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Background: Postoperative pneumonia (POP) is one of the primary complications 
after aneurysmal subarachnoid hemorrhage (aSAH) and is associated with 
postoperative mortality, extended hospital stay, and increased medical fee. Early 
identification of pneumonia and more aggressive treatment can improve patient 
outcomes. We aimed to develop a model to predict POP in aSAH patients using 
machine learning (ML) methods.

Methods: This internal cohort study included 706 patients with aSAH undergoing 
intracranial aneurysm embolization or aneurysm clipping. The cohort was 
randomly split into a train set (80%) and a testing set (20%). Perioperative 
information was collected from participants to establish 6 machine learning 
models for predicting POP after surgical treatment. The area under the receiver 
operating characteristic curve (AUC), precision-recall curve were used to assess 
the accuracy, discriminative power, and clinical validity of the predictions. The 
final model was validated using an external validation set of 97 samples from the 
Medical Information Mart for Intensive Care IV (MIMIC-IV) database.

Results: In this study, 15.01% of patients in the training set and 12.06% in the 
testing set with POP after underwent surgery. Multivariate logistic regression 
analysis showed that mechanical ventilation time (MVT), Glasgow Coma Scale 
(GCS), Smoking history, albumin level, neutrophil-to-albumin Ratio (NAR), 
c-reactive protein (CRP)-to-albumin ratio (CAR) were independent predictors of 
POP. The logistic regression (LR) model presented significantly better predictive 
performance (AUC: 0.91) than other models and also performed well in the 
external validation set (AUC: 0.89).

Conclusion: A machine learning model for predicting POP in aSAH patients 
was successfully developed using a machine learning algorithm based on 
six perioperative variables, which could guide high-risk POP patients to take 
appropriate preventive measures.
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Introduction

Aneurysmal subarachnoid hemorrhage (aSAH), primarily caused 
by the rupture of intracranial aneurysms, is a devastating disease with 
high morbidity and mortality (1, 2). The total occurrence of aSAH is 
about 9.1 per 100,000 people, accounts for 2–7% of all strokes (3, 4). 
Despite the advances in the treatment of aneurysmal subarachnoid 
hemorrhage (aSAH), such as endovascular coil embolization and 
microsurgery, postoperative complications can significantly impact 
the prognosis of patients, prolonged the time of hospitalization and 
lead to increased economic costs (2, 5).

Among these complications, postoperative pneumonia (POP), 
which occurs in 10–30% aSAH patients after surgical treatment, is 
considered a critical complication closely associated with the 
prognosis of aSAH patients (2, 6–10). Our previous study have found 
a close relationship between smoking history, delayed cerebral 
ischemia (DCI), mechanical ventilation time (MVT), Glasgow Coma 
Scale (GCS), Albumin, c-reactive protein (CRP). Using these variables, 
our team initially constructed a nomogram model to predicat POP for 
aSAH patients (11). But with the further research, numerous scholars 
contend many composite indicators were very effective for 
postoperative complications prediction, such as neutrophil-to-
lymphocyte Ratio (NLR), prognostic nutrition index (PNI), 
neutrophil-to-albumin Ratio (NAR), CRP-to-albumin ratio (CAR), 
D-Dimer-to-Albumin Ratio (DAR) (2, 5, 12, 13). The aforementioned 
indicators, however, were not incorporated as variables in our previous 
study. The evaluation of the validity of these variables was therefore 
deemed necessary in order to ascertain their potential for enhancing 
the predictive power of our model.

In addition, although previous studies have suggested that 
conventional LR can provide a clinical prediction model that is 
easy to interpret, when conventional LR is used for complex 
multivariate non-linear relationships, complex transformations 
are often required owing to low robustness and multicollinearity 
between variables (14). Therefore, recent work has highlighted the 
potential of machine learning (ML) algorithms for stroke-related 
complications in stroke patients (15, 16). Savarraj et al. suggested 
that ML models significantly outperform conventional LR in 
predicting functional outcomes and has the potential to improve 
SAH management (17). The ML models possess the potential to 
outperform conventional linear or logistic regression models due 
to their exceptional ability in identifying intricate and nonlinear 
relationships among a multitude of prognostic variables (16). 
Thus, in this study, we  conducted five ML prediction model, 
which contains support vector machine (SVM), logistic regression 
(LR), random forest (RF), multilayer perceptron (MLP), K-nearest 
neighbor (KNN) and extreme gradient boosting (XGBoost) for 
the prediction of POP within 30 days in aSAH patients after 
surgical treatment. The best model will be  verified in the 
MIMIC-IV database. To supply clinical basis for the prevention 
and therapy of POP (18).

Materials and methods

Study population

Data for aged more than 18 years aSAH patients treated with 
intracranial aneurysm embolization or aneurysm clipping in the First 
Affiliated Hospital of Wenzhou Medical University from 1 June 2017 
to 4 February 2022 were retrospectively collected. Patients will 
be included in this study if they meet the following requirements: (1) 
aged 18 years or older, who suffered their first SAH ever, admitted to 
our hospital within 24 h of symptom onset; (2) All aSAH patients 
should be  confirmed by computed tomographic (CT), computed 
tomographic angiography (CTA) and digital subtraction angiography 
(DSA); (3) endovascular coiling of the aneurysm was performed; and 
(4) The definition of POP in this study refers to lower respiratory tract 
infections that occur within 30 days after endovascular coiling 
procedure in our hospital and the diagnosis of POP should follow 
modified Centers for Disease Control and Prevention (CDC) criteria, 
which was characterized by the following criteria: (1) A probable case 
of POP cannot be  diagnosed based solely on the admission or 
follow-up chest x-ray, and it cannot be attributed to another diagnosis. 
(2) A proven case of POP is confirmed when there is a documented 
change in diagnosis observed on at least one chest x-ray image. For 
the purpose of this study, patients meeting the modified CDC criteria 
for probable/proven pneumonia were considered as cases, while those 
with pre-existing pneumonia prior to admission were excluded from 
analysis (19). A total of 893 patients met the above conditions, among 
which 187 patients were excluded for the following reasons: (1) 115 
patients with other potential causes of SAH (96 patients with 
arteriovenous malformation, 10 patients with craniocerebral trauma, 
and 9 patients with hypertensive intracerebral hemorrhage); (2) 14 
patient with history of malignant tumors, severe heart, hepatic or 
renal failure; (3) 7 patient previous use of antibiotics, systemic 
glucocorticoids, immunosuppressive agents, or immunotherapy 
within 1 month before admission; (4) proven POP had a confirmed 
change in diagnosis on at least one image of the chest x-ray, and 35 
patients with pneumonia before admission were excluded (2, 19); (5) 
14 aSAH patients who died within 24 h after surgery or lack complete 
case records were excluded. Finally, 706 patients were included in the 
internal cohort.

The external cohort was extracted from the Medical Information 
Mart for Intensive Care IV (MIMIC-IV) (version 2.2) database, 
derived from a large, freely accessible critical care database comprising 
299,712 patients who were admitted to the ICU or the emergency 
department of Beth Israel Deaconess Medical Center between 2008 
and 20191 (11). For the external cohort, individuals who met the 
following criteria were included: (1) those aged 18 years or older and 

1 https://mimic.physionet.org/
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(2) those with a diagnosis matching the International Classification of 
Diseases (ICD) code associated with aSAH among MIMIC-IV (ICD-9 
code 430, and ICD-10 codes I60 to I609). A total of 1,172 patients 
fulfilled these conditions. Exclusion criteria consisted of: (1) non-first 
admission cases (n = 33); (2) history of malignant tumors, severe heart, 
hepatic or renal failure (n = 120); (3) length of stay less than 24 h in 
hospitalization (n = 84); and (4) patients without clinical data available 
for analysis (n = 838). Ultimately, a validation set comprising of 97 
patients was selected from this group to validate the ML model. 
Figure 1 provides an overview of this process.

Variable selection

Collected variables included: (1) patients demographics (age, 
gender, history of smoking, alcoholics); (2) GCS, Hunt-Hess grades, 
modified Fisher (mFS) grade and WFNS grade on admission; (3) past 
medical history (hypertension, diabetes mellitus), coronary heart 
disease (CHD), chronic obstructive pulmonary disease (COPD), Stent 
assisted endovascular treatment (EVT), with craniotomy; (4) 
aneurysm location [anterior communicating artery (ACoA), internal 
carotid artery (ICA), middle cerebral artery (MCA), posterior 
communicating artery (PCoA), vertebrobasilar artery (VBA)]; (5) 

laboratory results were obtained within 24 h after admission in the 
context of a first examination [albumin, hemoglobin, neutrophils, 
monocytes, lymphocytes, uric acid, total cholesterol, triglycerides, 
neutrophils, monocytes, mean corpuscular volumec-reactive (MCV), 
CRP], and the composite index calculated by these laboratory results 
NLR = Neutrophil counts (*109 /L)/Lymphocyte count (*109 /L), 
PNI = Albumin (g/L) +10*Lymphocyte count (*109 /L), 
NAR = Neutrophil counts (*109 /L)/Albumin (g/L), CAR = CRP 
(mg/L) / Albumin (g/L), D-Dimer/Albumin Ratio (DAR) = D-dimer 
level (μg/mL)/Albumin (g/L).

The developed ML model of risk factors associated with POP in 
aSAH patients is relied on statistically significant results obtained 
through LASSO regression and multivariate logistic regression 
analysis (p < 0.05) (20).

ML model construction

A total of 706 patients with aSAH from our center were 
enrolled. We  randomly divided the patients as training cohort 
(N = 565) and validation cohort (N = 141) according to a ratio of 
80–20%. The training cohort was utilized to develop Linear models 
(logistic regression (LR), support vector machine (SVM)) and 

FIGURE 1

Flowchart of the internal cohort (A) and external cohort (B).
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Nonlinear models [XGBoost, k-nearest neighbor (KNN), random 
forest (RF), and multilayer perceptron (MLP)] (21–23). XGBoost 
model was constructed using the xgboost package.2 The remaining 
five models were established via Scikit-learn package.3 To develop 
an unbiased assessment of model performance, we performed 5 
random shuffles of 5-fold cross-validation, as shown in Figure 1. 
Each iteration used a different stratified fold for model evaluation, 
and the remaining folds were used for model training (24). 
Subsequently, we  recorded Area Under The Curve (AUC) to 
compare each ML models. Data processing and the ML process are 
summarized in Figure 1.

After the model was established, the SHapley Additive 
exPlanations (SHAP) package in Python was used to explain the 
model by analyzing two cases. The SHAP package interpreted the 
output of the machine learning model using a game-theoretic 
approach (25). SHAp values quantify the association of a variable 
with the outcome of a single patient, and the mean absolute SHAP 
value across all patients is reported as the SHAP value of 
avariable (26).

Statistical analysis

Continuous variables are represented in terms of mean and 
standard deviation (SD), while categorical variables are expressed in 
terms of frequency and percentage. Normally distributed and 
non-normally distributed variables were presented in the form of 
mean ± standard deviation and median (interquartile range). LASSO 
regression model was used to deal with collinearity of candidate 
variables, and the optimal predictive variable was selected (27). A 
multivariate logistic regression analysis was generated using 
predictors selected from the lasso analysis. Te features were 
represented by odds ratio (OR) and 95% confidence interval (CI). A 
two-tailed P value <0.05 was considered statistically significant. The 
stability of the columns in the validation queue is calculated using 
1,000 boot replicas and a relative corrected C-index is calculated. All 
Statistical analyses were performed using R version 3.6.3 and python 
version 3.7.

Results

Demographic characteristics

Table 1 shows the clinical characteristics of the study population. 
A total of 706 aSAH patients were included in this study, which were 
divided into a training cohort (N = 565) and a validation cohort 
(N = 141). The number of patients with POP were 106 (16%) and 27 
(12%) in training and testing cohorts, and men comprised 190 (34%) 
and 54 (38%) patients in the two groups, respectively. The median age 
in training cohort and testing cohorts were 55 and 59 years. The 
baseline data exhibited a high degree of consistency between the two 
groups (p > 0.05).

2 https://xgboost.readthedocs.io/en/latest/python/index.html

3 https://github.com/scikit-learn/scikit-learn

Feature selection

As partially relevant or less important features may negative affect 
performance of machine learning models, we  performed feature 
selection by using LASSO regression. 39 variables with missing values 
<20% was extracted after interpolation, and 6 potential predictors 
were finally screened from the LASSO regression analysis (Figure 2). 
We included these 6 variables in multi-factor logistic regression and 
found that all 6 variables were statistically significant (Table 2). These 
6 features were listed as follows: GCS (OR, 0.72; 95% CI, 0.58–0.73; 
p < 0.001), MVT (OR, 1.11; 95% CI, 1.03–1.21; p = 0.01), Albumin 
(OR, 0.90; 95% CI, 0.85–0.96; p < 0.001), NAR (OR, 55.23; 95% CI, 
4.74–657.27; p < 0.001), CAR (OR, 2.61; 95% CI, 1.59–4.29; p < 0.001), 
Smoking history (OR, 8.37; 95% CI, 3.74–18.84; p < 0.001).

Machine learning model performance

Using the six features obtained by screening, we developed six 
machine learning models, including LR, SVM, RF, MLP, XGBoost, 
and KNN. Supplementary Table S1 and Figure 3 showed the best 
hyperparameter combination for each model and their AUCs in 
predicting POP. Their performance for prediction of POP was assessed 
(Table  3). The AUC values of KNN (0.78) and MLP (0.56) were 
relatively lower than LR (0.91), SVM (0.89), RF (0.87), XGBoost 
(0.86). Among them, LR exhibited the best performance for the 
prediction of POP risk. As the primary metric, the AUC for LR was 
0.91 (95% confidence interval: 0.86–0.96). LR also exhibited the best 
performance based on the average precision of the precision-recall 
curve (0.65). The average precisions of the precision-recall curve for 
the remaining models are summarized in Figure 4. The remaining 
metrics are summarized in Table 3.

Application of the model

The SHAP package conducted a comprehensive analysis of 
training set, showing the impact of each variable on predicting POP 
(Figure  5). The preoperative and postoperative information of a 
patient was input into the model: with mechanical ventilation 5 days, 
the GCS score at admission was 8, albumin level 37.2 g/L, with smoke 
history, CAR 0.17, NAR 0.16. The model analyzed that the risk of POP 
in this patient was 85.0%, indicating that the probability of POP for 
the patients was high, and the implementation of preventive 
treatments against POP should be  prioritized (Figure  6A). The 
preoperative and postoperative information of another patient was 
input into the model: with mechanical ventilation 2 days, the GCS 
score at admission was 14, albumin level 40.9 g/L, with no smoke 
history, CAR 0.10, NAR 0.12. The model analyzed that the risk of POP 
in this patient was 3.3%, which indicated a low probability of POP 
occurrence in the patients and the occurrence of POP in the patient 
does not require significant attention (Figure 6B). Furthermore, a 
website was established for clinicians to use the proposed LR model.4

4 https://www.xsmartanalysis.com/model/list/predict/model/html?mid=97

30&symbol=4170wQvi00hz43760JQ1
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TABLE 1 Characteristics of the study population.

Variable Total (n =  706) Training cohort 
(n =  565)

Testing cohort 
(n =  141)

p

Age, median [IQR] 56.00 [49.00, 66.00] 55.00 [48.00, 66.00] 59.00 [51.00, 66.00] 0.090

LOS, median [IQR] 14.00 [10.00, 19.00] 14.00 [10.00, 20.00] 13.00 [9.00, 19.00] 0.140

Gender (male), n (%) 244 (34.56) 190 (33.63) 54 (38.30) 0.297

Alcoholics, n (%) 90 (12.75) 78 (13.81) 12 (8.51) 0.092

Smoking history, n (%) 82 (11.61) 68 (12.04) 14 (9.93) 0.485

Hypertension, n (%) 353 (50.00) 288 (50.97) 65 (46.10) 0.300

CHD, n (%) 21 (2.97) 16 (2.83) 5 (3.55) 0.655

Diabetes, n (%) 51 (7.22) 41 (7.26) 10 (7.09) 0.946

COPD, n (%) 5 (0.71) 4 (0.71) 1 (0.71) 0.999

DCI, n (%) 41 (5.81) 36 (6.37) 5 (3.55) 0.199

Timing to DCI (day), mean (±SD) 6.1 ± 1.9 6.0 ± 2.0 6.3 ± 2.0 0.768

POP, n (%) 106 (15.01) 89 (15.75) 17 (12.06) 0.272

VBA aneurysm, n (%) 58 (8.22) 38 (6.73) 20 (14.18) 0.004

MCA aneurysm, n (%) 111 (15.72) 90 (15.93) 21 (14.89) 0.762

ICA aneurysm, n (%) 204 (28.90) 167 (29.56) 37 (26.24) 0.437

PCoA aneurysm, n (%) 149 (21.10) 119 (21.06) 30 (21.28) 0.955

ACoA aneurysm, n (%) 229 (32.44) 176 (31.15) 53 (37.59) 0.144

With Craniotomy, n (%) 120 (17.00) 94 (16.64) 26 (18.44) 0.610

Stent-assisted EVT, n (%) 303 (42.92) 245 (43.36) 58 (41.13) 0.633

GCS, median [IQR] 15.00 [14.00, 15.00] 15.00 [14.00, 15.00] 15.00 [15.00, 15.00] 0.603

Hunt-Hess grades, median [IQR] 2.00 [2.00, 2.00] 2.00 [2.00, 2.00] 2.00 [2.00, 2.00] 0.523

WFNS, median [IQR] 1.00 [1.00, 2.00] 1.00 [1.00, 2.00] 1.00 [1.00, 1.00] 0.632

mFS, median [IQR] 2.00 [1.00, 3.00] 2.00 [1.00, 3.00] 1.00 [1.00, 2.00] 0.103

MVT, day, median [IQR] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.104

Albumin (g/L), median [IQR] 38.90 [36.00, 41.50] 39.00 [36.00, 41.50] 38.70 [36.00, 41.40] 0.628

Glucose (mmlo/L), median [IQR] 6.40 [5.40, 7.60] 6.40 [5.40, 7.60] 6.60 [5.20, 7.80] 0.665

Triglyceride (μmlo/L), median [IQR] 1.07 [0.82, 1.64] 1.08 [0.82, 1.69] 1.05 [0.81, 1.50] 0.388

Uric acid (μmlo/L), median [IQR] 242.00 [176.00, 301.00] 241.00 [176.00, 301.00] 249.00 [174.00, 302.00] 0.414

Total cholesterol (μmlo/L), median [IQR] 4.87 [4.30, 5.64] 4.90 [4.30, 5.66] 4.83 [4.02, 5.59] 0.197

Neutrophil counts (*109/L), median [IQR] 9.82 [6.97, 12.70] 9.60 [6.96, 12.54] 10.05 [7.00, 12.70] 0.334

Monocyte count (*109/L), median [IQR] 0.47 [0.30, 0.70] 0.47 [0.31, 0.71] 0.47 [0.27, 0.70] 0.319

Lymphocyte count (*109 /L), median [IQR] 1.13 [0.86, 1.54] 1.14 [0.88, 1.55] 1.08 [0.72, 1.49] 0.258

Hemoglobin (g/L), median [IQR] 132.00 [121.00, 142.00] 132.00 [120.00, 142.00] 131.00 [121.00, 141.00] 0.574

MCV, (fl), median [IQR] 89.50 [86.40, 92.60] 90.00 [86.80, 92.70] 88.70 [86.00, 91.00] 0.003

Blood platelet count (*109/L), median [IQR] 213.00 [175.00, 257.00] 214.00 [175.00, 258.00] 211.00 [174.00, 254.00] 0.584

CRP (mg/L), median [IQR] 6.00 [2.60, 15.70] 6.00 [2.90, 15.70] 5.60 [1.30, 17.40] 0.298

D-dimer level (μg/mL), median [IQR] 1.14 [0.55, 2.48] 1.15 [0.54, 2.56] 1.10 [0.56, 2.19] 0.196

PNI, median [IQR] 45.05 [41.80, 48.30] 45.10 [41.80, 48.50] 44.90 [41.80, 47.60] 0.518

NAR, median [IQR] 0.25 [0.19, 0.33] 0.25 [0.19, 0.32] 0.25 [0.20, 0.34] 0.279

CAR, median [IQR] 0.16 [0.07, 0.42] 0.17 [0.07, 0.41] 0.14 [0.04, 0.45] 0.296

NLR, median [IQR] 8.55 [5.16, 13.75] 8.48 [5.11, 13.75] 8.74 [6.22, 13.75] 0.337

DAR, median [IQR] 2.96 [1.42, 6.49] 3.00 [1.38, 6.70] 2.74 [1.47, 6.05] 0.209

LOS, length of stay; ACoA, anterior communicating artery; PCoA, posterior communicating artery; ICA, Internal Carotid Artery; MCA, middle cerebral artery; VBA, vertebrobasilar 
aneurysm; POP, postoperative pneumonia; CRP, C-reactive protein; MCV, Mean Corpuscular Volume; GCS, Glasgow Coma Scale; WFNS, World Federation of Neurosurgical Societies; Stent-
assisted EVT, Stent assisted endovascular treatment; DCI, delayed cerebral ischemia; PNI, prognostic nutrition index; NAR, neutrophil-to-albumin Ratio; NLR, neutrophil-to-lymphocyte 
ratio; CAR, C-reactive protein-to-albumin ratio; DAR, D-Dimer-to-Albumin Ratio; MVT, mechanical ventilation time.
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TABLE 2 Multivariable Logistic Regression Model for Predicting postoperative pneumonia in aSAH patients.

Predictor β SE p value Odds ratio (95% CI)

Intercept 5.14 2.13 0.460 196.4 (10.72–4054.43)

GCS, per score −0.42 0.06 <0.001 0.72 (0.58–0.73)

MVT, per day 0.11 0.04 0.010 1.11 (1.03–1.21)

Albumin, g/L −0.10 0.03 <0.001 0.90 (0.85–0.96)

NAR, per score 4.01 1.25 <0.001 55.23 (4.74–657.27)

CAR, per score 0.96 0.25 <0.001 2.61 (1.59–4.29)

Smoking history (yes vs. no) 2.12 0.41 <0.001 8.37 (3.74–18.84)

MVT, mechanical ventilation time; GCS, Glasgow Coma Scale; NAR, neutrophil-to-albumin Ratio; CAR, CRP-to-albumin ratio.

External data validation

To further confirmed the applicability of our model, we performed 
external validation using data from 97 patients with aSAH with 
MIME-IV. Figure 7 showed that the AUC of the model in the external 
data is 0.89 (95% confidence interval: 0.80–0.98), indicating that the 
model can still play a very good predictive performance in the 
external data.

Discussion

Early detection of POP is critical for timely interventions to 
prevent the onset of the complication (21). Numerous studies have 
developed ML models to predict postoperative pulmonary 
complications. Jong Ho Kim et al. developed an ML model to predict 
POP in patients undergoing surgery (28). Peng et al. had successfully 

created and verified a deep-neural-network model based on combined 
natural language data and structured data to predict pulmonary 
complications in geriatric patients (29). However, there is no POP 
prediction ML model designed explicitly for aSAH patients. Therefore, 
it is urgent to establish a POP clinical prediction model for aSAH 
patients, which has good application value in clinical identification 
and decision-making.

We used ML to develop models for the prediction of POP for 
aSAH patients. Model training using data from 565 patients was 
followed by model testing using data from 141 patients. Six algorithms 
(LR, XGBoost, RF, MLP, SVM, KNN) were used to develop the 
models, whereas four metrics were used to evaluate their 
performances. LR exhibited the best overall performance, with a 
specificity of 78% and a sensitivity of 94% in predicting POP in aSAH 
patients. Besides, the AUC values of MLP and KNN were relatively 
lower than XGBoost, RF and SVM, whose accuracy and robustness 
might be  attributed to their nature of integrating multiple base 

FIGURE 2

Perioperative variable selection using a LASSO logistic regression model. (A) The minimum criteria (lambda.min) and 1 SE of the minimum criteria 
(lambda. 1se) were used to depict the optimal values with dotted vertical lines. (B) LASSO coefficient profile of 39 variables. The coefficient profile is 
plotted according to the logarithmic sequence. To determine the optimal predictors of the model, five-fold cross-validation with minimum criteria was 
used, resulting in seven features with nonzero coefficients.

https://doi.org/10.3389/fneur.2024.1341252
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2024.1341252

Frontiers in Neurology 07 frontiersin.org

classifiers or learners (21). In addition, two examples were used to 
visualize how the LR model could predict POP and determine the 
relative importance of each variable for the clinician. With millions of 
POP taking place each year, the findings could help surgeons perform 
the management of postoperative pulmonary infection, such as the 
consideration of ventilator use time and tracheotomy, the use of 
prophylactic antibiotics. Finally, In order to reflect the model has a 
extensive range of applications, LR model was also validated on 
external data (MIMIC-IV) and showed good predictive performance.

In addition to successfully constructing machine learning models 
for predicting patient outcomes, the selection of variables should also 
prioritize the clinical requirements. As widely acknowledge, feature 
selection is a crucial process in machine learning. Selecting the proper 
combination of features to achieve a balance between model 
performance and efficiency is difficult but of great significance (30). 
Previous ML models required many features to predict Prognosis of 
patients, which reduces its practicality (28). We identified this issue at 
an early stage, prompting us to initially conduct LASSO regression on 
39 variables. This approach not only mitigated the problem of 
collinearity among variables, but also resulted in a reduction of 
included variables in the model to six. Therefore, our ML models 
incorporated 6 variables of GCS, smoking history, MVT, GCS, NAR, 

CAR as predictors. These variables can be easily collected in clinical 
practice and important implications in clinical practice.

Among these variables, CAR was identified for the first time as 
an independent risk factor for predicting the POP in patients with 
aSAH. Previously, Dingding Zhang et al. discovered that an elevated 
CAR was correlated with the WFNS grade and Glasgow Outcome 
Scale (GOS) after 3 months aSAH (31). Our study further confirmed 
the importance of CAR on the prognosis of aSAH, and we also 
found that CAR was a better predictor of POP than other composite 
indicators such as NLR, NAR, DAR, and PNI 
(Supplementary Figure S1). Although Xin Zhang and Manman Xu 
et  al. had demonstrated that NAR, PNI, DAR, and NLR are 
independent risk factors for predicting POP separately (2, 5, 12, 13), 
if these factors are compared together, the AUC of CAR and NAR 
was better than that of NLR,DAR and PNI, which also makes CAR 
and NAR remain as predictors into our model, while other 
indicators were excluded due to lower AUC or too high correlation 
coefficient with CAR and NAR. Back to the nature of the CAR, 
many previous studies had demonstrated the role of CRP and 
albumin in predicting pneumonia. CRP, an acute-phase protein, is 
triggered by different cytokines in reaction to infection, ischemia, 
trauma, and other inflammatory circumstances (32). In a recent 
study, Ben Gaastra et  al. also discovered that CRP serves as an 
independent prognostic indicator for outcome following aSAH. The 
incorporation of CRP into prognostic models enhances their 
predictive accuracy (33). Xinlong Ma et al. found early increase in 
blood CRP appears to correlate with poor functional outcome after 
aSAH (34). Such patients exhibit a protracted recovery period for 
cough, expectoration, and swallowing function, necessitating an 
extended bed rest duration and presenting an increased 
susceptibility to pulmonary infections. Among them, the level of 
albumin played a pivotal role in our model, as it not only functioned 
as an independent prognostic indicator but also contributed to the 
calculation of two crucial predictive indicators, CAR and 
NAR. We  posit that the primary factor contributing to this 
phenomenon is the multifaceted impact of hypoalbuminemia on 
patients with aSAH. Hypoalbuminemia in patients with aSAH not 
only reduces the level of immune protein and obstructs the repair 
of the mucosal barrier, leading to increased susceptibility to 
infection, but also exacerbates brain edema after subarachnoid 
hemorrhage, ultimately worsening motor function impairment in 
patients (32, 35). Some recent experimental findings additionally 
indicate that albuminemia mediates its neuroprotection through 
neurovascular remodeling and reducing cerebral lesions (36–38). A 
pilot study revealed that 1.25 g/kg/day albumin treatment was safe 

FIGURE 3

ROC curves for prediction of postoperative pneumonia (POP) on the 
test data set. Greater AUC shows higher discriminative ability of the 
model.

TABLE 3 Performance of the six ML models in the testing set.

ML models AUC (95%CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

LR 0.91 (0.86–0.96) 0.81 (0.78–0.84) 0.94 (0.91–0.98) 0.78 (0.69–0.87)

XGBoost 0.86 (0.78–0.94) 0.87 (0.85–0.88) 0.81 (0.67–0.96) 0.81 (0.73–0.89)

RF 0.87 (0.78–0.95) 0.87 (0.84–0.90) 0.83 (0.76–0.90) 0.85 (0.79–0.90)

MLP 0.56 (0.40–0.73) 0.76 (0.74–0.78) 0.48 (0.39–0.57) 0.80 (0.76–0.85)

SVM 0.89 (0.83–0.96) 0.79 (0.77–0.81) 0.87 (0.85–0.89) 0.81 (0.74–0.88)

KNN 0.78 (0.68–0.89) 0.85 (0.83–0.88) 0.70 (0.57–0.83) 0.81 (0.72–0.91)

LR, logistic regression; XGBoost, extreme gradient boosting; RF, random forest; MLP, multilayer perceptron; SVM, support vector machine; KNN, K-nearest neighbor.
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FIGURE 5

SHAP analysis of the proposed model on the testing set. This figure described data from the testing set, with each point representing one patient. The 
color represents the value of the variable; red represents the larger value; blue represents the smaller value. The horizontal coordinates represent a 
positive or negative correlation with transfusion risk, with a positive value indicating a risk of POP and a negative value indicating no risk for POP. The 
absolute value of the horizontal coordinate indicates the degree of influence; the greater the absolute value of the horizontal coordinate, the greater 
the degree of influence.

in SAH patients and might produce a better outcome (37). The 
clinicians should therefore prioritize the monitoring of 
hypoalbuminemia in aSAH patients, and consider implementing 
albumin supplementation as a preventive measure against infection. 
There are few clinical studies in this area, and further research is 
warranted to establish more advanced clinical diagnostic and 
treatment protocols.

In addition, we also note that Xiao Jin et al. constructed a 
nomogram model for predicting POP in aSAH patients (11). All 
of our models use MIMIC-IV data as our external data to verify 
model efficacy. Xiao Jin’s nomogram model had a validation 
performance of AUC 0.85 on external data, slightly lower than 

our LR model AUC 0.89. This is further evidence that, ML can 
offer unique perspective on the patient’s condition and can serve 
as a decision support tool in the management of aSAH. However, 
clinical judgment is necessary to interpret the ML results and 
implement a corresponding plan of action (17). For example, in 
the process of modeling, because our database only had 5 patients 
with COPD, and these patients had mild intracerebral 
hemorrhage, and none of them had POP, COPD was not included 
as an important predictor in the process of modeling. However, 
according to clinical experience, COPD patients are extremely 
prone to pulmonary infection. Therefore, the knowledge and 
experience of doctors are essential for the prediction of POP in 
aSAH patients with special conditions.

This study had several limitations. First, although the ML 
models have been validated in another database, the ML models are 
developed on the basis of a single-center cohort study, and future 
multi-center study will be  needed for external validation. 
Furthermore, it should be noted that this study was conducted in a 
retrospective manner, which may have introduced collection and 
entry biases as well as residual confounding factors.” Third, in the 
case of external cohort inclusion, determining whether patients have 
received surgical treatment is challenging due to insufficient data 
availability. Hence, surgery was not considered as a prerequisite for 
enrolling an external cohort (11). In addition, it poses a significant 
challenge to monitor the occurrence of POP due to premature 
discharge resulting from severe illness or financial constraints, 
making it arduous to assess the likelihood of these patients 
developing POP. This limitation is equally applicable when utilizing 
the MIMIC-IV database, which solely documents the presence or 
absence of POP during hospitalization. Nonetheless, we believe that 
any potential error stemming from this constraint remains within 
manageable boundaries, as demonstrated in Xiao Jin et al.’s study 
(11). Last but not least, two or more machine learning algorithms 
can be synthesized to further improve predictive accuracy. Such a 
process is referred to as ensemble modeling, and it has been used 
broadly in various industries (39). However, because the authors of 

FIGURE 4

Precision-recall curve for prediction of postoperative pulmonary risk. 
BRF, balanced random forest; CI, confidence interval; LR, logistic 
regression; XGBoost, extreme gradient boosting; RF, random forest; 
MLP, multilayer perceptron; SVM, support vector machine; KNN, 
K-nearest neighbor.
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this paper were unfamiliar with this method, they did not dare to 
operate ensemble modeling arbitrarily. In the future, we will pay 
more attention to improving the prediction performance of clinical 
models by ensemble learning algorithms.

Conclusion

Our study has successfully established six novel ML models to 
predict POP among aSAH patients. Of these, the LR model has 
demonstrated overall best performance. Furthermore, an online 
prediction tool based on the LR model was developed to identify 
patients at high risk for POP after aSAH and facilitate 
timely interventions.
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