogether, our patient had an onset of A-T syndrome at the age 
of 6 years with slow progression and a lack of basal ganglia 
manifestations, ruling out immunodeficiency, which may indicate that 
her mutations led to less severe neurodegenerative effects compared 
to other mutations in the ATM gene.

Furthermore, there is increasing evidence showing that 
heterozygous mutations in the ATM gene are associated with an 
increased risk of developing a wide spectrum of malignancies, 
including breast, stomach, and lung cancers (31). We observed that 
the Tunisian family consists of several members with various types of 
cancer such as lung, larynx, brain, and breast. In line with this report, 
we  confirmed that the proband’s mother, who had breast cancer, 
carried the pathogenic ATM variant c.[3894dupT];p.(Ala1299CysfsTe
r3;rs587781823), which is most likely responsible for the malignancy.

Although there is currently no cure for A-T patients, there has 
been a rapid development of mutation-targeted therapeutic 
approaches. These advancements bring hope for potential treatment 
in specific A-T patients with ATM mutations (32). These mutations 
can be  corrected, for example, using antisense morpholino 
oligonucleotide (AMO), read through compound (RTC), or 
micro-RNA (33, 34). In fact, AMOs have shown effectiveness in 
correcting type II and IV splicing mutations (35). Research has also 
revealed that functional ATM protein can be induced using RTCs to 
target premature termination codons in cells with ATM heterozygous 
nonsense mutations (33). Furthermore, gene editing approaches, such 
as CRISPR/Cas9, have been employed for targeting the ATM gene, 
offering a promising tool for new therapeutic approaches in treating 
this disease (36).

These in vitro tests shed light on the potential therapeutic 
applications of customized mutation-targeted therapies for A-T 

patients in the future. However, it is very important to note that this 
personalized approach profoundly relies on an exhaustive analysis of 
ATM gene mutations.

Conclusion

In summary, we  report a case of an A-T patient carrying a 
compound heterozygous mutation c.[3894dupT];p.(Ala1299CysfsTer
3;rs587781823) and c.[5763-2A>C rs876659489] splice acceptor 
variant in the ATM gene. Our findings extend the genotype spectrum 
of A-T in the Tunisian population and will allow timely decisions to 
be made in A-T diagnosis for better therapeutic management.
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