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Background: Sepsis-associated encephalopathy (SAE) occurs as a result of 
systemic inflammation caused by sepsis. It has been observed that the majority 
of sepsis patients experience SAE while being treated in the intensive care unit 
(ICU), and a significant number of survivors continue suffering from cognitive 
impairment even after recovering from the illness. The objective of this study 
was to create a predictive nomogram that could be used to identify SAE risk 
factors in patients with ICU sepsis.

Methods: We conducted a retrospective cohort study using the Medical 
Information Mart for Intensive Care IV (MIMIC-IV) database. We  defined SAE 
as a Glasgow Coma Scale (GCS) score of 15 or less, or delirium. The patients 
were randomly divided into training and validation cohorts. We  used least 
absolute shrinkage and selection operator (LASSO) regression modeling to 
optimize feature selection. Independent risk factors were determined through a 
multivariable logistic regression analysis, and a prediction model was built. The 
performance of the nomogram was evaluated using various metrics including 
the area under the receiver operating characteristic curve (AUC), calibration 
plots, Hosmer-Lemeshow test, decision curve analysis (DCA), net reclassification 
improvement (NRI), and integrated discrimination improvement (IDI).

Results: Among the 4,476 sepsis patients screened, 2,781 (62.1%) developed 
SAE. In-hospital mortality was higher in the SAE group compared to the non-
SAE group (9.5% vs. 3.7%, p  <  0.001). Several variables were analyzed, including 
the patient’s age, gender, BMI on admission, mean arterial pressure, body 
temperature, platelet count, sodium level, and use of midazolam. These variables 
were used to create and validate a nomogram. The nomogram’s performance, 
assessed by AUC, NRI, IDI, and DCA, was found to be superior to the conventional 
SOFA score combined with delirium. Calibration plots and the Hosmer-
Lemeshow test confirmed the accuracy of the nomogram. The enhanced NRI 
and IDI values demonstrated that our scoring system outperformed traditional 
diagnostic approaches. Additionally, the DCA curve indicated the practicality of 
the nomogram in clinical settings.

Conclusion: This study successfully identified autonomous risk factors 
associated with the emergence of SAE in sepsis patients and utilized them 
to formulate a predictive model. The outcomes of this investigation have the 
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potential to serve as a valuable clinical resource for the timely detection of SAE 
in patients.
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Introduction

Sepsis, a life-threatening infection-induced organ dysfunction 
resulting from a dysregulated host response (1), frequently affects 
the central nervous system (CNS), which is the most severely 
impacted and often overlooked organ system in sepsis (2). Research 
indicates that approximately 70% of sepsis patients develop SAE, a 
condition that can lead to prolonged mechanical ventilation, 
extended stays in the intensive care unit (ICU) and overall 
hospitalization period, and increased mortality (3). The 
pathophysiology of SAE involves the activation of microglial cells, 
neuroinflammation, and damage to the blood–brain barrier (4). 
Unfortunately, due to the lack of early diagnostic systems, the 
diagnosis and management of SAE are often delayed, resulting in 
increased rates of morbidity and mortality. Therefore, early 
identification and treatment of SAE are critical for the survival and 
prognosis of sepsis patients (5).

There is limited data available for predicting the occurrence of 
SAE in sepsis patients. In clinical practice, the presence of sepsis-
associated delirium is often utilized as a substitute for diagnosing 
SAE (6), and delirium is evaluated by using a subjective scoring 
method known as CAM-ICU. Despite the existence of some 
biomarkers like neurofilament light chains (NFL), S100 calcium-
binding protein B (S100β), and neuron-specific enolase (NSE) for 
predicting the occurrence of SAE (7–9), these biomarkers are not 
readily accessible in clinical settings and lack the necessary sensitivity 
and specificity for accurately predicting SAE. Consequently, new 
predictive indicators, including clinical parameters, are required to 
aid in prediction. The objective of this study is to retrospectively 
analyze sepsis-related data obtained from a large public database to 
establish a predictive model that incorporates potential risk factors 
for early identification of SAE.

Materials and methods

Data source

The MIMIC-IV (Medical Information Mart for Intensive Care-IV) 
database is an openly accessible repository of medical information 
pertaining to intensive care. Specifically, the MIMIC-IV 2.2 version, 
as of 6 January 2023, encompasses authentic data collected from the 
ICU of the Massachusetts Institute of Technology Beth Israel 
Deaconess Medical Center during the period spanning from 2008 to 
2019 (10). Authors have obtained permission to use the database 
(Certificate No.:38078934).

Study population

In this investigation, SAE is defined as a Glasgow Coma Scale 
(GCS) score lower than 15 or a diagnosis of delirium (11). The 
Glasgow Coma Scale (GCS) was first described in 1974 and has since 
been widely used to assess a patient’s level of consciousness upon 
admission. GCS evaluates a person’s level of consciousness based on 
three aspects: eye response, verbal response, and motor response. The 
GCS score ranges from 3 to 15 points and is related to the level of 
consciousness. The GCS is a quick, widely available, and standardized 
tool for assessing consciousness and neurological function. A GCS 
score less than 15 indicates some degree of impaired consciousness, 
which can be a sign of brain dysfunction. Delirium is included as a 
criterion, even in patients with a GCS of 15, because it represents a 
change in mental status with a fluctuating course, inattention, and 
either disorganized thinking or an altered level of consciousness. 
Delirium is particularly relevant as it is a common manifestation of 
septic encephalopathy and can occur even when the level of 
consciousness seems intact (GCS 15). Our study excluded 
consciousness disorders with a clear etiology. To be included, subjects 
needed to meet the following criteria: (1) be above the age of 18; (2) 
fulfill the diagnostic criteria for Sepsis 3.0; (3) have a hospital stay 
exceeding 24 h; (4) be admitted to the Intensive Care Unit for the first 
time; (5) have their initial patient information recorded. Conversely, 
individuals were excluded if they met any of the following exclusion 
criteria: (1) previously diagnosed with brain injuries (such as 
traumatic brain injury, meningitis, encephalitis, cerebral hemorrhage, 
cerebral embolism, ischemic stroke, epilepsy, brain tumor, intracranial 
infection, or any other cerebrovascular disease); (2) had mental 
disorders or neurological diseases; (3) suffered from long-term 
alcoholism or drug abuse; (4) experienced metabolic encephalopathy, 
hepatic encephalopathy, hypertensive encephalopathy, or any other 
liver or kidney disease affecting consciousness; (5) suffered from 
severe electrolyte imbalance or blood glucose disorder, including 
hyponatremia (less than 120 mmoL/L), hyperglycemia (greater than 
180 mg/dL), or hypoglycemia (less than 54 mg/dL); (6) have not been 
evaluated using the GCS. The detailed process of data inclusion can 
be observed in Figure 1.

Study methods

Using the software Navicat and employing Structured Query 
Language (SQL) (12), we  acquired a total of 43 variables. These 
variables encompassed various domains, including: (1) Baseline data: 
age, sex, race, BMI, and comorbidities. (2) Vital signs: GCS score, 
mean arterial pressure, heart rate, respiratory rate, pulse oximetry 
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(SpO2), and body temperature. (3) Laboratory tests: hematocrit, 
hemoglobin, red cell distribution width, platelets, white blood cells, 
prothrombin time, partial thromboplastin time, blood urea nitrogen, 
electrolytes, and blood gas analysis. (4) Type of microbial infection. 
(5) Comorbidities and disease severity scores are evaluated using the 
Charlson comorbidity index and the Sequential Organ Failure 
Assessment (SOFA) score. The Charlson comorbidity index measures 
the presence and impact of various comorbid conditions, while the 
SOFA score assesses the degree of organ dysfunction or failure across 
six specific organ systems: coagulation, liver, kidney, cardiovascular, 
lung, and neurological. Each organ system is rated on a scale from 0 
(indicating normal function) to 4 (indicating severe abnormalities). 
(6) Administration of sedative drugs: midazolam and propofol. (7) 

Utilization of mechanical ventilation and indication of post-elective 
surgeryThe primary focus of this investigation was the prevalence of 
SAE. For continuous variables, we calculated the average values from 
both the laboratory parameters and vital sign parameters over the 
initial 24-h period. All categorical variables underwent preprocessing 
before being introduced into the model.

Statistical methods

The research subjects were divided into two groups based on the 
incidence of SAE. Variables that had more than 30% missing values 
were not included in the analysis (13). For variables with less than 30% 

FIGURE 1

Workflow of the study. GCS Glasgow Coma Scale, SOFA Sequential Organ Failure Assessment. BMI, Body Mass Index; MAP, Mean Arterial Pressure; PLT, 
Platelet; AUC, Area Under the Curve; IDI, Integrated Discrimination Improvement; NRI, Net Reclassification Improvement. Special diagnostics include 
primary neurological injuries (traumatic brain injuries, ischemic strokes, hemorrhagic strokes, epilepsy, and intracranial infections), and chronic alcohol 
or drug abuse, severe electrolyte imbalances, hyponatremia, hyperglycemia, hypoglycemia, with pre-existing liver or kidney failure affecting 
consciousness, receiving cardiac resuscitation recently.
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missing values, multiple imputations were performed. The procedure 
starts by predicting and filling in missing values for the first variable 
using a regression model. Then, the imputed values for the first 
variable are kept constant, and the process is repeated for the second 
variable. This cycle is continued for all variables, with multiple 
iterations to improve the accuracy of the estimates. We perform 5 
iterations, resulting in 5 complete data sets. The final analysis is based 
on the average of these 5 data sets to account for the uncertainty in the 
estimates. The data distribution was analyzed using the Shapiro–Wilk 
test. Continuous data was represented as mean ± standard deviation 
or median (interquartile range, IQR), while categorical variables were 
presented as frequencies and ratios (%). Non-parametric tests (Mann–
Whitney U test or Kruskal-Wallis test) were employed for 
non-normally distributed or heteroscedastic data. Pearson’s chi-square 
test was used to compare categorical data. All statistical analyses were 
carried out using R software, utilizing various packages including 
tableone, mice, rms, pROC, dca, and rdma.

To develop the prediction nomogram (a graphical tool for 
predicting disease probability based on multiple predictive factors. 
The user plots points for each factor on a scale, sums these points, and 
then translates the total into a probability of disease occurrence). A 
random assignment of patients was made into a training set and a 
validation set, with a ratio of 7:3. The variable selection was 
performed using the Lasso regression method, also known as the 
least absolute shrinkage and selection operator. LASSO is a modeling 
technique that selects variables by constraining the sum of regression 
coefficients, ultimately choosing variables for the model and 
penalizing fewer predictive variables to prevent overfitting. The 
optimal value of λ was determined through 10-fold cross-validation. 
Subsequently, a multivariable logistic regression analysis was 
conducted using the features selected from the LASSO regression 
model to identify statistically significant predictors. These predictors 
were then used to construct a nomogram. The results of this analysis 
are presented as odds ratios (OR), 95% confidence intervals (95% CI), 
and p-values.

The discriminative ability of the nomogram and the SOFA 
delirium system was evaluated by assessing the area under the 
receiver operating characteristic curve (AUC). The receiver 
operating characteristic curve was used to determine the optimal 
cut-off point, as well as the sensitivity and specificity based on the 
Youden index. Furthermore, the performance improvement of the 
nomogram compared to the SOFA plus delirium system was 
assessed using the Integrated Discrimination Improvement (IDI) 
and the Net Reclassification Improvement (NRI). Both are statistical 
measures used to compare the performance of two predictive 
models. IDI focuses on the improvement in discrimination, 
essentially how well the new model differentiates between outcomes 
compared to the old model. NRI assesses how well individuals are 
reclassified into correct risk categories by the new model vs. the old 
one. Together, they help in understanding whether a new model 
offers a significant improvement over its predecessor. Calibration 
curves and the Hosmer-Lemeshow test were utilized to evaluate the 
calibration of the nomogram. The net clinical benefit was 
determined through the decision curve analysis (DCA) curve which 
a method used to evaluate the clinical utility of diagnostic tests or 
prediction models across a range of decision thresholds. It helps in 
understanding the trade-offs between the benefits of true positive 

results and the harms of false positives. DCA is particularly useful 
for determining at what threshold a model’s predictions have 
practical value, guiding clinicians on when to use the model for 
decision-making.

All statistical analyses were conducted using R software version 
4.3.1 (R Foundation for Statistical Computing, Vienna, Austria). 
Significance was defined as a p-value less than 0.05 (two-sided).

Results

Currently, there is a lack of well-defined diagnostic criteria for 
SAE, resulting in its frequent substitution with the diagnosis of 
delirium in conjunction with sepsis (SOFA + Delirium). The present 
study aimed to develop a diagnostic prediction model for SAE by 
gathering data from the MIMIC-IV database.

Baseline information and clinical data

The 4,476 patients who met inclusion and exclusion criteria were 
randomly divided into a training set of 3,134 and a validation set of 
1,342 with a 7:3 ratio. The demographic, clinical, and laboratory 
characteristics of the two groups of patients are shown in Table 1. 
There was no statistical difference in all observed variables between 
training group and validation group (p > 0.05).

Results of LASSO regression screening

The study utilized the LASSO regression algorithm to identify the 
most significant predictive factors in order to avoid overfitting. The 
selection of the best parameter (Lambda) in the LASSO model was 
determined through 10-fold cross-validation using the smallest 
criteria. The optimal value for the model was determined to be one 
standard error of the smallest Lambda value (Lambda1se). The results 
of the LASSO analysis revealed that several factors, including average 
gender, age, BMI, congestive heart failure, MAP, temperature, SpO2, 
PLT, sodium, lactate, pH value, use of midazolam, use of vasoactive 
drugs, type of microorganism, and SOFA score, were identified as risk 
factors for the occurrence of SAE (Figure 2).

A multivariate logistic regression of risk 
factors

The independent variables chosen through LASSO regression are 
utilized in multivariate logistic regression analysis, with SAE serving 
as the dependent variable. Following the elimination of variables with 
a p-value exceeding 0.05, a total of nine factors are found to 
be significantly associated with SAE, namely gender, age, BMI, MAP, 
temperature, platelet count, sodium levels, use of midazolam, and 
SOFA score (Figure 3).
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TABLE 1 Baseline characteristics of study participants with and without SAE.

Variables Total (N =  4,476) SAE (N =  2,781) Non-SAE (N =  1,695) p

Age (IQR) 67.00(56.00,76.00) 68.00(56.00, 77.00) 65.00(55.00, 73.00) <0.001

BMI (IQR) 27.76(24.24,32.25) 27.53(24.05, 31.96) 28.08(24.63, 32.67) <0.001

  Gender, n (%) <0.001

   Male 2,722 (60.8%) 1,611 (57.9%) 1,111 (65.5%)

   Female 1,754 (39.2%) 1,170 (42.1%) 584 (34.5%)

  Race, n (%) 0.597

   White 3,172 (70.9%) 1,982 (71.3%) 1,190 (70.2%)

   Black 225 (5.0%) 146 (5.2%) 79 (4.7%)

   Asian 130 (2.9%) 75 (2.7%) 55 (3.2%)

   Hispanic/Latino 130 (2.9%) 77 (2.8%) 53 (3.1%)

   Others 819 (18.3%) 501 (18.0%) 318 (18.8%)

Comorbidities

  Hypertension, n (%) 0.645

   No 1,642 (36.7%) 1,013 (36.4%) 629 (37.1%)

   Yes 2,834 (63.3%) 1,768 (63.6%) 1,066 (62.9%)

  Congestive heart failure, n (%) 0.637

  No 3,631 (81.1%) 2,250 (80.9%) 1,381 (81.5%)

  Yes 845 (18.9%) 531 (19.1%) 314 (18.5%)

  Chronic pulmonary disease, n 

(%)
0.862

   No 3,506 (78.3%) 2,176 (78.2%) 1,330 (78.5%)

   Yes 970 (21.7%) 605 (21.8%) 365 (21.5%)

  Diabetes Mellitus, n (%) 0.987

   No 4,236 (94.6%) 2,632 (94.6%) 1,604 (94.6%)

   Yes 240 (5.4%) 149 (5.4%) 91 (5.4%)

  Cancer, n (%) <0.001

   No 3,917 (87.5%) 2,394 (86.1%) 1,523 (89.9%)

   Yes 559 (12.5%) 387 (13.9%) 172 (10.1%)

Scoring systems (IQR)

  Sofa score 5.00(3.00,7.00) 6.00(4.00, 8.00) 4.00(3.00, 5.00) <0.001

  Charlson comorbidity index, 4.00(3.00,5.00) 4.00(3.00, 6.00) 4.00(3.00, 5.00) <0.001

  GCS 14.00(11.00,15.00) 13.00(8.00, 14.00) 15.00(15.00, 15.00) <0.001

First day vital signs (IQR)

  Heart rate mean (beats min−1) 84.03(76.73,93.96) 84.50(76.68, 95.52) 83.39(77.02, 92.26) 0.008

  MAP mean (mmHg) 74.86(70.67,79.72) 75.11(70.57, 80.23) 74.60(70.82, 78.85) 0.061

  Respiratory Rate mean (min−1) 18.00(16.14,20.45) 18.11(16.15, 20.76) 17.83(16.13, 19.90) 0.001

  Temperature mean (°C) 36.84(36.59,37.17) 36.86(36.60, 37.20) 36.80(36.57, 37.10) <0.001

  Spo2 mean (%) 97.70(96.41,98.70) 97.70(96.37, 98.70) 97.71(96.50, 98.69) 0.587

First day laboratory tests (IQR) 84.03(76.73,93.96) 84.50(76.68, 95.52) 83.39(77.02, 92.26) 0.008

  Hematocrit (%) 31.30(28.25,34.86) 31.20(28.05, 34.90) 31.40(28.40, 34.80) 0.218

  Hemoglobin (g/dL) 10.50(9.45,11.75) 10.50(9.40, 11.70) 10.55(9.55, 11.80) 0.095

  Platelet (103/uL) 169.50(132.50,224.50) 175.00(133.50, 233.00) 163.00(131.00, 211.00) <0.001

  WBC (103/uL) 12.45(9.65,15.85) 12.40(9.65, 15.80) 12.55(9.70, 15.90) 0.465

  RDW (%) 14.00(13.20,15.30) 14.10(13.30, 15.50) 13.80(13.20, 14.80) <0.001

(Continued)
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TABLE 1 (Continued)

Variables Total (N =  4,476) SAE (N =  2,781) Non-SAE (N =  1,695) p

  Cr mean (mg/dL) 0.85(0.70,1.05) 0.85(0.70,1.05) 0.85(0.70,1.00) 0.015

  BUN mean (mg/dL) 15.50(12.50,21.00) 16.00(12.50, 22.00) 15.50(12.00, 19.50) <0.001

  Glucose mean (mg/dL) 119.00(105.00,134.00) 119.50(105.50, 135.00) 119.00(105.00, 132.50) 0.117

  Sodium mean (mmol/L) 138.50(136.50,140.50) 138.50(136.50, 140.50) 138.50(136.50, 140.00) 0.002

   PT mean (S) 14.15(13.10,15.45) 14.25(13.10, 15.60) 14.10(13.10, 15.25) 0.007

   PTT mean (S) 30.80(27.60,36.60) 30.85(27.55, 37.05) 30.80(27.67, 35.95) 0.499

  Lactate mean (mmol/L) 1.80(1.35,2.35) 1.75(1.35, 2.40) 1.80(1.40, 2.30) 0.194

   pH mean 7.38(7.35,7.42) 7.38(7.35, 7.42) 7.38(7.35, 7.41) 0.132

   PO2 mean (mmHg) 227.25(126.00,272.00) 217.50(116.50, 268.00) 240.50(153.50, 277.00) <0.001

   PCO2 mean (mmHg) 41.00(37.50,44.50) 40.50(37.00, 44.50) 41.00(38.00, 44.50) 0.012

   Phosphate (mg/dL) 3.40(2.90,4.00) 3.40(2.80, 4.00) 3.40(2.90, 3.90) 0.394

   Magnesium (mg/dL) 2.00(1.80,2.20) 2.00(1.80, 2.20) 2.00(1.80, 2.20) <0.001

Interventions, n (%)

  Midazolam, n (%) <0.001

   No 3,542 (79.1%) 2,060 (74.1%) 1,482 (87.4%)

   Yes 934 (20.9%) 721 (25.9%) 213 (12.6%)

  Propofol, n (%) 0.007

   No 906 (20.2%) 598 (21.5%) 308 (18.2%)

   Yes 3,570 (79.8%) 2,183 (78.5%) 1,387 (81.8%)

  Mechanical ventilation, n (%) 0.771

  No 1,984 (44.3%) 1,228 (44.2%) 756 (44.6%)

  Yes 2,492 (55.7%) 1,553 (55.8%) 939 (55.4%)

  Elective surgery, n (%) <0.001

   No 3,981 (88.9%) 2,507 (90.1%) 1,474 (87.0%)

   Yes 495 (11.1%) 274 (9.9%) 221 (13.0%)

  Vasopressor, n (%) 0.077

   No 1,559 (34.8%) 996 (35.8%) 563 (33.2%)

   Yes 2,917 (65.2%) 1,785 (64.2%) 1,132 (66.8%)

  Delirium, n (%) <0.001

   No 4,290 (95.8%) 2,595 (93.3%) 1,695 (100.0%)

   Yes 186 (4.2%) 186 (6.7%) 0 (0.0%)

  Microorganism, n (%) 0.007

  Negative 3,845 (85.9%) 2,378 (85.5%) 1,467 (86.5%)

  Gram Negative 221 (4.9%) 159 (5.7%) 62 (3.7%)

  Gram positive 385 (8.6%) 226 (8.1%) 159 (9.4%)

  Others 25 (0.6%) 18 (0.6%) 7 (0.4%)

Outcome-related measures

  Length of hospital (days) 7.13(5.07,11.42) 8.08(5.29, 13.57) 6.13(4.77, 8.96) <0.001

  Length of ICU (days) 2.29(1.34,4.29) 2.99(1.50, 5.89) 1.83(1.24, 2.86) <0.001

  Hospital mortality, n (%) <0.001

  No 4,149 (92.7%) 2,517 (90.5%) 1,632 (96.3%)

  Yes 327 (7.3%) 264 (9.5%) 63 (3.7%)

BMI, Body Mass Index; SOFA, Sequential Organ Failure Assessment; GCS, Glasgow Coma Scale; MAP, Mean Arterial Pressure; SpO2, Pulse Oximetry; PLT, Platelet; WBC, White Blood Cell; 
RDW, Red Blood Cell Distribution Width; BUN, Blood Urea Nitrogen; PT, Prothrombin Time; PTT, Partial Thromboplastin Time.
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FIGURE 2

LASSO regression analysis and 10-fold cross-validation were used to select predictor variables. (A) The adjustment parameter (lambda) for LASSO 
regression deviance is selected based on the minimum criterion (dashed line on the left) and the 1-SE criterion (dashed line on the right). (B) Create 
coefficient distributions from log(lambda) sequences. In the present study, predictor’s selection was according to the 1-SE criteria (dashed line on the 
right), where 9 nonzero coefficients were selected. LASSO, least absolute shrinkage and selection operator; SE, standard error.

FIGURE 3

Multivariable logistic regression to identify optimal predictors for SAE diagnosis. BMI, Body Mass Index. SOFA, Sequential Organ Failure Assessment. 
MAP, Mean Arterial Pressure. PLT, Platelet.
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Construction and evaluation of a 
nomogram

Utilizing the nine variables derived from the multivariate 
regression analysis as predictors, with the occurrence of SAE as the 
clinical outcome, a nomogram was constructed (Figure 4).

We conducted a comparison of the diagnostic predictive ability 
between the nomogram and the combination of the SOFA score and 
the delirium system for SAE. The results, as shown in Figure 5, indicate 
that the nomogram had higher AUC values in both the training set 
(0.751, 95% CI = 0.734–0.768; Figure 5A) and the validation set (0.766, 
95% CI = 0.740–0.793; Figure  5B) compared to the SOFA score 
combined with the delirium diagnostic system. Furthermore, the NRI 
values of categorical variables in the training set were 0.0493 (95% 
CI = 0.0171–0.0808), while the NRI values of continuous variables were 
0.3484 (95% CI = 0.278–0.4189), and the IDI value was 0.0279 (95% 
CI = 0.0194–0.0364). In the validation set, the NRI values of categorical 
variables and continuous variables were 0.0504 (95% CI = 0.0042–
0.0965) and 0.3814 (95% CI = 0.2731–0.489), respectively, with a 
corresponding IDI value of 0.0268 (95% CI = 0.0139–0.0397; Table 2). 
These findings suggest that our model improves prediction accuracy 
and outperforms the currently utilized diagnostic tools for SAE.

Figure 6 presents the calibration curve of the nomogram. The 
calibration curves for both the training (Figure 6A) and validation 
(Figure 6B) cohorts are nearly diagonal. The results of the Hosmer-
Lemeshow test indicate no statistical significance, suggesting a good fit 
between the nomogram and the data (training cohort: Χ2 = 12.598, 
p = 0.1264; validation cohort: Χ2 = 8.6418, p = 0.3734). To demonstrate 
the clinical applicability of the nomogram, we also plotted the DCA 
curve and compared it with the combination of the SOFA score and the 
delirium diagnostic system (Figure  7). Our nomogram showed a 
higher net benefit in clinical diagnosis when the threshold probabilities 
ranged from 0.13 to 0.92 (Figure 7A) and 0.19 to 0.9 (Figure 7B) for the 
two cohorts, respectively, surpassing the currently used scoring system.

Discussion

In this retrospective study using the MIMIC-IV database, the 
incidence of SAE was found to be  62.1%. We  identified several 
independent risk factors for SAE, including gender, age, BMI, mean 
arterial pressure, temperature, platelets, sodium, use of midazolam, 
and SOFA score. Based on these findings, we developed a diagnostic 
prediction nomogram for SAE. The validity of our nomogram model 
was evaluated using multiple indicators such as AUC, calibration 
curve, Hosmer-Lemeshow test, IDI, NRI, and DCA, which 
demonstrated high validity, discrimination, and clinical utility.

Infections with pathogenic pathogens can result in disturbance of 
the immune response in the host, ultimately leading to severe 
dysfunction of organs (14). The existing definition of sepsis, referred 
to as the “Sepsis-3” criterion, emphasizes the occurrence of organ 
failure in sepsis patients and necessitates the evaluation of sequential 
organ failure with a minimum score of two (1). It is estimated that 
sepsis affected approximately 49 million individuals globally in 2017, 
resulting in the deaths of 11 million people (15). We  have also 
observed a gradual reduction in the mortality rate of sepsis adjusted 
for age, which could be  attributed to advancements in clinical 
guidelines and care. These improvements have consequently increased 

the number of sepsis patients who survive the condition (16). In terms 
of acute brain dysfunction resulting from sepsis, approximately 50% 
of sepsis patients admitted to the intensive care unit (ICU) exhibited 
symptoms such as delirium and coma. This neurological manifestation, 
unrelated to direct brain infection by the pathogen, is recognized as 
SAE (17). Various research studies have extensively linked SAE to 
higher short-term mortality among sepsis patients (5, 18, 19). 
Furthermore, our investigation discovered a notably increased 
in-hospital mortality rate for patients in the SAE group, as well as an 
extended duration of ICU stay (p < 0.001). Currently, the diagnostic 
criteria and potential risk factors for SAE remain inadequately 
understood, and there is an absence of reliable methods for the clinical 
assessment of sepsis-induced neurological dysfunction. Consequently, 
the development of an early diagnostic predictive model could aid in 
the diagnosis of SAE and facilitate treatment decision-making.

Although sepsis can develop in patients of any age, age is a powerful 
risk factor, with patients over 65 experiencing a more than tenfold 
increase in incidence compared to younger individuals (18–49 years). 
The majority of sepsis survivors (56%) are over the age of 65. Among this 
group, half do not fully recover and instead experience new functional 
impairments. These impairments are a result of the decline in 
physiological reserves and immune function, which aligns with the 
findings of our study (14, 20). We also found that female patients were 
more likely to develop SAE, considering differences in the immune 
system, brain tissue structure, blood–brain barrier, and neuroendocrine 
system between males and females (21). However, this contradicts the 
findings of Feng’s study (22). Many current studies on SAE have matched 
for age and gender, indicating an understanding of the significant impact 
of these two factors on disease progression. However, data elucidating 
the exact way gender influences SAE are lacking, indicating an urgent 
need for further research. Although research suggests that a higher BMI 
in middle age is associated with dementia, the same studies have also 
found that a higher BMI in old age may be a protective factor (23). 
Furthermore, a low BMI is associated with more severe 
neurodegenerative diseases and a higher mortality rate (24). We also 
found that patients with a low BMI were more likely to develop SAE, as 
low BMI often indicates malnutrition, which can affect brain function 
and cause gut-brain axis dysfunction, leading to SAE.

Additionally, our study found that mean arterial pressure (MAP) 
and body temperature among vital signs were associated with the 
occurrence of SAE. MAP is the pressure that most significantly affects 
autoregulation of blood flow within organs. A MAP of 65-70 mmHg is 
the initial systemic circulation target to ensure organ perfusion 
pressure (25). However, patients with sepsis often have impaired 
cerebrovascular autoregulation (26). Schramm et  al. confirmed 
through TCD that cerebrovascular autoregulation dysfunction is one 
of the triggers for SAE (27). We  know that low MAP can lead to 
insufficient cerebral blood flow and cerebral perfusion disorders; 
conversely, if MAP is too high and exceeds the range of cerebrovascular 
autoregulation, it can also lead to increased intracranial pressure and a 
decrease in cerebral perfusion pressure, which is consistent with our 
research results. Therefore, individualized MAP based on 
cerebrovascular autoregulation monitoring is needed to prevent SAE 
(28). Sepsis itself is a systemic inflammatory state caused by severe 
infection. The inflammatory response can disrupt thermoregulatory 
mechanisms, leading to abnormalities such as fever or hypothermia, 
and prolonged high fever can exacerbate blood–brain barrier damage 
and the degree of neuronal necrosis during SAE (29, 30).
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FIGURE 4

Nomogram predicting SAE probability in sepsis patients of training cohort. In order to obtain the corresponding scores for each variable, draw a vertical 
line upward from the point axis. The total score at the bottom of the nomogram represents the probability of SAE based on the sum of all variable 
scores. Those red dots represent symptoms and probabilities of SAE in our study population.

FIGURE 5

ROC curves for the nomogram model and the SOFA + Delirium model in validation cohort (A) and the training cohort (B).
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Thrombocytopenia is a common complication of sepsis, and 
previous studies have confirmed that thrombocytopenia is associated 
with poor prognosis in patients with SAE (30). However, our study 
suggests that thrombocytosis upon admission is associated with the 
occurrence of SAE. This is primarily because platelets can release 
cytokines and neurotransmitters, such as serotonin, IL-1β, and platelet 
activating factor, which can promote inflammatory responses and 

leukocyte migration (31). Additionally, platelet surface receptors, such 
as GPIb, can bind to leukocyte surface receptors, such as Mac-1, 
promoting leukocyte adhesion to the vascular endothelium and entry 
into brain tissue, thereby triggering neuroinflammation (32). Sodium, 
an essential electrolyte for nerve cells and a significant component of 
plasma osmotic pressure, can cause an increase in plasma osmotic 

FIGURE 7

Decision-curve analysis of the validation cohort (A) and the training 
cohort (B).

TABLE 2 Comparison of the performance of two models for predicting SAE.

Predict 
model

AUROC P-
value

NRI 
(categorical)

P-value NRI 
(continuous)

P-
value

IDI P-
value

Training set Nomogram 0.751

SOFA + 

Delirium

0.725 <0.001 0.0493[0.0177–

0.0808]

0.002 0.3484[0.278–

0.4189]

<0.001 0.0279[0.0194–

0.0364]

<0.001

Validation 

set

Nomogram 0.766

SOFA + 

Delirium

0.742 0.008 0.0504[0.0042–

0.0965]

0.03 0.3814[0.2731–

0.4897]

<0.001 0.0268[0.0139–

0.0397]

<0.001

The P-value was calculated by comparing the results of nomogram with SOFA plus Delirium. SOFA, Sequential Organ Failure Assessment; AUROC, Area Under the ROC Curve; NRI, Net 
Reclassification Improvement; IDI, Integrated Discrimination Improvement.

FIGURE 6

Calibration curves for the validation cohort (A) and the training 
cohort (B).
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pressure in hypernatremia, leading to a transfer of water from the 
brain to nerve cells. This can result in symptoms such as somnolence, 
epilepsy, and delirium (33, 34). Our study found that hypernatremia 
is also an independent risk factor for SAE, consistent with the findings 
of Romain Sonneville’s study (30).

Midazolam, a benzodiazepine drug, is commonly used for 
sedation in ICU patients. However, it may increase the risk of 
neurocognitive impairment by affecting β-amyloid protein clearance, 
increasing tau protein levels, exacerbating the inflammatory response, 
and affecting synaptic plasticity. Previous studies have shown that the 
use of midazolam is an independent risk factor for predicting the 
development of neurocognitive impairment in ICU patients, 
increasing their risk (35, 36). Our study also confirms that the use of 
midazolam is one of the risk factors for SAE.

In terms of sepsis diagnosis, the most commonly used tool is the 
SOFA score, which is also one of the diagnostic criteria for sepsis 3.0. 
Previous studies have reported that the SOFA score has good 
diagnostic and prognostic predictive value in sepsis patients (37). 
However, whether it is applicable for the diagnosis of SAE is currently 
unclear (38). Therefore, we extracted data from the MIMIC-IV dataset 
to develop the current prediction model. The results show that our 
prediction model is superior to the current SOFA combined with 
delirium diagnostic system and displays acceptable discrimination 
and calibration. In addition, guided by the nomogram, we performed 
a clinical decision analysis for the diagnosis of SAE patients and found 
that the current prediction model has a higher net benefit. Note that 
a GCS score of less than 15 is used to diagnose SAE patients; however, 
the GCS score is part of the SOFA score. Patients with a higher SOFA 
score are more likely to develop SAE, which may bias this conclusion.

Based on our current knowledge, there exists a dearth of research 
pertaining to the predictive model for diagnosing SAE. In our 
investigation, we  employed the publicly accessible MIMIC-IV 
database, which encompasses an extensive array of data from 
critically ill individuals. This database served as a reliable source of 
evidence for our discoveries. The parameters integrated into the SAE 
prediction model developed in this study can be readily obtained 
through clinical practices. Furthermore, the model possesses 
interpretability, thereby conferring significant value for the early 
prognosis of SAE within clinical environments.

However, our study has some limitations. Firstly, the absence of 
clearly defined diagnostic criteria for SAE poses a challenge. Although 
we established some inclusion and exclusion criteria, misdiagnoses and 
missed diagnoses are bound to occur. Secondly, our study extensively 
relied on the MIMIC-IV database, which is known for its homogeneity. 
Consequently, we only conducted internal validation with this specific 
database. To enhance the model’s robustness and performance, the 
inclusion of external databases in future investigations is imperative. 
Moreover, it is important to acknowledge that our study is retrospective 
by nature, which inherently introduces biases. Lastly, due to limitations 
in data availability, several laboratory tests, including PCT, CRP, and 
IL-6, were not feasible to obtain. Consequently, these potential risk 
factors could not be included in the prediction model.

Conclusion

A diagnostic tool was developed and evaluated for its precision 
and discriminative efficacy in diagnosing SAE. This novel nomogram 
provides healthcare professionals with a personalized and visual tool 

that may aid in timely intervention and reduce mortality associated 
with SAE. To evaluate the predictive performance of the model across 
different populations, prospective studies with external validation 
are imperative.
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