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Kleefstra syndrome (KLEFS) refers to a rare inherited neurodevelopmental

disorder characterized by intellectual disability (ID), language and motor delays,

behavioral abnormalities, abnormal facial appearance, and other variable clinical

features. KLEFS is subdivided into two subtypes: Kleefstra syndrome-1 (KLEFS1,

OMIM: 610253), caused by a heterozygous microdeletion encompassing the

Euchromatic Histone Lysine Methyltransferase 1 (EHMT1) gene on chromosome

9q34.3 or pathogenic variants in the EHMT1 gene, and Kleefstra syndrome-2

(KLEFS2, OMIM: 617768), caused by pathogenic variants in the KMT2C gene.

More than 100 cases of KLEFS1 have been reported with pathogenic variants in

the EHMT1 gene. However, only 13 patients with KLEFS2 have been reported

to date. In the present study, five unrelated Chinese patients were diagnosed

with KLEFS2 caused by KMT2C variants through whole-exome sequencing

(WES). We identified five di�erent variants of the KMT2C gene in these

patients: c.9166C>T (p.Gln3056∗), c.9232_9247delCAGCGATCAGAACCGT

(p.Gln3078fs∗13), c.5068dupA (p.Arg1690fs∗10), c.10815_10819delAAGAA

(p.Lys3605fs∗7), and c.6911_6912insA (p.Met2304fs∗8). All five patients had a

clinical profile similar to that of patients with KLEFS2. To analyze the correlation

between the genotype and phenotype of KLEFS2, we examined 18 variants and

their associated phenotypes in 18 patients with KLEFS2. Patients carrying KMT2C

variants presented with a wide range of phenotypic defects and an extremely

variable phenotype. We concluded that the core phenotypes associated with

KMT2C variants were intellectual disability, facial dysmorphisms, language and

motor delays, behavioral abnormalities, hypotonia, short stature, and weight

loss. Additionally, sex may be one factor influencing the outcome. Our findings

expand the phenotypic and genetic spectrum of KLEFS2 and help to clarify the

genotype–phenotype correlation.
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Introduction

Kleefstra syndrome (KLEFS) is a rare inherited

neurodevelopmental disorder (NDD) characterized by

neuropsychiatric anomalies, developmental delay (DD), mild-to-

severe intellectual disability (ID), childhood hypotonia, speech

delay, and craniofacial abnormalities (1, 2). Globally, the prevalence

stands between 1:25,000 and 1:35,000 individuals. KLEFS is

primarily caused by a heterozygous microdeletion encompassing

the Euchromatin Histone Methyltransferase 1 (EHMT1) gene

on chromosome 9q34.3 or a pathogenic variant in the EHMT1

gene (3, 4). Additionally, pathogenic variants in KMT2C have

been found in patients with a clinical diagnosis of Kleefstra

syndrome-2. KMT2C (KMT2C; MIM 606833, NM_170606)

is located on chromosome 7q36 and consists of 59 exons,

encoding lysine-N-methyltransferase 2C, which catalyzes histone

3 lysine 4 (H3K4) methylation and epigenetically regulates gene

transcription through chromatin modifications (5). Dysregulated

H3K4 methylation can cause ID, epilepsy, autism spectrum

disorder (ASD), schizophrenia, and other neurodevelopmental

and neuropsychiatric disorders (6, 7). Recently, novel or de novo

pathogenic variants in the KMT2C gene have been reported to

cause a variety of developmental abnormalities, including ID, ASD,

schizophrenia, and non-syndromic primary tooth eruption failure

(8–13). To date, only 13 cases of KLEFS2 have been reported in

the literature (8, 14–18). Currently, there is no clear association

between the clinical phenotype and variant sites. Thus, additional

reports would help us better understand the phenotype spectrum

of this disease and explore the relationship between genotypes

and phenotypes.

In this study, we present five additional patients diagnosed

with Kleefstra syndrome-2 by whole-exome sequencing with a

highly heterogeneous phenotype, including mild-to-moderate ID,

facial dysmorphism, language and motor delays, short stature,

weight loss, microcephaly, and behavioral abnormalities. Molecular

analyses identified five novel KMT2C variants. Additionally,

we have reviewed the literature to summarize the genotypes,

phenotypes, and clinical features of KLEFS2.

Materials and methods

Subjects

For this study, five unrelated patients with confirmed KMT2C

variants, who were diagnosed with neuropsychiatric anomalies,

intellectual disability, global developmental delay, and craniofacial

abnormalities, were recruited from the Maternal and Child Health

Hospital of Guangxi Zhuang Autonomous Region (Table 1).

Whole-exome sequencing and sanger
sequencing

A total of five individuals (four male patients and one female

patient) with NDD from unrelated families underwent WES

(Figure 1). Genomic DNA was extracted from 5ml of peripheral

blood of the patients and their family members using a Lab-Aid

DNA kit (Zeesan Biotech Co., Ltd., Xiamen, China). Whole-exome

capture was performed using an Agilent SureSelect V5 enrichment

capture kit (Agilent Technologies, Santa Clara, CA, USA), followed

by sequencing on the Hiseq2000 platform to generate 100-bp

paired-end reads. The sequence reads were aligned to the human

genome assembly GRCh37 using the Burrows–Wheeler aligner

(BWA-MEM, version 0.7.10). TGEX was utilized to annotate and

classify all the variants. The variants were filtered based on specific

criteria, including (a) the exclusion of non-rare (MAF ≥ 0.01)

variants in the public database (e.g., 1,000 Genomes Project, dbSNP,

and Genome Aggregation Database), (b) mutations in the exonic

region and splice regions, and (c) predicted deleterious effects by

MutationTaster, CADD, SIFT, or PolyPhen2. The pathogenicity of

identified variants was interpreted and classified according to the

American College of Medical Genetics (ACMG)/Association of

Molecular Pathology (AMP) guidelines (19).

Results

Clinical features

Patient 1 was a 3-year and 12-month-old boy, the second child

of healthy, unrelated Chinese parents. He was born full-term with

a birth weight of 3,250 g and a body length of 48.5 cm. At 3 years

and 10 months, he was admitted to the Pediatric Intensive Care

Unit of the Guangxi Zhuang Autonomous Region Maternal and

Child Health Hospital due to hypoxic acute respiratory failure

caused by pneumonia. His developmental milestones were globally

delayed, with independent sitting at 9 months, standing with

support at 20 months, and walking without support at 25 months.

He began speaking single words by the age of 2 years and started

forming sentences by the age of 3 years. He had moderate ID

and behavioral abnormality, including stereotypies such as body

rocking, clapping and hand flapping, spinning, hitting objects,

and self-talking. Physical examination revealed that the patient

was severely underweight (weight: 9 kg, BMI: 10.9 kg/m2) and

had a short stature (height: 91 cm, −3 SD). Unfortunately, due

to economic factors and an unfavorable prognosis, the patient

discontinued treatment and passed away a month after discharge.

Patient 2 was a 1-year-old male child, born at full term but

small for gestational age, with a birth weight of 2,300 g (<10th

centile), a body length of 44 cm, and a head circumference of

32.4 cm (<10th centile). He presented with severe ID and global

developmental delay. At 11 months, his Full Scale IQ was 43,

according to the Wechsler Intelligence Scale for Children. He

was unable to stand or walk independently and showed no signs

of speech development. Additionally, he experienced postnatal

growth retardation with short stature (−2 SD), weight loss (−2.1

SD), and microcephaly (−1.9 SD). The child also exhibited midface

hypoplasia and strabismus.

Patient 3 was a female child born at 38 weeks of gestation

with normal weight, length, and head circumference. At 13

months of age, she was initially assessed at the Child Healthcare

Department of the Guangxi Zhuang Autonomous RegionMaternal

and Child Health Hospital for feeding difficulty, comprehensive

developmental delay, and failure to thrive. She exhibited mild

developmental delay, began walking at 15 months, and started
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TABLE 1 Clinical features of the patients with KMT2C mutations.

Patients clinical data Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Variants in KMT2C

(NM_170606.2)

c.9166C>T

(p.Gln3056 ∗)

c.9232_9247delCA

GCGATCAGAACCGT

(p.Gln3078fs∗13)

c.5068dupA

(p.Arg1690fs∗10)

c.10815_10819delA

AGAA

(p.Lys3605fs∗7)

c.6911_6912insA

(p.Met2304fs∗8)

Inherit de novo de novo de novo de novo Maternal

Gender Male Male Female Male Male

Age at last examination 4 years 1 years 9 years 5months 14 years 8 years

Height (SD) −3 −2 −2 −4.1 −1.2

Weight (SD) −4.2 −2 −3 0 −2

OFC (SD) 0 −1.9 0 −0.4 −0.5

Failure to thrive + + + – +

Walking 25 months Can’t walk at last

examination

15 month Normal 18 months

Speech impairment Delayed speech Delayed speech Delayed speech Delayed speech Delayed speech

Intellectual disability Moderate Moderate Mild Mild Moderate

Facial dysmorphism NA + + – +

Muscular hypertonia + + + – +

Behavioral abnormalities Autism – ADHD Sleeping disorder Autism

Brain radiologic features Normal Normal Normal Normal Normal

Seizures – – – – –

Other – – – – –

The following abbreviations are used: N.r., not reported; SD, standard deviation; GH, growth hormone; ADHD, attention-deficit-hyperactivity disorder; OFC, occipitofrontal circumference.

talking at 1 year and 8 months. She continued to display short

stature (−2.1 SD), mild development delay, speech delays, and

learning disabilities. At the age of 8 years, she was readmitted

for learning difficulty and hyperactivity and was diagnosed with

attention-deficit-hyperactivity disorder (ADHD) and weight loss

(BMI: 10.8 kg/m²). Treatment with an amino acid-based high-

energy formula, high-energy high-protein diet, and aripiprazole

(1.25 mg/day) resulted in a 6-kg weight gain after 1 year.

However, her ADHD symptoms persisted. At the age of 9 years

and 1 month, she began taking 18 mg/day of methylphenidate

accompanied by behavioral interventions implemented by her

parents, leading to a significant alleviation of her ADHD symptoms.

In the most recent examination at the age of 9 years and 5

months, she exhibited mild intellectual disability (Full Scale IQ,

69; Verbal Comprehension Index, 70; Perceptual Reasoning Index,

64; Working Memory Index, 68; and Processing Speed Index, 65).

Minor facial dysmorphisms, including prominent eyebrows, a thick

lower lip, and a short nose, were observed.

Patient 4 was a 14-year-old boy, the first child of healthy

non-consanguineous Chinese parents, who presented with severe

short stature (<-4.1 SD). An arginine clonidine GH stimulation

test yielded an IGF-1 level of 113 ng/ml (reference range 49–283),

an IGF-BP3 level of 2.89µg/ml (reference range 1.0–4.7), and a

peak GH level of 12.65 ng/ml, ruling out the GH deficiency. He

demonstrated normal gross and fine motor skills, with a bone

age of 12 years. His general performance on the language scale

was 80 and below the average range (86%). Expressive language

skills were within the normal range, while receptive language skills

were impaired with scaled scores of 10 and 5, respectively. The

patient also experienced sleep disturbances, including insomnia,

difficulty falling asleep, abnormal sleep duration, excessive daytime

sleepiness, and disrupted circadian rhythms.

Patient 5, the first child of healthy non-consanguineous Chinese

parents, was delivered at 34 weeks plus 2 days of gestation due to

premature rupture of membranes. He was 8 years old at the time of

the last physical examination. He began walking at 18 months and

exhibited hypotonia and talking at 40 months. He had moderate

intellectual disability (Wechsler Intelligence Scale for Children-

IV, Full Scale IQ = 48). Behaviorally, he exhibited a typical ASD

phenotype with speech impairment, social interaction impairment,

poor response when called, communication difficulties, behavioral

problems, and hyperactivity. He had some dysmorphic features,

including a flattened midface, everted lower lip, and esotropia. It is

noteworthy that his mother exhibits a mild cognitive impairment,

with no other apparent dysmorphic features detected in the family

history report.

Molecular analysis

Using WES, we identified five heterozygous

variants in the KMT2C gene in patients 1–5 as

follows: c.9166C>T (p.Gln3056Ter) in patient 1,

c.9232_9247delCAGCGATCAGAACCGT (p.Gln3078fs∗13)

in patient 2, c.5068dupA (p.Arg1690fs∗10) in patient 3,

c.10815_10819delAAGAA(p.Lys3605fs∗7) in patient 4, and
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FIGURE 1

(A) Pedigrees of the a�ected families. Probands are denoted by arrows. (B) The Sanger chromatograms of the detected variants in probands of

families 1–5. Among them, P1 [NM_170606.3:c.9166C>T (p.Gln3056Ter)] had a non-sense variant, and P2 [c.9232_9247delCAGCGATCAGAACCGT

(p.Gln3078fs*13)], P3 [c.5068dupA (p.Arg1690fs*10)], P4 [c.10815_10819delAAGAA/p.Lys3605fs*7], and P5 [c.6911_6912insA (p.Met2304fs*8)] had

frameshift variants.

c.6911_6912insA (p.Met2304fs∗8) in patient 5 (Figure 1).

These five variants were validated by Sanger sequencing.

Additionally, it was shown that the c.6911_6912insA

(p.Met2304fs∗8) variant was inherited from the mother of

patient 5, while the other four variants were not present in

the samples of the four parents in the study. Specifically,

c.9232_9247delCAGCGATCAGAACCGT (p.Gln3078fs∗13),

c.5068dupA (p.Arg1690fs∗10), c.10815_10819delAAGAA

(p.Lys3605fs∗7), c.6911_6912insA (p.Met2304fs∗8), and

c.2519_2520dup (p.Thr841fs∗37) were novel variants, which

were not reported in gnomAD, Human Gene Mutation database,

1,000 Genomes Project, Exome Sequencing Project, ExAC,

ClinVar, and the Single Nucleotide Polymorphism database. The

c.9166C>T (p.GLn3056∗) non-sense variant is reported in the

gnomAD database with a low allele frequency (1 mutated allele

out of 833,108 alleles). While this variant has not been previously

associated with a disease, multiple computational pieces of

evidence predict that it is damaging. These variants were predicted

to be deleterious by in silico tools. The pathogenicity prediction

analysis and ACMG/AMP rating of the five KMT2C variants are

shown in Table 2.

Discussion

KMT2C, also known as MLL3, is a histone lysine

methyltransferase enzyme that plays an important role in

modifying histone proteins (6, 8, 20, 21). It is involved in

H3K4me1 and H3K4me3 marks related to active enhancers or

transcriptionally active regions, respectively (22, 23). KMT2C

is part of the protein complex associated with Set1 (COMPASS

complex), which plays a vital role in eukaryotic developmental

signaling pathways (24–26). KMT2C knockout mice display
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TABLE 2 Predicted pathogenicity of novel or de novo KMT2C variants.

Patient Variant
(NM_170606.3)

Inheritance A�ected
exon

MutationTaster ACMG/AMP

Patient 1 c.9166C>T (p.Gln3056Ter) DNM E38 D P [(PVS1+ PS2+

PM2_Supporting)]

Patient 2 c.9232_9247delCAGC

GATCAGAACCGT

(p.Gln3078fs∗13)

DNM E38 D P [(PVS1+ PS2+

PM2_Supporting)]

Patient 3 c.5068dupA (p.Arg1690fs∗10) DNM E36 D P [(PVS1+ PS2+

PM2_Supporting)]

Patient 4 c.10815_10819delA AGAA

(p.Lys3605fs∗7)

DNM E34 D P [(PVS1+ PS2+

PM2_Supporting)]

Patient 5 c.6911_6912insA

(p.Met2304fs∗8)

Maternal E36 D P [(PVS1+

PM2_Supporting)]

DNM, de novomutation; D, disease causing; P, pathogenic; LP, likely pathogenic.

ASD-like repetitive behaviors, social deficits, and ID (27).

In human, variants in KMT2C have been reported to be

associated with ASD-like behaviors and Kleefstra syndrome-2

(18, 21, 25, 28–32). Notably, only 13 patients have been reported

with variants in KMT2C. Among these patients, only one long-

term report showed a long-term persistent phenotype. Therefore,

the phenotypes associated with KMT2C mutations remain

incompletely characterized. In this study, we found five KMT2C

variants related to neurodevelopmental abnormalities. The

patients exhibited common disease phenotypes, including mild-to-

moderate ID and DD, failure to thrive, facial dysmorphism, speech

delay, hypotonia, feeding difficulties, short stature, weight loss,

microcephaly, and behavioral abnormalities.

In the patients described in this study, five variants were

identified in KMT2C, including one non-sense variant and four

frameshift variants. In silico, these null variants may cause a

premature termination codon or a translational frameshift, leading

to significantly reduced truncated proteins and markedly reduced

mRNA levels due to NMD degradation. These variants were

assessed as likely pathogenic or pathogenic according to the

ACMG/AMP guidelines (Table 2).

Patient 5 harbors a potentially pathogenic heterozygous

variant in the KMT2C gene inherited from his mother.

Inconsistent phenotypes were observed in patient 5 and his

mother. Patient 5 manifested a more extensive and severe

phenotype, including delayed motor development, severe language

impairment, moderate intellectual disability, autistic behaviors,

ADHD, and dysmorphic facial features, while his mother

exhibited only a mild cognitive impairment. Consequently,

these findings suggest a high degree of variability in the clinical

features among individuals with heterozygous mutations in the

KMT2C gene.

In the current study, we describe the genotype and clinical

phenotype of five patients with variants in KMT2C, bringing

the total number of reported individuals to 18. The list of

reported variants of KMT2C and the clinical phenotype of our

patients and the other reported patients are summarized in

Table 3 and Supplementary Table S1 (8, 14–18). Except for one

missense variant and one in-frame deletion, all reported variants

were loss-of-function variants (LoF; including non-sense variants,

splicing variants, frameshifts, in-frame, and microdeletions). Some

TABLE 3 Clinical features of patients with KMT2C variants.

Patients clinical data Total

N = 18

Height (SD) Short statue= 12/17

Weight (SD) Weight loss= 11/17

OFC (SD) Microcephaly= 7

Macrocephaly= 2

Failure to thrive 11/17

Walking 15/16

Speech impairment 17/17

Intellectual

disability

18/18

Facial dysmorphism 15/17

Muscular hypertonia 11/16

Behavioral abnormalities 13/16

Brain radiologic features 4/11

Seizures 3/18

common phenotypes were observed in patients with these variants.

All 18 patients exhibited a range of intellectual disability from

mild to severe; 88% of the patients (15/17) displayed diverse

minor facial dysmorphisms, including midface hypoplasia, thick

and everted lower lip, abnormal eyebrows (arched or prominent),

nose abnormalities (saddle bridge, bulbous tip nose, and short

nose), and eye abnormalities (deep set eyes, strabismus, ptosis,

down-slanting palpebral fissures, and hypertelorism). Speech delay

was observed in all patients (17/17), ranging from delayed speech to

remaining non-verbal after the age of 15 years. Nearly all patients

(14/15) presented with motor delay or dyskinesia. All patients

learned to walk, but some did not learn to walk until after the

age of 4 years. Behavioral abnormalities were also observed in

most patients (13/16) and became more characteristic with age.

These abnormalities included autism, ADHD, sleeping disorder,

aggressiveness, hyperactivity, automutilation, and elective mutism.

Hypotonia was common (11/16), with one patient exhibiting a
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broad gait and another showing developmental regression. Short

stature (12/17) and weight loss (11/17) were the prevalent features,

both falling 2–4 standard deviations below the mean for the

general population. Aripiprazole medication effectively improved

weight in patients with low body weight; two patients, including

ours, showed significant weight gain after aripiprazole medication,

particularly in abdominal fat. Relative microcephaly was observed

in nine out of 18 patients, while macrocephaly was noted in

two patients. Additionally, various other variable dysmorphic

features, such as brain abnormalities, seizures, phenylketonuria,

recurrent respiratory infections, cryptorchidism, bifid uvula,

bilateral inguinal hernia, delayed puberty, hearing impairment,

insensitivity to pain, constipation, slight telelia, ligamentous

hyperlaxity, and eczema, were also observed.

Neurodevelopmental disorders caused by chromatin-

regulated protein-encoding genes often exhibit overlapping

clinical manifestations (33–35). Comparing the clinical

manifestations of these different related disorders can enhance

our understanding of the broad clinical spectrum of these

diseases and the significance of WES in the diagnostic process

(36, 37). Although some consistent clinical manifestations of

KLEFS2 have been observed, we currently cannot establish

a clear correlation between the genotype and the phenotype,

which is attributed to the complexity and heterogeneity of

the KLEFS2 phenotypes. The diverse phenotype observation

indicates that variants occurring at different positions may

have site-specific effects on the phenotypes. Moreover, in this

cohort of 18 patients, the male-to-female ratio was 1:1. Some

severe phenotypes are more likely to be observed in women,

including severe ID (4/9), severe speech impairment (3/9), brain

abnormalities (3/9), and macrocephaly (2/9), suggesting that

sex may influence the outcome. The underrepresentation of

patients in this cohort may reflect ascertainment bias, and further

confirmation of the observations is expected as the number of

patients increases.

The exact mechanisms underlying how these variants cause

ID, facial dysmorphisms, language and motor delays, behavioral

abnormalities, hypotonia, short stature and weight loss, and

additional clinical symptoms remain unclear. The KMT2C gene

is highly conserved from archaea to eukaryotes and is widely

expressed in human tissues with high levels in the cerebellum

of the developing and adult human brain (38, 39). This gene

encodes an enzyme that monomethylates lysine 4 of histone H3

(H3K4me1) and epigenetically regulates many gene expressions in

the brain through chromatin modification (40). In 2017, Koemans

et al. found that KMT2C knockdown drosophila exhibited severe

defects in memory formation (8). Moreover, they found that

KMT2C binds to the promoters of many genes that play important

roles in neuronal processes (6). In vitro experiments show that

reduced KMT2C expression leads to a decrease in the overall

level of histone tail modifications H3K4me1 and H3K4me3 (6,

41). Furthermore, rare KMT2C variants have been associated

with Kleefstra syndrome, ID, ASD, schizophrenia, non-syndromic

primary failure of tooth eruption, and a family with colorectal

cancer and acute myeloid leukemia (8, 14–18, 42). These findings

suggest that the KMT2C variant has pleiotropic effects. Functional

studies of these variants are needed to fully understand KLEFS2 and

its mechanisms of action.

Conclusion

In conclusion, we present detailed clinical and phenotypic

information on five additional unrelated Chinese patients

with five novel heterozygous KMT2C variants, expanding the

mutational spectrum of KLEFS2. This is the first report of the

c.9232_9247delCAGCGATCAGAACCGT (p.Gln3078fs∗13),

c.5068dupA (p.Arg1690fs∗10), c.10815_10819delAAGAA

(p.Lys3605fs∗7), and c.6911_6912insA (p.Met2304fs∗8) variants

in the KMT2C gene. Our study also indicates that there is

currently no significant correlation between the genotype and

phenotype, providing a foundation for clinical diagnosis and

genetic counseling for KLEFS2.
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