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Background: Delirium seriously affects the prognosis of patients and greatly 
reduces the ability to work and live. Peripheral inflammatory events may 
contribute to the development of delirium, the mechanism of which is still 
unclear. There is a lack of effective diagnostic and treatments for delirium in 
clinical practice. The study aims to investigate alterations in peripheral immune 
cell subsets under inflammatory stress and to explore causal associations with 
delirium.

Methods: Single-cell transcriptional sequencing data of human peripheral 
blood mononuclear cells (PBMC) before and after lipopolysaccharide (LPS) 
intervention were processed by the Seurat package in R software. PBMC 
subsets and cellular markers were defined after downscaling and clustering 
by the Harmony algorithm to identify characteristic subsets in the context of 
inflammatory stress. Subsequently, a two-sample Mendelian randomization 
(MR) study was used to explore the causal associations of these inflammation-
related PBMC subsets and their molecular phenotypes with delirium. Based on 
publicly available genetic data, the study incorporated 70 PBMC-associated 
immune traits, including 8 types of circulating immune cells, 33 B cell subsets 
and molecular phenotypes, 13  T cell subsets, and 16 B cell-associated cytokines. 
The results were also validated for robustness, heterogeneity, and horizontal 
pleiotropy.

Results: Under LPS-induced inflammatory stress, B cells, T cells, monocytes, and 
dendritic cells in human PBMC showed significant activation and quantitative 
changes. Of these, only lymphocyte and B cell counts were causally associated 
with delirium risk. This risk link is also seen in the TNF pathway. Further studies 
of B cells and their subsets revealed that this association may be  related to 
unswitched memory B cells and CD27 expressed on memory B cells. Annotation 
of the screened SNPs revealed significant polymorphisms in CD27 and CD40 
annotated by rs25680 and rs9883798, respectively. The functions of the key 
annotated genes may be related to the regulation of immune responses, cell 
differentiation, proliferation, and intercellular interactions.

Conclusion: The present study revealed the potential possibility that B cell, 
memory B cell subset, and TNF-related molecules may be  involved in the 
development of delirium due to peripheral inflammation, which can provide 
clues for further investigation of delirium prevention and treatment strategies.
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1 Introduction

Delirium is a neurocognitive impairment characterized by 
attentional deficits, cognitive impairment, and dysfunction of 
consciousness, which is manifested by a diminished ability to maintain 
and focus attention, damaged cognition, and disorientation of the 
environment (1). The prevalence of delirium is significantly higher in 
older, debilitated populations with comorbid chronic illnesses and 
those experiencing intense stressful events such as trauma, surgery, 
and infections (2–4). In contrast to chronic, ongoing neurocognitive 
impairments (e.g., aging-related and neurodegenerative diseases), the 
onset of delirium is usually characterized by acute and subacute 
features (1). For example, aging is often accompanied by cellular 
senescence and organ dysfunction in the body, accompanied by 
weakened anti-inflammatory capacity and enhanced 
pro-inflammatory mechanisms and tends to manifest itself as a 
natural decline in neurocognitive functioning, which is more 
physiologic (5). Delirium, on the other hand, often occurs within a 
short period of time after an intense inflammatory stress event in 
vulnerable populations, such as delirium occurring for a short period 
in elderly surgical patients (6, 7). Notably, neurological and cognitive 
impairments are also frequently observed in chronic diseases such as 
inflammatory bowel disease, chronic obstructive pulmonary disease, 
silicosis, coronary heart disease, diabetes mellitus, and nonalcoholic 
fatty liver disease (8–12), and these populations are at a significantly 
higher risk of delirium after experiencing intense inflammatory stress 
(13–15). This phenomenon suggests a possible association of 
peripheral systems with central neurophysiologic interactions, and 
suggests that immune and inflammatory alterations in the periphery 
may induce neurocognitive impairment.

However, there is no clarity regarding the specific mechanisms by 
which peripheral inflammation leads to delirium. Peripheral effector 
cells activated during inflammatory stress events as well as 
transcriptional changes in cytokines and chemokines may be involved 
in the above process (16). This process may be associated with the 
induction of neuroinflammation by circulating immune cells and 
pro-inflammatory mediators through invasion and entry into the 
damaged blood–brain barrier (BBB) (17). Extensively activated 
astrocytes and microglia promote inflammatory storm processes in 
the brain, which ultimately lead to synaptic dysfunction, neuronal 
loss, and impaired connectivity of functional networks in brain 
regions (18–20). In patients with neurocognitive impairments, the 
number and activation status of peripheral blood mononuclear cells 
(PBMCs) are also often abnormally elevated or decreased, which may 
be related to the severity and stage of the disease. Different subsets of 
PBMC may play distinct roles in mediating the interactive effects of 
the peripheral and central immune environments (21). In the present 
study, we  proposed the hypothesis that PBMC-predominant 
inflammatory immune activation may have contributed to the 
development of delirium. Nevertheless, the immune cell subsets and 
specific effector molecules that specifically mediate peripheral 
inflammation to the onset of delirium are not known. There are still 
many gaps in research on delirium causation mechanisms since 
previous studies have mainly focused on the assessment of learning 

memory and motor function, but lacked the consideration of delirium 
characteristics as a whole, which is due to the lack of standardized and 
feasible methods for assessing delirium-related characteristics 
(consciousness and attention, etc.), making it difficult to construct an 
ideal and accepted model of delirium at the experimental animal level 
(22). Mendelian randomization (MR) studies, on the other hand, have 
a hierarchy of evidence second only to that of randomized controlled 
trials, giving the method a strong causal argumentative efficacy. 
Therefore, we attempted to explore the possible causal associations 
between various PBMC immune cell subsets and delirium in 
conjunction with the MR study method after identifying subset 
alterations of human PBMC under inflammatory stress by analyzing 
single-cell sequencing data. In this study, we first identified altered 
characteristic PBMC subsets and their differentially expressed genes 
by analyzing transcriptome sequencing data of human PBMCs under 
lipopolysaccharide (LPS)-induced inflammatory stress. Subsequently, 
single nucleotide polymorphism (SNP) data of relevant PBMC subsets 
and delirium phenotype were obtained from the human genome-wide 
association study (GWAS) database, and causal associations between 
the characterized cell subsets and delirium were explored based on 
MR methods. This study can screen and identify the characteristic cell 
types and molecules that may mediate delirium caused by peripheral 
inflammation, thus providing new ideas and practical references for 
early diagnosis, prevention, and treatment of delirium.

2 Materials and methods

2.1 Acquisition of PBMC sequencing data

Human PBMC transcriptome sequencing data were obtained 
from the GEO database and Human Cell Atlas database to integrate 
and analyze PBMC subset differences and transcriptional alterations 
in the inflammatory stress environment. The data were obtained from 
Human Cell Atlas dataset (dataset 1, https://data.humancellatlas.org/
explore/projects/efea6426-510a-4b60-9a19-277e52bfa815) and 
GSE17842 (dataset 2, https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE178429). It contains blood samples from 4 and 10 healthy 
humans, respectively. The samples were categorized into control and 
LPS groups based on whether or not LPS intervention was performed 
on the isolated PBMC cells, with 14 samples in each group.

2.2 Single-cell RNA sequencing data 
analysis

De-batching and integration of the two human PBMC 
transcriptome sequencing datasets and quality control were done by 
The Seurat package (version 3.0.0) (23, 24). Filtering thresholds were 
set at (i) cells with less than 200 or more than 2,500 genes, (ii) cells 
with more than 20% of genes of mitochondrial origin, and (iii) cells 
with total RNA counts of more than 10,000, as well as genes detected 
in fewer than 3 cells. After preprocessing, gene expression in the 
remaining cells was normalized, and subjected to principal component 
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analysis and linear dimensionality reduction to identify significant 
usable dimensions of the dataset. Subsequently, the Harmony 
algorithm was used to visualize the clustering classification of all cells 
(25). Cells with the same features were clustered together after all cells 
were dimensionally downscaled and projected into two-dimensional 
space via UMAP. Markers were identified for each clustered cell group 
using the FindAllMarkers function in Seurat (26). The clusters were 
then categorized and annotated based on the expression of markers 
typical of a particular cell type; clusters expressing two or more typical 
markers were classified as dual cells, while clusters that did not express 
markers typical of the cell type were classified as low-quality cells. 
Both dual cell clusters and low-quality cell clusters were excluded from 
further analysis.

Biological Process (BP) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses were conducted on the g: Profiler 
database,1 which analyzes functional enrichment and conversion of 
gene lists to grasp biological characteristics (27). Differentially 
expressed genes (DEGs) with p < 0.05 as a cut-off criterion were 
submitted to the g: Profiler database for functional annotation. 
Targeted drug prediction of druggable genes is accomplished based on 
the DGIdb database (28). The PPI information was visualized using 
the Search Tool for the Retrieval of Interacting Genes (STRING) 
database (29). Then, Cytoscape software was adopted to construct PPI 
networks (30).

2.3 Study design for MR

Based on two-sample MR analyses, we separately assessed causal 
associations between white blood cells (WBC), lymphocytes (B and T 
cells), neutrophils, monocytes, and B-cell subsets and delirium. MR 
uses genetic variation to represent risk factors, so a valid instrumental 
variable (IV) in causal inference must fulfill three key assumptions: (i) 
the genetic variation is directly related to the exposure; (ii) the genetic 
variation is independent of possible confounders between the 
exposure and the outcome; and (iii) the genetic variation does not 
affect the outcome through pathways other than the exposure. Ethical 
approval and informed consent were obtained from participants for 
all original studies.

2.4 Genome-wide association study data 
sources for MR

Delirium is a severe syndrome of acute or subacute onset of 
attentional deficits (i.e., diminished ability to point, focus, maintain, 
and shift attention) and disorders of consciousness (i.e., diminished 
orientation to the environment) that develops over a short period of 
time and often fluctuates in symptoms within 1 d and is associated 
with other cognitive deficits (e.g., memory, language, visuospatial 
functioning, or perceptual deficits). In the present study, we obtained 
SNP data for delirium from the FINNGEN database.2 The study 
performed a GWAS on 359,699 European individuals (Number of 

1 https://biit.cs.ut.ee/gprofiler/gost

2 https://www.finngen.fi/en

cases = 3,039, Number of controls = 356,660), with 20 million variants 
analyzed after quality control and imputation. The dataset was defined 
as delirium that is not induced by alcohol and other psychoactive 
substances, including more than 10 types of delirium, such as 
unspecified delirium, delirium superimposed on dementia, delirium 
not superimposed on dementia, etc., of which the largest proportion 
is unspecified delirium, with a major portion of those over 70 years of 
age (Supplementary Figure S1).

2.5 Selection and annotation of 
instrumental variables

GWAS summary statistics for each immune cell are publicly 
available from the GWAS catalog (Supplementary Table S1). A total 
of 70 immune cell-related traits and phenotypes were included, 
including (i) WBCs, lymphocytes, monocytes, neutrophils, eosinophil, 
basophil, dendritic cell (DC), and natural killer (NK) cells; (ii) as well 
as B cell subsets and T cell subsets; and (iii) B cell subsets expressing 
specific markers (CD20, CD27, CD38, and IgD) and B cell-associated 
cytokines (IFN-γ, CSF, IL-2, IL-4, IL-6, IL-7, IL-10, and TNF) were 
also probed for causal delirium associations. There were no 
overlapping cohorts of European-sourced GWAS data used for the 
study. We set 1 × e−5 as the threshold for screening the significance 
level of IVs for each immune trait. To remove the chained imbalance 
status of SNPs, we performed an aggregation process using European 
reference samples from the 1,000 Genomes Project according to the 
following thresholds (R2 < 0.001, window size = 10,000 kb). Exposure 
and outcome SNPs were then reconciled to remove ambiguous SNPs 
that could not be identified as affecting the allele. Palindromic SNPs 
were specifically examined in the raw dataset to avoid unwanted 
reverse effects. These rigorously selected SNPs were used as 
instrumental variables for subsequent two-sample MR analyses. 
Finally, we  used the g: Profiler database for gene annotation and 
functional enrichment analysis of the screened SNPs.

2.6 Statistical analysis

All statistical analyses and graphical representations were done 
using R version 4.3.2 software and corresponding packages and the 
GraphPad Prism 9.0. The Seurat package was used for the analysis of 
PBMC sequencing data (31). The TwoSampleMR package was used for 
MR analysis (32), which was used to determine the causal relationship 
between peripheral immunity and delirium. Inverse variance weighting 
(IVW), weighted median (WM), and MR-Egger methods were mainly 
used to estimate the causal relationship between exposure and 
outcome, in which the highest precision and unbiased causal estimates 
can be provided by IVW (33–36). All GWAS analyses were calibrated 
using the Bonferroni method. The MR-Egger intercept test was used to 
assess the effect of horizontal pleiotropy, and Cochrane’s Q test was 
used to assess the degree of heterogeneity (33, 35). Leave-one-out 
sensitivity analysis was then used to determine whether the results were 
affected by any individual SNP, and funnel plots and scatter plots were 
used to assess heterogeneity. Other software packages used to process 
the data and generate graphs included the Tidyverse and the Forestplot. 
Continuous variables are expressed as mean ± SD. Data were tested for 
normal distribution using the Kolmogorov–Smirnov test. Comparisons 
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between groups of continuous variables were performed using 
Student’s t test or nonparametric tests. The significance level was set at 
0.05 on both sides.

3 Results

3.1 PBMC subsets alterations under 
inflammatory stress

In total, PBMC transcriptome sequencing data were obtained from 
14 healthy adults aged 23–37 years before and after the LPS intervention, 
and there was no difference in the gender composition of the included 
donors (p > 0.05; Supplementary Table S2). After data integration, a total 
of 50,153 PBMC cells were obtained in the LPS group and 49,276 cells 
in the control group. After filtering cells with low RNA content or high 

mitochondrial RNA, we annotated a total of 80,432 cells. By pooling the 
two data and removing batches (Figure  1A), the unsupervised 
organization of gene expression revealed 24 clusters and 4 main cell 
types, including B cells, T cells, monocytes, and DC (Figures 1B,C). 
Marker genes for each cell type CD3D for T cells, CD79A for B cells, 
CD14 for monocytes, and ITGAX / CD11c for DCs are shown in 
Figures 1D–G. Due to missing data for DCs and monocytes in the raw 
data, which failed to identify DCs or monocytes in Dataset 1 and 
Dataset 2, respectively, we removed the corresponding samples when 
counting these two types of cells. In the LPS-induced inflammatory 
stress environment, T cells were the main PBMC subset affected, 
followed by DCs, monocytes, and B cells. By comparing the two groups 
of samples, all four of these cell proportions showed a significant 
alteration after LPS intervention (Figures  1H–L). Using adjusted p 
value < 0.05 and |log2(fold change)| > 0.5 as the screening threshold, 
we functionally enriched DEGs in B cells, T cells, monocytes, and DCs, 

FIGURE 1

PBMC landscape with and without LPS intervention. (A) UMAP plot presenting the control and LPS group in the study. UMAP plot presenting clustering 
of total PBMCs reveals 24 clusters (B) and cell types (C). UMAP plot of CD3D (D), CD14 (E), CD79A (F), and ITGAX (G) expression on each cell type. 
(H) Percentages of different cell populations in every sample. Percentage of B cell (I), T cell (J), monocyte (K), and dendritic cell (L) between control 
and LPS group. (M) Annotation of subsets of B cells. (N) Annotation of subsets of T cells. (O) Volcano maps of differentially expressed genes in B cell 
subset. (P) Volcano maps of differentially expressed genes in T cell subset.
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respectively. The results showed that the up-regulated genes in B cells 
(Supplementary Figure S2A), T cells (Supplementary Figure S2B), DCs 
(Supplementary Figure S2C), and monocytes 
(Supplementary Figure S2D) were significantly enriched in immune 
and inflammatory response activation pathways, and the genes with 
down-regulated expression were mostly related to bio-metabolic 
synthesis or cell differentiation. These results suggest that PBMCs 
exhibit the initiation of immune and defense processes under an 
LPS-induced inflammatory environment, and lymphocytes and 
monocytes may be the main effector cells of peripheral inflammatory 
immune response. Subsequently, we  performed further subset 
annotation of B cells and T cells and found that B cell subsets were 
mainly clustered into Naïve B cells, follicular B cells, germinal center B 
cells, and plasma B cells (Figure  1M), while T cells were mainly 
annotated as CD4+ naïve T cells, CD8+ cytotoxic T cells, NKT cells, and 
exhausted NKT cells (Figure 1N). We compared the T cell and B cell 
subsets in the two datasets separately (Supplementary Figure S3). It was 
found that the proportion of CD4 + naïve T cells, NKT cells, and 
exhausted NKT cells increased after LPS intervention, while the 
proportion of naïve B cells decreased, and no statistically significant 
difference was obtained, although follicular B cells and germinal center 
B cells showed an upward trend after intervention 
(Supplementary Figures S3A–C). Based on the conventional 
understanding, this trend seems reasonable, suggesting an acceleration 
of T and B cell activation and differentiation processes under 
inflammatory stress. In particular, naïve B cells undergo accelerated 
transformation into mature B cells with antibody-secreting activity via 
the extrafollicular pathway and the germinal center pathway. 
Identification of DEGs in different B-cell subsets (Figure 1O) and T-cell 
subsets (Figure 1P) revealed up-regulated interferon-inducible genes 
such as IFI6, IFITM1, and chemokines such as CXCL10 suggesting a 
broad spectrum of defense responses and activation of the inflammatory 
immune response.

3.2 Causal effect of genetically predicted 
PBMC counts, B cell subsets, and T cell 
subsets on delirium

LPS treatment resulted in significant alterations in the proportion 
of human-isolated PBMC cells, including B cells, T cells, monocytes, 
and DCs. Whether activation of these cells mediates delirium due to 
peripheral inflammation is unclear. To further explore the causal 
association of different immune cells on delirium, two-sample MR 
analysis of WBC, lymphocytes, neutrophils, monocytes, eosinophil, 
basophil, DCs, and NK cell on delirium was performed using the IVW 
method as the primary method, which resulted in statistically 
significant causal associations of only lymphocytes (p  = 0.046) on 
delirium, suggesting that higher levels of lymphocytes (β = 0.13) may 
increase the risk of delirium, and WM method also supported this 
association of lymphocytes with delirium (Figure  2; 
Supplementary Table S3). We  further applied a two-sample MR 
method to analyze the causal link between different lymphocyte 
subsets (B cell and T cell) and delirium.

Notably, in addition to Naïve B cells and plasma B cells, follicular 
B cells and germinal center B cells, which were annotated after the LPS 
intervention, were associated with both maturation pathways of B 
cells. Follicular B cells and germinal center B cells can exhibit 
developmental differentiation during the process of dynamic changes 

in IgD, CD20, and CD38, so we analyzed the association of various B 
cell subsets with delirium according to the dynamic changes in cellular 
markers throughout the course of B cell maturation and differentiation 
(Figure 3). The different B cells and their subsets included total B cells, 
transitional B cells, naïve-mature B cells, unswitched memory B cells, 
switched memory B cells, and plasma B cells and their proportion of 
lymphocytes. The results revealed that the total B cell count (β = 0.113, 
p = 0.004), the B cell/CD3+ lymphocyte ratio (β = 0.056, p = 0.025), and 
unswitched memory B cells (β = 0.114, p = 0.047) all have a positive 
causal link with delirium (Figure 3A). However, none of the B cell 
subsets such as lgD+CD38+ B cells, lgD−CD38+ B cells, and CD20 on 
IgD− CD38+ B cells were causally associated with delirium (Figure 3B). 
In addition, based on the exploration of markers during B cell subsets 
development, we  found that CD27, as a memory B cell signature 
marker, was likewise significantly associated with delirium (β = 0.039, 
p = 0.031; Figures 3B,C). Heterogeneity and horizontal multiplicity 
analyses of the above results demonstrated the robustness of the 
observed causal associations (Supplementary Table S4). Scatter plots 
(Supplementary Figure S4), Leave-one-out plots 
(Supplementary Figure S5), and funnel plots (Supplementary Figure S6) 
also demonstrated the stability of the results.

We also analyzed the causal association of T cells and their subsets 
with delirium at the same time, and the results showed that there was 
no significant causal association of CD4+ T cells, CD8+ T cells, as well 
as double-positive (CD4+CD8+) cells and double-negative 
(CD4−CD8−) cells with the risk of delirium causation, and also that 
there was no significant causal association of naïve CD4+ T cells, 
terminal CD4+ T cells, and terminal CD8+ T cells with delirium, as 
well as NKT cells with delirium (Figure 4).

3.3 Genetic and functional annotation of 
potential SNPs

We identified a total of 41 genes after annotation of all 76 IVs 
obtained from all screens in the three exposure events including B cell, 
unswitched memory B cells, and CD27 on memory B cell. The 
mutation types and numbers of SNPs corresponding to these 41 genes 
were plotted in a heat map, the darker the color, the higher the number 
of mutations that occurred in the SNP site (Figure 5A). The top three 
SNPs were rs25680, rs9883798, and rs1883832, which were annotated 
as CD27, RFTN1, and CD40, respectively. Protein–protein interaction 
(PPI) analysis of the 41 annotated genes revealed that the above three 
genes together with TNFSF13B constitute the major protein 
interactions module, suggesting that these SNP loci and genes may 
contribute a potentially important role in the causal association of B 
cells with delirium (Figure  5B). The DGIdb database provides 
predictions for drug targeting of CD27, CD40, and TNFSF3B 
(Figure 5B). Functional enrichment of the genes in the major module 
revealed that these genes were significantly associated with the 
regulation of lymphocyte cell activation, proliferation, and intercellular 
interactions (Figure 5C).

3.4 Causal effect of genetically predicted B 
cell-associated cytokines on delirium

B cells, as an essential component of adaptive immunity, possess 
functions involved in response and cytokine secretion and may exert 
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immunoinflammatory promoting or modulating effects through these 
associated cytokines. Therefore, we  analyzed the major B-cell-
associated cytokines, e.g., IFN-γ, CSF, IL-2, IL-4, IL-6, IL-7, IL-10, and 
key molecules of the TNF pathway, which are involved in B-cell 
maturation and differentiation as well as in secretory functions (37, 
38) (Figure 6A). To further clarify whether these B-related cytokines 
are associated with the pathogenesis of delirium, we explored the 
causal link between the two by means of MR studies. The results 
showed that TNF (β = 0.103, p  = 0.049) and pathway molecules 
including TNF receptor superfamily member 9 (CD137 or 4-1BB, 
β = 0.197, p  = 0.003), TNF-related apoptosis-inducing ligands 
(β = 0.111, p  = 0.02) and levels of TNF-related activation-induced 
cytokines (β = 0.134, p = 0.016) were positively and causally associated 
with delirium risk (Figure 6B).

4 Discussion

Accumulating evidence suggests a correlation between peripheral 
inflammation and neurocognitive impairment (39, 40). Typical of 
these, we observed a significantly higher incidence of postoperative 
delirium in elderly surgical patients, a phenomenon that persists after 
excluding comorbidities, pain, and anesthesia, suggesting the adverse 
effects of peripheral stressful events on the central system (3, 41). A 
systemic homeostatic imbalance characterized by peripheral immune 
cell activation and a massive increase in inflammation-related 
mediators may contribute to delirium by impairing the BBB and 
promoting neuroinflammation formation. Effective identification of 
the effector cells and molecules that characterize this process could 
provide avenues for the prevention and treatment of delirium (42, 43).

FIGURE 2

MR estimates of the association between blood cell counts and risk of delirium. IVW, inverse variance weighting; OR, odds ratio; CI, confidence 
interval.

FIGURE 3

MR estimates of the association between B cell subsets and the risk of delirium. (A) MR estimates the association between B cell subsets and the risk of 
delirium. (B) Biomarkers of B cells at different stages of development and maturation. (C) MR estimates the association between different B cell markers 
and the risk of delirium. IVW, inverse variance weighting; OR, odds ratio; CI, confidence interval.
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In the present study, we first identified alterations in cellular 
subsets of human PBMCs in the presence of inflammatory stress, 
with B cells, T cells, and monocytes all showing significant increases 
in response to LPS intervention. We then applied a two-sample MR 
analysis to explore the correlation between these three cell types and 
delirium and found that lymphocyte count and B cell count were 
causally associated with delirium. We then further investigated the 
causal associations between various subsets of B cells during 
maturation and delirium and found that unswitched memory B cells 
and CD27 on memory B cells may be  associated with the 

development of delirium. Based on these results, we further collected 
SNPs causally associated with delirium, annotated these SNPs, and 
revealed genes significantly associated with these SNPs. Interaction 
analysis revealed that CD27 and CD40 were involved in forming an 
important network of action for these genes, and their associated 
SNPs showed significant polymorphisms. Functional enrichment of 
these genes showed a significant correlation with immune cell 
activation, proliferation, and intercellular interactions. These results 
suggest that B lymphocytes may be involved in the development of 
neurocognitive impairment and that this role appears to be related 

FIGURE 4

MR estimates of the association between T cell subsets and risk of delirium. IVW, inverse variance weighting; OR, odds ratio; CI, confidence interval.

FIGURE 5

Genetic and functional annotation of potential SNPs. (A) Heat map of gene annotation for potential SNPs. (B) PPI Networks and targeted drug 
prediction for annotated Genes. (C) Functional enrichment analysis of annotated genes.
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to the complex maturation and developmental stages of B cells. A 
related study demonstrated that B cells exacerbate neurocognitive 
impairment in neurodegenerative diseases, showing a significant 
pro-inflammatory tendency (44). In a recent study by Kim et al. (44), 
increased B cells in the brains of Alzheimer’s disease (AD) patients, 
as in the brains of patients with neurocognitive dysfunction due to 
stroke and multiple sclerosis, exacerbate AD-associated 
neuroinflammation through the production of immunoglobulins 
and a range of pro-inflammatory factors. Depletion or inactivation 
of B cells in the brain increased TGFβ+ microglia and downregulated 
the expression of TREM2, CLEC7A, and ITGAX in the 
hippocampus, which significantly slowed the progression of AD 
(44). It is hypothesized that the neuroinflammation is exacerbated 
by B cells alone or in synergy with B cell-associated factors. Since B 
cells are a heterogeneous cell population. Their function and 
accumulation of subsets are regulated by the inflammatory 
environment. For example, inflammatory activation ranges from 
promoting the conversion of innate B1a cells into pathogenic 
CD137+ TNF-α+ MHC-ΙHigh B cells, which then induce cytolytic 
CD8+ T cells and insulin resistance in older adults, rhesus monkeys, 
and mice (45, 46), the latter of which may promote progression of 
neurocognitive impairment (47). This suggests that B cells can have 
an “outside-in” effect on CNS immunopathology (48). In fact, less is 
known about the involvement of B cells in the onset and progression 
of neurocognitive impairment. There are differences and 
discrepancies between different studies and our findings. In human 
and animal models, higher levels of B cells in the early stages of 
disease may be beneficial for the progression of neurodegenerative 
pathology (49, 50). In the early stages of AD, B cell clearance 
significantly accelerates and exacerbates cognitive deficits and 
disease progression, leading to increased Aβ burden (50), and 
depletion of mature B cells similarly exacerbates Aβ load and 
memory deficits in 5 × FAD mice (49). The differences that contribute 
to the findings may be  related to the complex functional and 
developmental phenotypes of B cells. As the main effector cells 

constituting the adaptive immune system, B cells have a variety of 
cellular and humoral functions that depend on different stages of 
differentiation and activation. Notably, acute and chronic 
inflammation have significant differences in pathogenesis, effector 
immune cells, and inflammation-related molecules (51–53). Thus, 
the mechanism of B cell effects in chronic neurocognitive 
impairment disorders may be quite different from that in the acute 
situation. Currently, there is a paucity of knowledge about the 
involvement of B cells in the onset and mechanisms of acute 
neurocognitive impairment.

It has been demonstrated in a large number of studies that 
proinflammatory cytokines or chemokines are involved in the 
development of neurocognitive impairment due to peripheral 
inflammation (16). B cells may exert immunoinflammatory facilitating 
or modulating roles through these related cytokines. We found that 
key molecules of TNF and pathways including TNFR superfamily 
member 9 (CD137 or 4-1BB), TNF-related apoptosis-inducing 
ligands, and TNF-related activation-induced cytokines had levels were 
positively and causally associated with delirium risk (Figure 6B). This 
result likewise supports the previously described pathological process 
regarding pathogenic CD137+ TNF-α+ MHC-ΙHigh B-cell-associated 
pathology (45, 46). In recent evidence, the median level of serum 
TNF-α (p = 0.048) was significantly higher in patients with delirium 
after cardiac surgery than in those who did not develop delirium after 
surgery (54). A trend toward elevated TNF-α can be  similarly 
observed in patients who develop delirium in the ICU (55). In data 
from a mouse-based study, exposure to elevated TNF-α was found to 
have strong and acute effects on brain function, including significant 
activation of neuroinflammation and behavioral changes (56). A 
systematic review based on 32 studies noted that serum TNF-α and 
IL-6 are biomarkers of high value for delirium in elderly patients, 
however, we  failed to obtain a potential causal association for 
IL-6 (57).

We found that among the numerous B cell subsets, both 
unswitched memory B cells and CD27 on memory B cells were 

FIGURE 6

MR estimates of the association between different B cell-associated cytokines and the risk of delirium. (A) Cytokines are produced by and acting on B 
cells. (B) MR estimates the association between different B cell-associated cytokines and the risk of delirium. IVW, inverse variance weighting; OR, odds 
ratio; CI, confidence interval.
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causally associated with delirium. The fate of B cell subsets depends 
on the expression of specific genes activated and silenced, and 
therefore their developmental status can be analyzed by the expression 
of surface and intracellular markers (58). During cell maturation and 
development, immature B cells from the bone marrow enter the 
circulatory system and then migrate to the spleen to complete 
transitional B cell differentiation and eventually become naïve B cells. 
A small percentage of naïve B cells can differentiate into memory B 
cells after antigen activation (59). During these processes, IgD 
expression gradually increases in transitional B cells until it peaks at 
the naïve B cell stage. IgD and IgM are usually co-expressed on the 
surface of naïve B cells, and when naïve B cells become memory B cells 
at an early stage, IgD and IgM are still retained on the cell surface, 
which is termed as unswitched memory B cells (59). When the IgD 
and IgM on the surface of unswitched memory B cells are transformed 
into IgG, IgA, or IgE, they are called switched memory B cells (60). 
Memory B cells can rapidly recognize and initiate an immune 
response when stimulated by similar antigens, and reactivate to 
generate short-lived plasma blasts, which can further mature into 
plasma B cells (60). B cells at different stages express different surface 
markers, such as memory B cells characterized by the expression of 
CD27 and plasma B cells expressing CD38 (60). Although it has been 
found that no significant differences in overall peripheral B-cell counts 
have been observed in patients with mild cognitive impairment (MCI) 
relative to the normal population (61), a growing number of studies 
have demonstrated potential differences based on B-cell subsets. 
Poinsatte et al. found that with an increase in peripheral naïve B-cells 
and a decrease in memory B-cells, patients with MCI showed higher 
scores on attention and concentration, and executive function index 
scores were higher (62). Overall cognitive improvement in AD 
patients was also associated with elevated peripheral naïve B cell levels 
and decreased memory B cells (62). An overview of the current 
widespread understanding points to the fact that higher levels of naïve 
B cells and mature B cells, and fewer memory B cells may be beneficial.

The results of the annotation of the screened SNPs suggest that 
CD27 and CD40 may be key molecules mediating the involvement of 
B cells in delirium risk. It is well known that memory B cells often 
characteristically overexpress CD27, which is important for persistent 
B cell effector functions and the occurrence of cellular memory (60). 
CD70, the ligand of CD27, is expressed in mature T cells and B cells. 
CD27/CD70 induces NF-κB and JNK signaling through the 
recruitment and activation of TRAF2 and TRAF5, thereby promoting 
proliferation and differentiation of various types of immune cells and 
cytokine synthesis (63). CD40 is mainly expressed on antigen-
presenting cells (APCs), and CD40/CD40L co-stimulatory signaling 
promotes APCs functional maturation, which has an important role 
in thymus-dependent humoral immune responses, regulates CD4+ T 
cells and B cells interactions, and is critical for B cell activation, 
differentiation, and memory generation (60). There is no shortage of 
immunotherapeutic strategies developed based on B cells (64). Using 
the DGIdb database, we predicted potential target drugs for these 
genes. Among our predicted drugs, as the only predicted CD27 
agonistic antibody, Varlilumab has been previously used to explore the 
treatment of a wide range of hematologic and solid tumors, e.g., in 
early clinical trials, varlilumab demonstrated preliminary efficacy 
against hematologic and ovarian cancers (65, 66). CD40 is also 
expressed in many B-cell tumors and solid tumors. Therefore, CD40 

agonistic antibodies such as Dacetuzumab and Lucatumumab also 
have some anti-tumor potential (67, 68). These drugs achieve 
therapeutic effects by targeting binding to CD27 or CD40, depleting 
B cells via antibody-dependent or complement-dependent cell-
mediated cytotoxic responses, and direct induction of apoptosis, 
among other modalities (64). Whether immunotherapeutic strategies 
targeting B cells may have a positive effect on the prevention and 
treatment of delirium remains to be further investigated.

Since PBMCs do not include all immune cells in the peripheral 
circulation, such as polymorphonuclear granulocytes. Among them, 
neutrophils were shown to play an important role in the inflammatory 
immune response. Therefore, we analyzed the relationship between 
various granulocytes and delirium, and although no significant causal 
associations were obtained, in previous studies neutrophils were 
shown to possibly mediate central neuroinflammation due to 
peripheral inflammation, the latter of which further contributes to 
the decline in learning and cognition. Raymond et al. (18) showed 
that following distal (caudal) traumatization of the zebrafish resulting 
in systemic inflammation, leukocytes can invade the brain and 
increase macrophage, neutrophil, and lymphocyte recruitment and 
expression of pro-inflammatory mediators in the whole brain/
midbrain and forebrain on the first-day post-trauma, inducing an 
increase in hyperactivity (agitation) and avoidance behaviors. 
However, there is a lack of clarity regarding the mechanisms by which 
neutrophils may be involved in the pathogenesis of delirium, mainly 
owing to the fact that we currently have considerable difficulty in 
establishing recognized, standardized, and validated animal models 
of delirium (22, 69). Since delirium is considered to be a syndrome 
combining impaired consciousness, cognitive impairment, and 
attentional deficits, there is a lack of validated means of assessing 
animals on these traits, and common behavioral assessments are 
aimed at the assessment of learning and memory functions only. 
Therefore, we  can hypothesize that peripheral inflammation and 
immune activation, such as neutrophil migration and secretion of 
pro-inflammatory mediators through the damaged BBB promote 
neuroinflammation synaptic dysfunction, and neuronal loss, which 
ultimately cause impaired learning and memory function, but do not 
establish that delirium occurs in the affected animals. On the other 
hand, the clinical manifestations of delirium may be more complex 
and severe relative to simple cognitive impairment, and more 
in-depth studies on the pathogenic mechanisms of delirium 
are needed.

Our analysis of single-cell sequencing data revealed that both DCs 
and monocytes showed a decrease in their proportions after LPS 
intervention. This phenomenon is interesting as it is traditionally 
recognized that LPS binds to PRRs as an important ligand for 
receptors on the surface of monocytes or DCs, inducing a 
pro-inflammatory phenotype. However, this phenomenon is not rare. 
Measurement of the number of monocytes in the peripheral blood of 
patients with sepsis has revealed that they exhibit significantly lower 
numbers compared to normal subjects (70). CD14 expression in 13 
human volunteers receiving non-lethal E. coli LPS injections revealed 
that all patients exhibited significant monocytopenia after LPS 
infusion, with a 52% down-regulation of CD14 expression compared 
to pre-LPS levels on monocytes obtained 3 h after LPS infusion (70) 
and that the LPS-induced significant monocytopenia is likewise 
supported by studies reported by Kathryn et al. (71). In an in vitro 
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study, fresh peripheral whole blood was used to assess monocyte and 
DC responses in co-culture with different doses of LPS. It was found 
that exposure to all doses of LPS increased monocyte and 
DC-associated cytokine production and overall leukocyte responses. 
However, when exposed to higher LPS doses, monocyte and DC 
cytokine production decreased in a dose-dependent manner. 
Suggesting a significant effect of LPS concentration on cell subset-
specific responses (72). At the same time, we observed a decrease in 
the proportion of DC after LPS treatment. Alterations in the number 
and function of DCs in sepsis have been widely reported. Evidence 
was provided in an earlier study that LPS treatment downregulated 
the expression of CD11c/ITGAX and CD11b on splenic DC subsets 
(73). In clinical-based evidence, severe septic shock may lead to a 
significant decrease in the number of circulating DCs and portends a 
poor prognosis (74), while sepsis-induced systemic inflammation 
impairs the ability of hematopoietic stem cells and progenitor cells to 
produce DCs, including both conventional and plasma cell-like DCs 
(75). The dramatic decrease in DC numbers in the spleen and 
peripheral blood during sepsis may be caused by sepsis-associated 
enhanced apoptosis (76). Several reports have shown that after 
experiencing intense inflammatory stress, a decrease in DC expression 
of HLA-DR, CD80, and CD86 can be induced, leading to a decrease 
in the ability to present antigens (77). In an in vitro study, bone 
marrow-derived DC downregulated CD11c after TLR activation, 
similar to that after LPS treatment (78). In addition, regarding this 
interesting phenomenon, we cannot exclude other possible causes, 
firstly, cell depletion possibly due to sample preservation and handling, 
because after obtaining peripheral blood samples, one part is used for 
baseline assays under normal conditions and the other part is used for 
studies under inflammatory stress, and it is difficult to avoid cell death 
or depletion due to detachment from physiological environment and 
sample handling during this process. Secondly, LPS may have induced 
and accelerated the process of programmed death of monocytes. This 
phenomenon may be plausible, and the mechanism behind it may 
be  complex, and further studies are needed to help us gain a 
deeper understanding.

There are some limitations to this study. Due to limited resources 
in public databases, it was difficult for us to obtain transcriptome 
sequencing data of PBMC data under LPS intervention for different 
disease states and different age groups; therefore, targeting healthy 
adult PBMCs and the corresponding changes induced by LPS may 
only represent a fraction of the changes that characterize the response 
of human PBMCs to inflammatory stress, but we hypothesize that 
such changes are still important, albeit ignoring the age and influences 
of different disease states. Of interest, delirium itself can occur at any 
age, from children to older populations. The present study focused on 
identifying and exploring the subpopulation of PBMC cells in which 
inflammation may contribute to delirium, and we, therefore, chose a 
moderately aged, healthy population for the study, which somewhat 
avoids the interference with cellular stress patterns that may result 
from different disease states. The triggers of delirium are diverse, such 
as conditions resulting from severe infections or surgical injuries, and 
due to limitations in data sources, we were unable to differentiate and 
investigate the occurrence of delirium for different conditions. In 
addition, we did not validate the results of this study in patients with 
clinical delirium. Nor were we able to further assess the efficacy of 
circulating B cells in the diagnosis of delirium and the significance of 
guiding clinical outcomes. Further animal experiments are needed to 

characterize the mechanisms of B cells and their subsets involved 
in delirium.

5 Conclusion

In this study, we combined single-cell transcriptome sequencing 
data and MR methods to investigate PBMC subsets and their causal 
association with delirium, revealing the potential association of B cells 
and memory B cell subset with the occurrence of delirium, which can 
provide clues for further studies of delirium diagnosis, prevention, 
and treatment strategies.
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