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Background: Portable low-field-strength magnetic resonance imaging (MRI) 
systems represent a promising alternative to traditional high-field-strength 
systems with the potential to make MR technology available at scale in low-
resource settings. However, lower image quality and resolution may limit the 
research and clinical potential of these devices. We tested two super-resolution 
methods to enhance image quality in a low-field MR system and compared their 
correspondence with images acquired from a high-field system in a sample of 
young people.

Methods: T1- and T2-weighted structural MR images were obtained from a low-
field (64mT) Hyperfine and high-field (3T) Siemens system in N  =  70 individuals 
(mean age  =  20.39  years, range 9–26  years). We  tested two super-resolution 
approaches to improve image correspondence between images acquired 
at high- and low-field: (1) processing via a convolutional neural network 
(‘SynthSR’), and (2) multi-orientation image averaging. We  extracted brain 
region volumes, cortical thickness, and cortical surface area estimates. We used 
Pearson correlations to test the correspondence between these measures, and 
Steiger Z tests to compare the difference in correspondence between standard 
imaging and super-resolution approaches.

Results: Single pairs of T1- and T2-weighted images acquired at low field 
showed high correspondence to high-field-strength images for estimates of 
total intracranial volume, surface area cortical volume, subcortical volume, 
and total brain volume (r range  =  0.60–0.88). Correspondence was lower for 
cerebral white matter volume (r  =  0.32, p  =  0.007, q  =  0.009) and non-significant 
for mean cortical thickness (r  =  −0.05, p  =  0.664, q  =  0.664). Processing images 
with SynthSR yielded significant improvements in correspondence for total brain 
volume, white matter volume, total surface area, subcortical volume, cortical 
volume, and total intracranial volume (r range  =  0.85–0.97), with the exception 
of global mean cortical thickness (r  =  0.14). An alternative multi-orientation 
image averaging approach improved correspondence for cerebral white matter 
and total brain volume. Processing with SynthSR also significantly improved 
correspondence across widespread regions for estimates of cortical volume, 
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surface area and subcortical volume, as well as within isolated prefrontal and 
temporal regions for estimates of cortical thickness.

Conclusion: Applying super-resolution approaches to low-field imaging 
improves regional brain volume and surface area accuracy in young people. 
Finer-scale brain measurements, such as cortical thickness, remain challenging 
with the limited resolution of low-field systems.

KEYWORDS

magnetic resonance imaging, low field MRI, pediatric neuroimaging, SynthSR, 
super-resolution

Introduction

Magnetic resonance imaging (MRI) has facilitated our current 
understanding of the processes underlying mental health and illness, 
and is routinely used in pediatric clinical and neuroimaging research 
(1–3). Ongoing advancements in neuroimaging technology and the 
development of state-of-the-art statistical techniques have helped to 
improve our understanding of the etiology of youth mental health 
disorders, and novel brain-based risk markers show promise in 
identifying and providing prognostic information for at-risk 
individuals (4–6). However, there are several challenges associated 
with conventional high-field MRI systems that limit the translation of 
these promising findings, prohibiting their widespread use and 
incorporation in community settings.

Low-field-strength MRI (LF-MRI) is a promising alternative that 
addresses several limitations inherent in high-field-strength systems. 
LF-MRI machines typically operate with magnetic fields below 0.3 
Tesla (compared to high-field systems at 1.5–3T), and carry the 
advantages of substantially lower installation and maintenance costs, 
reduced power consumption, smaller space requirements, and do not 
require cryogenic cooling (7, 8). Several portable systems have been 
developed, and can be installed in settings with limited or unreliable 
power supply with minimal operator expertise. The successful 
deployment of LF-MRI within intensive care units (9–13), vehicles 
(14), consulting offices (15) and in low-resource settings (16, 17) 
demonstrates the increased accessibility offered by low-field 
technology. This improved accessibility carries the potential to reduce 
long-standing disparities in access to diagnostic imaging within the 
United States (18, 19). In addition, the lower-intensity acoustic noise 
and open scanner designs in LF systems provide advantages for 
pediatric populations, improving scanning success rates and reducing 
the need for child sedation (20, 21). In a sample of 42 healthy children 
aged 6 weeks to 16 years of age, superior completion rates were 
achieved in a low-field (64mT) LF system compared to conventional 
high-field (3T) MRI system [89% compared to 75%; (22)]. In addition, 
global estimates of cortical volume showed strong correspondence 
between low-field- and high-field acquired images, with low-field 
images successfully recapitulating global gray-matter age-associations 
(22). However, components of cortical volume (e.g., cortical thickness, 
surface area), as well as cerebral white matter and subcortical volume, 
show diverse trajectories of growth across development (23–26), are 
believed to reflect distinct biological underpinnings (27–29), and have 
differing genetic influences (27, 30). For LF-MRI to be feasibly used 
at scale in young people, we need to test the ability of this technology 

to accurately estimate diverse components of global and regional 
brain structure.

One of the major drawbacks of LF systems is a low signal-to-noise 
ratio (SNR), resulting in poorer image resolution and quality (7, 8). 
However, recent developments in ‘super-resolution’ approaches, 
defined as methods that reconstruct high-resolution images from a 
series of low-resolution images, may help to address these 
shortcomings. Multi-orientation image averaging, which involves 
reconstruction of several low-resolution scans taken in orthogonal 
slice directions (i.e., axial, sagittal, and coronal), has been found to 
significantly improve signal-to-noise ratio within neonatal samples 
(31, 32). Alternative super-resolution approaches that use state-of-
the-art machine-learning techniques, such as convolutional neural 
networks (CNNs), also improve image resolution within LF systems 
(33). Initial work in a sample of adults (N = 11, M = 49.5 ± 14.1 years, 
seven males) demonstrated promising results with this approach, 
resulting in high correspondence between low-field (64mT) and high-
field (1.5 or 3T) acquisitions across the cerebrum (33). While these 
studies show promise, we  must ensure that such pipelines are 
developmentally appropriate for the acquisition and processing of 
low-field images among young people. It is unclear whether current 
super-resolution approaches, such as multi-orientation image 
averaging and machine-learning-based methods, are appropriate and 
effective for young populations, whether the effectiveness of these 
pipelines are moderated by additional factors (e.g., age, motion) or 
whether additional processing steps are necessary.

To test our ability to use data from low-field MRI scans in young 
people, we collected structural MRI data from low-field 64 mT and 3T 
MRI scanners from a community sample of young people (final 
N = 70, 9–26 years). We  processed all scans through a standard 
structural neuroimaging pipeline (i.e., Freesurfer), and extracted 
measures of cortical and subcortical volume, cortical thickness, and 
surface area. We then used these extracted measures to conduct and 
compare correlational analyses of two super-resolution processing 
strategies. First, we examined correspondence between brain measures 
extracted from low-field scans to brain measures extracted from 3T 
scans. Second, we  tested whether synthesizing super-resolution 
MP-RAGE images from the low-field scans via a CNN approach 
improved the correspondence between low-field and high-field 
images. Third, because we collected several pairs of low-field T1- and 
T2-weighted scans, we  examined how multi-orientation image 
averaging improved correspondence with measures derived from 
high-field scans. We tested how implementing a combination of both 
multi-orientation and CNN-processing approaches influenced these 
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relationships. Finally, we examined how other factors, i.e., age and 
motion (34–36), are related to our ability to capture high-field quality 
measurements with low-field scans.

Materials and methods

Participants

In the current study, we  recruited a community sample of 77 
young people (9–26 years, N < 18 years = 18) from the Boston metro 
area. Inclusion/exclusion of data to obtain the final sample [N = 70, 
mean (SD) age = 20.39 (4.7) years] is detailed in 
Supplementary Figure  1. Demographic information for the final 
sample is reported in Table 1. Exclusion criteria were a history of a 
brain infection, presence of a neurodegenerative disorder (e.g., 
Parkinson’s disorder), presence of a neurodevelopmental disorder that 
might interfere with completion of study procedures, endorsement of 
a major mental disorder other than attention deficit-hyperactivity 
disorder (ADHD) or a past episode of depression, or any MRI 
contraindications. Given the increased prevalence of ADHD in youth 
(37, 38) and our desire to produce generalizable results, we did not 
exclude those with a diagnosis of ADHD in this sample. Participants 
completed the DSM Cross-Cutting Symptom Measure for Youth (39) 
and the Beck Depression Inventory (40) to assess sub-clinical 
symptoms of psychopathology. All participants provided written 
consent (if ≥18 years of age) or assent with written parental consent. 
Procedures were approved by the Institutional Review Board of 
Boston Children’s Hospital.

MRI acquisition

We collected T1- and T2-weighted brain MRI scans for each 
participant using a Siemens Magnetom Prisma 3-Tesla scanner in a 
dedicated research MRI suite at Boston Children’s Hospital Brookline 
Place (total scan duration 12.61 min, scan resolution 
0.8 × 0.8 × 0.8 mm). We also used a Hyperfine Swoop 64 mT scanner 
(total scan duration 52.25 min, scan resolution 1.6 × 1.6 × 5 mm) to 
collect two pairs of low-field T1- and T2-weighted scans using 
3-dimensional techniques in sagittal, axial, and coronal orientations 
(see Figure 1). Scan parameters were determined following vendor- 
and software-provided and optimized sequence recommendations 
and are detailed in Supplementary Table 1. An experienced radiologist 
reviewed all 3T scans and reported no incidental findings in this 
sample. We used MRIQC (41) to verify scan quality, which provides a 
rating (1 [unusable] – 4 [excellent]) for each scan. We excluded all 3T 
MRI scans with a rating of 1 or 2 (N = 1).

MRI processing

We tested two super-resolution approaches to process low-field 
data. For the single-acquisition approach, we  used the ANTsPy 
Python module (v 0.3.9) (42, 43) to resample and coregister the 
axial-orientation T1- and T2-weighted low-field scans for each 
participant. For the multi-orientation approach, all six T1- and 

T2-weighted low-field MRI pairs were resampled to a 1.5 mm3 voxel 
size, then co-registered and averaged to reconstruct a single, 
composite higher-resolution image with ANTsPy. We  then 
processed the low-field images via the Hyperfine-specific version of 
SynthSR (v. 1.0) (44). SynthSR is a convolutional neural network 
that predicts a 1 mm isotropic three-dimensional MP-RAGE image 
given one or more low-resolution inputs. We then processed all 
low-field and 3T MR images using FreeSurfer (v. 7.3.2) (45). 
FreeSurfer is an open-source automated segmentation software 
package for neuroimaging. In short, the following steps are part of 
the FreeSurfer processing stream: transformation of images to 
standard Talairach space, intensity normalization, removal of 
non-brain tissue, segmentation of white matter and subcortical 
structures, and final segmentation of cortical surfaces. Once the 
data was processed, we  used the Desikan atlas (46) to extract 
regional measures of cortical surface area, cortical thickness, and 
cortical volume. The Desikan atlas includes 68 regions for each 
measure, resulting in a total of 204 cortical measures. We obtained 
subcortical volume measures using FreeSurfer’s subcortical atlas 
(N = 38 regions). We also extracted global measures of subcortical 
gray matter volume, total surface area, mean cortical thickness, 
cerebral white matter volume, total brain volume, cortical volume, 
and estimated total intracranial volume from each scan. This 
resulted in five sets of MR scans for each participant: (1) a single-
acquisition standard low-field scan; (2) a single-acquisition, 
low-field scan processed through SynthSR; (3) a multi-orientation 
standard low-field scan; (4) a multi-orientation, SynthSR-processed 
low-field scan; and (5) a standard 3T scan.

TABLE 1 Demographic features of the sample.

F M Total

Total N 37 33 70

Mean Age

(SD)
19.7 (4.9) 21.17 (4.5) 20.39 (4.7)

Age Range 9–26.7 9.8–26.9 9–26.9

Mean CCSM Total Score

(SD)
9.11 (7.3) 8.82 (7.6) 8.97 (7.4)

Mean BDI Total Score (SD) 5.31 (7.2) 5 (5.8) 5.2 (6.7)

Race N (%)

American 

Indian/Alaskan 

Native

1 0 1 (1.4%)

Asian 11 11 22 (31.4%)

Black 3 1 4 (5.7%)

White 22 20 42 (60%)

Native 

Hawaiian/

Pacific Islander

0 0 0 (0%)

Interracial 0 1 1 (1.4%)

Ethnicity N 

(%)

Hispanic/Latino 3 4 7 (10%)

Not Hispanic/

Latino
34 29 63 (90%)

BDI, Beck Depression Inventory; CCSM, DSM self-rated Cross-Cutting Symptom Measure 
for Youth.
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Statistical analyses

To test the association between the participants’ low-field and 
high-field scans we calculated Pearson correlations for each global 

and regional neuroimaging measure. We then used Steiger Z-tests to 
compare the difference in correspondence between the standard 
single-acquisition approach and each super-resolution method. First, 
we  tested whether image processing via SynthSR statistically 

FIGURE 1

Image acquisition and processing pipeline.
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improved the fidelity of the low-field scans to their corresponding 
high-field images. Second, we  compared correlation strengths 
between standard single-acquisition (one T1/T2 pair) and multi-
orientation (six T1/T2 pairs) scan series. Third, we compared the 
standard single-acquisition approach to multi-orientation (six T1/T2 
pairs) images processed with SynthSR. Fourth, we compared single-
acquisition scans processed with SynthSR to multi-orientation scans 
processed with SynthSR. We used two additional methods to further 
evaluate the correspondence between low-field and 3T scans. First, 
we calculated the correspondence between low-field and 3T scans 
using two-way mixed intraclass correlation coefficients. Consistent 
with previous work (47, 48), we defined correspondence for both 
Pearson correlations and ICC values as follows: poor, r < 0.4; fair, 
0.4 ≤ r < 0.6; moderate, 0.6 ≤ r < 0.75; high, r ≥ 0.75. Additionally, 
we  used Bland–Altman plots to assess the agreement between 
low-field scans with the 3T estimates for each brain measure. This 
involved plotting the difference between the 3T and low-field 
estimates against the mean of the two estimates. For adequate 
agreement, Bland and Altman recommend that 95% of the data 
points should lie within ±1.96 standard deviations of the mean 
difference (49). Within each set of analyses, we used false discovery 
rate to correct for multiple comparisons separately in our global and 
regional analyses (50).

In secondary analyses, we  examined whether potential 
confounding factors (participant age and motion artifacts) were 
associated with individual-level agreement between low- and high-
field brain measures. We  first calculated the absolute difference 
between low- and high-field estimates of each brain measure for each 
individual. We then converted this difference to a Z-score for each 
individual, with a positive Z-score indicating above average difference 
between high and low-field estimates (i.e., larger discrepancy between 
low-field and 3T measures) and a negative Z-score indicating below 
average difference between high- and low-field estimates (i.e., smaller 
discrepancy between low-field and 3T measures). We then examined 
the relationship between this Z-score and participant age or motion, 
measured as framewise displacement. We  used Steiger Z-tests to 
examine whether these relationships significantly differed across the 
super-resolution approaches examined in the main analysis. Within 
each set of analyses, we  used false discovery rate to correct for 
multiple comparisons separately in our global and regional 
analyses (50).

Results

Correspondence between standard 
(single-orientation) low-field- and 
high-field-acquired images

For global brain measures, single (axial) acquisitions of T1/T2 
low-field pairs showed high correspondence with high-field images 
for measures of total intracranial volume (Pearson’s r = 0.82, 
p = 5.58e-18, q = 1.82e-17) and total surface area (r = 0.76, p = 4.01e-
14, q = 1.04e-13), and moderate correspondence for cortical volume 
(r = 0.67, p = 3.24e-10, q = 7.21e-10), subcortical gray matter volume 
(r = 0.66, p = 3.83e-10, q = 8.16e-10), and total brain volume (r = 0.60, 

p = 4.57e-08, q = 9.33e-08; see Table  2 and Figures  2, 3A). 
Correspondence was lower for cerebral white matter volume 
(r = 0.32, p = 0.007, q = 0.009) and non-significant for mean cortical 
thickness (r = −0.05, p = 0.664, q = 0.664). Similarly, intra-class 
correlation coefficients (ICC) for each brain measure showed high 
correspondence for total intracranial volume (ICC = 0.79, p = 1.11e-
16, q = 3.04e-16), moderate correspondence for total surface area 
(ICC = 0.71, p = 1.65e-12, q = 4.15e-12) and cortical volume 
(ICC = 0.61, p = 1.08e-08, q = 2.34e-08), fair correspondence for 
subcortical gray matter volume (ICC = 0.66, p = 1.46e-10, q = 3.40e-
10) and total brain volume (ICC = 0.56, p = 1.43e-07, q = 2.90e-07), 
poor correspondence for cerebral white matter volume (ICC = 0.24, 
p = 0.024, q = 0.036) and non-significant for mean cortical thickness 
(ICC = −0.05, p = 0.668, q = 0.701; see Table 3). When we examined 
the individual data distributions (Figure 4), we found that standard 
single-acquisition low-field images typically underestimated high-
field values for each brain measure. Mean differences (low-field 
subtracting 3T) for surface area were − 45.8% [standard deviation 
(SD) 4.4], cortical thickness + 0.85% (5.5), cortical volume − 46.4% 
(5.3), subcortical volume − 32.5% (7.0), cerebral white matter 
volume − 33.8% (29.4), total brain volume − 37.0% (11.4) and 
intracranial volume − 10.1% (6.83). Bland–Altman analyses for 
agreement between low- and high-field scans (see 
Supplementary Figure 2) showed positive bias for total surface area 
(bias 9.35e04mm2, 95% limits of agreement 6.78e04-11.93e04), total 
brain volume (4.44e05 mm3 [1.62e5−7.25e5]), cortical volume 
(2.37e5 mm3 [1.59e5-3.22e5]), intracranial volume (1.57e05 mm3 
[−0.55e5−3.70e5]), subcortical volume (2.12e04 mm3 [1.16e4-
3.08e4]) and cerebral white matter volume (1.53e05 mm3 [−1.11e5–
4.18e5]), indicating the low-field acquisition underestimated high-
field data. Bias for cortical thickness was not significantly different 
from zero (−0.02 mm [−0.31–0.28]), indicating that, on average, 
low-field estimates neither over- or under-estimated the high-
field data.

At the regional level, we found moderate correspondence across 
widespread cortical regions for surface area (mean Pearson’s r 
across all 68 regions = 0.35, range = −0.23–0.62; mean ICC = 0.34, 
range = −0.16–0.59) and cortical volume (mean r across all 68 
regions = 0.32, range = −0.24–0.64; mean ICC = 0.31, range − 0.21–
0.58), whereas estimates for cortical thickness were either poor, null 
or negative (mean r across all 68 regions = −0.04, range = −0.37–
0.33; mean ICC = −0.03, range = −0.31–0.29, Figure  2, 
Supplementary Tables 2, 3). In particular, the brainstem (r = 0.79, 
p = 3.29e-16, q = 7.21e-14, ICC = 0.78, p = 2.74e-16, q = 4.29e-15) and 
lateral ventricle (right, r = 0.92, p = 3.67e-29, q = 6.67e-27; 
ICC = 0.92, p = 1.53e-29, q = 2.79e-27; left, r = 0.96, p = 9.47e-38, 
q = 2.58e-35; ICC = 0.95, p = 2.89e-36, q = 7.86e-34) low-field 
estimates showed high fidelity to measures from high-field scans 
(Figures 2, 3A). For surface area and cortical volume, the strongest 
positive correlations were observed in prefrontal (area, left rostral 
middle frontal, r = 0.61, p = 2.61e-08, q = 1.31e-07; ICC = 0.56, 
p = 2.02e-07, q = 9.38e-07), occipital (volume, right lateral occipital, 
r = 0.57, p = 3.13e-07, q = 1.36e-06; ICC = 0.56, p = 1.46e-07, 
q = 6.91e-07) and right anterior cingulate regions (area, r = 0.62, 
p = 9.78e-09, q = 5.24e-08; ICC = 0.49, p = 8.19e-06, q = 2.97e-05; 
volume, r = 0.64, p = 2.45e-09, q = 1.39e-08; ICC = 0.58, p = 6.08e-08, 
q = 2.99e-07; see Supplementary Tables 2, 3).
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TABLE 2 Pearson correlation coefficients for the correspondence between low-field (64mT) and high-field (3T) MR images and comparisons across 
super-resolution approaches.

Brain 
measure

Standard Axial 64mT 
Correlations with 3T

SynthSR-Processed Axial 64mT 
Correlations with 3T

Steiger’s

r p q r p q Z p q

Total Surface Area 0.76 4.01e-14 1.01e-13 0.90 9.01e-26 5.16e-25 3.73 1.94e-04 3.22e-04

Mean Cortical 

Thickness
−0.05 0.664 0.697 0.14 0.241 0.286 1.43 0.153 0.186

Estimated 

Intracranial Volume
0.82 5.58e-18 1.67e-17 0.85 1.74e-20 6.10e-20 1.45 0.148 0.183

Subcortical Gray 

Matter Volume
0.66 3.83e-10 8.32e-10 0.88 4.89e-24 2.57e-23 4.57 4.84e-06 8.97e-06

Cortical Volume 0.67 3.24e-10 7.28e-10 0.86 1.94e-21 7.17e-21 4.18 2.90e-05 5.08e-05

Cerebral White 

Matter Volume
0.32 0.007 0.010 0.92 1.23e-28 7.74e-28 8.75 2.18e-18 6.88e-18

Total Brain Volume 0.60 4.57e-08 9.60e-08 0.97 1.15e-43 1.81e-42 9.80 1.15e-22 5.59e-22

Brain 
measure

Standard Axial 64mT 
Correlations with 3T

Standard Multi-Orientation 
64mT Correlations with 3T

Steiger’s

r p q r p q Z p q

Total Surface Area 0.76 4.01e-14 1.01e-13 0.58 1.07e-07 2.18e-07 −2.52 0.012 0.017

Mean Cortical 

Thickness
−0.05 0.664 0.697 −0.25 0.038 0.051 −1.54 0.123 0.155

Estimated 

Intracranial Volume
0.82 5.58e-18 1.67e-17 0.78 1.29e-15 3.39e-15 −2.36 0.018 0.026

Subcortical Gray 

Matter Volume
0.66 3.83e-10 8.32e-10 0.71 5.86e-12 1.42e-11 0.94 0.349 0.393

Cortical Volume 0.67 3.24e-10 7.28e-10 0.54 1.40e-06 2.68e-06 −1.76 0.079 0.101

Cerebral White 

Matter Volume
0.32 0.007 0.010 0.41 3.63e-04 5.73e-04 3.57 3.64e-04 5.73e-04

Total Brain Volume 0.60 4.57e-08 9.60e-08 0.69 3.30e-11 7.71e-11 3.49 4.84e-04 7.44e-04

Brain 
measure

Standard Axial 64mT 
Correlations with 3T

SynthSR-Processed Multi-
Orientation 64mT Correlations 

with 3T
Steiger’s

r p q r p q Z p q

Total Surface Area 0.76 4.01e-14 1.01e-13 0.87 1.42e-22 6.38e-22 2.85 0.004 0.007

Mean Cortical 

Thickness
−0.05 0.664 0.697 0.12 0.317 0.363 1.09 0.275 0.321

Estimated 

Intracranial Volume
0.82 5.58e-18 1.67e-17 0.84 1.52e-19 5.05e-19 0.83 0.409 0.437

Subcortical Gray 

Matter Volume
0.66 3.83e-10 8.32e-10 0.87 3.47e-22 1.46e-21 4.05 5.12e-05 8.71e-05

Cortical Volume 0.67 3.24e-10 7.28e-10 0.86 5.50e-22 2.17e-21 4.34 1.43e-05 2.57e-05

Cerebral White 

Matter Volume
0.32 0.007 0.010 0.92 1.20e-28 7.74e-28 8.46 2.69e-17 7.69e-17

Total Brain Volume 0.60 4.57e-08 9.60e-08 0.96 3.64e-38 3.82e-37 8.38 5.52e-17 1.51e-16

Top section: Left column shows Pearson correlations between standard single low-field (64mT) and high-field (3T) images for each brain measure. Middle column shows Pearson correlations 
between SynthSR-processed low-field and high-field estimates. Right column shows results of Steiger Z-tests, assessing whether the correlations for standard and SynthSR-processed scans are 
statistically different. Middle section: Left column shows Pearson correlations between standard single low-field (64mT) and high-field (3T) images for each brain measure. Middle column 
shows Pearson correlations between standard multi-orientation low-field and high-field estimates. Right column shows results of Steiger Z-tests, assessing whether the correlations for single 
and multi-orientation approaches are statistically different. Bottom section: Left column shows Pearson correlations between standard single low-field (64mT) and high-field (3T) images for 
each brain measure. Middle column shows Pearson correlations between SynthSR-processed multi-orientation low-field and high-field estimates. Right column shows results of Steiger Z-tests, 
assessing whether the correlations for standard and SynthSR-processed multi-orientation approaches are statistically different. Values in bold survive correction for multiple comparisons.
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Application of SynthSR significantly 
improves correspondence between 
neuroimaging measures extracted from 
single orientation low-field scans and 
high-field scans

When we applied SynthSR to single T1/T2 pairs of low-field-
acquired images, we found significantly improved correspondence 
with high-field images for most global brain measures, with the 
exception of mean cortical thickness and intracranial volume (see 
Tables 2, 3). We observed statistically significant improvements for 
global estimates of cerebral white matter volume (standard image 
Pearson’s r = 0.32, SynthSR-processed image r = 0.92; Steiger’s z = 8.75, 
p = 2.18e-18, q = 6.88e-18), total brain volume (standard r = 0.60, 
SynthSR-processed r = 0.97; z = 9.80, p = 1.15e-22, q = 5.59e-22), 
cortical volume (standard r = 0.67, SynthSR-processed r = 0.86; z = 4.18, 
p = 2.90e-05, q = 5.08e-05), subcortical gray matter volume (standard 
r = 0.66, SynthSR-processed r = 0.88; z = 4.57, p = 4.84e-06, q = 8.97e-
06) and total surface area (standard r = 0.76, SynthSR-processed 
r = 0.90; z = 3.73, p = 1.94e-04, q = 3.22e-04). With the exception of 
cortical thickness, the ICC also showed significant improvements in 
correspondence, with ICC coefficients for SynthSR-processed images 
in the range of 0.84–0.97 (Table 3). When we examined the individual 
data distributions (Figure 4), we found that processing low-field scans 
with SynthSR improved correspondence by increasing global brain 
estimates to more closely approximate the high-field data. Mean 
differences (SynthSR subtracting 3T) for estimates of surface area were 
−0.4% (SD 4.1), cortical volume −19.4% (4.4), subcortical volume 
−11.4% (4.2), cerebral white matter volume + 1.8% (5.6), total brain 

volume −9.4% (2.3) and estimated intracranial volume + 1.3% (7.2). 
However, for cortical thickness, SynthSR decreased global estimates, 
resulting in poorer correspondence with high-field values (mean 
difference for standard low-field 0.85% [5.4], mean difference for 
SynthSR-processed low-field −12.9% [3.7]). Bland–Altman plots of 
agreement (see Supplementary Figure 3) showed positive bias for total 
brain volume (1.14e05 mm3, 95% limits of agreement [0.52e5-1.75e5]), 
cortical volume (1.02e05 mm3 [0.44e05-1.59e05]), subcortical volume 
(2.12e04 mm3 [1.94e3-12.98e3]), and cortical thickness (0.35 mm 
[0.14–0.56]), indicating that SynthSR-processed low-field images still 
underestimated 3T data. There was no or minimal bias for total 
surface area (977 mm2, 95% limits of agreement −1.65e04–1.85e04), 
intracranial volume (−1.29e04 mm3 [−2.09e05–1.83e05]), and 
cerebral white matter volume (−7.03e03 mm3 [−55.96e03–41.89e03]). 
At the regional level, processing with SynthSR significantly improved 
cortical thickness correspondence (via Pearson correlations) within 
temporal (z range = 2.18–4.08; Figure  3B and 3C; 
Supplementary Table 2) and prefrontal regions (z range = 2.78–2.85), 
with similar improvements when assessed via ICC (temporal z range 
2.65–4.02; prefrontal z range 2.44–2.68; Supplementary Table 3). In 
addition, using SynthSR yielded widespread improvements in image 
correspondence (assessed via Pearson correlations) for regional 
estimates of cortical surface area (mean z = 2.55, range = −0.85–5.70), 
cortical volume (mean z = 2.51, range = −0.55–6.18) and subcortical 
volume (mean z = 2.50, range = −1.67–5.15), with the strongest effects 
observed in the left superior temporal lobe (area, z = 5.45; volume, 
z = 6.18) and precentral gyri supplementary motor areas (area, z = 5.70; 
volume, z = 5.42; Figure 3C; Supplementary Table 2; corresponding 
ICC values can be found in Supplementary Table 3).
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FIGURE 2

Correspondence between standard low-field (64mT) and high-field (3T) MR images. (A) Scatterplots of relationships between low-field and high-field 
images for global brain measures. Data points represent global estimates for each individual. Shading denotes 95% confidence intervals. (B) Pearson 
correlations for relationships between low-field and high-field images at the regional level. Shading represents mean correlation within each region 
across all individuals. (C) Distribution of correlation strengths for relationships between standard low-field and high-field images across each brain 
measure. Data points represent mean correlation across each region of interest.
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A multi-orientation approach achieves 
modest improvements on a 
single-orientation approach for some 
neuroimaging measures

When we used a multi-orientation (N = six pairs of T1/T2 multi-
orientation scans) image averaging approach, we found modest and 
significantly improved correspondence to high-field scans for global 
estimates of cerebral white matter volume as assessed via Pearson’s 
correlation (z = 3.57, p = 3.64e-04, q = 5.73e-04) and total brain volume 
(z = 3.49, p = 4.84e-04, q = 7.44e-04; Table 2). In contrast, we found a 
negative relationship for mean cortical thickness, with higher cortical 
thickness values in the 3T corresponding to lower total surface area 
(z = −2.52, p = 0.012, q = 0.016) and estimated intracranial volume 

(z = −2.36, p = 0.018, q = 0.024; Table 2) values in the low-field data. 
We did not see a significant improvement in global estimates of cortical 
thickness, subcortical and cortical volume when we  increased the 
number of scan acquisitions. Examination of the data distributions for 
cerebral white matter and total brain volume (Supplementary Figure 4) 
revealed that the multi-orientation approach increased the 
correspondence for all scans in a relatively uniform manner. In 
contrast, there were highly varied outcomes for the remaining brain 
measures (i.e., surface area, cortical thickness, subcortical and cortical 
gray matter volume), whereby some scans improved while others 
decreased in correspondence to the high-field estimates.

At the regional level, when we used a multi-orientation approach, 
correspondence (via Pearson correlations) became more negative for 
cortical thickness in several brain regions, including the left rostral 
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FIGURE 3

Comparison of super-resolution approaches in improving correspondence between low-field and high-field MR images. (A) Correlation of standard 
single-acquisition low-field images with high-field images for surface area, cortical volume, cortical thickness and subcortical volume. (B) Correlation 
of SynthSR-processed, single-acquisition low-field images with high-field images. (C) Steiger Z-test values for change in correspondence between 
standard and SynthSR-processed data. (D) Correlation of multi-orientation standard low-field images with high-field images. (E) Steiger Z-test values 
for change in correspondence between single-acquisition and multi-orientation approaches. (F) Correlation of SynthSR-processed, multi-orientation 
low-field images with high-field images. (G) Steiger Z-test values for change in correspondence between single-acquisition standard low-field images 
and multi-orientation, SynthSR-processed low-field images.
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TABLE 3 Intraclass correlation coefficients (ICCs) for the correspondence between low-field (64mT) and high-field (3T) MR images and comparisons 
across super-resolution approaches.

Brain 
measure

Standard Axial 64mT ICCs with 
3T

SynthSR-Processed Axial 64mT 
ICCs with 3T

Steiger’s

ICC p q ICC p q Z p q

Total Surface Area 0.71 1.65e-12 4.15e-12 0.90 2.55e-26 1.46e-25 4.35 1.38e-05 2.41e-05

Mean Cortical 

Thickness
−0.05 0.668 0.701 0.13 0.139 0.178 1.29 0.197 0.230

Estimated 

Intracranial Volume
0.79 1.11e-16 3.04e-16 0.84 2.68e-20 1.06e-19 2.07 0.038 0.053

Subcortical Gray 

Matter Volume
0.66 1.46e-10 3.40e-10 0.88 1.14e-24 6.01e-24 4.57 4.81e-06 9.17e-06

Cortical Volume 0.61 1.08e-08 2.34e-08 0.82 1.32e-18 4.38e-18 4.06 4.91e-05 8.36e-05

Cerebral White 

Matter Volume
0.24 0.024 0.036 0.91 5.44e-29 3.43e-28 8.47 2.42e-17 7.34e-17

Total Brain Volume 0.56 1.43e-07 2.90e-07 0.97 1.49e-42 2.35e-41 9.40 5.49e-21 2.30e-20

Brain 
measure

Standard Axial 64mT ICCs with 
3T

Standard Multi-Orientation 64mT 
ICCs with 3T

Steiger’s

ICC p q ICC p q Z p q

Total Surface Area 0.71 1.65e-12 4.15e-12 0.58 7.44e-08 1.56e-07 −1.88 0.059 0.080

Mean Cortical 

Thickness
−0.05 0.668 0.701 −0.22 0.969 0.969 −1.32 0.187 0.223

Estimated 

Intracranial Volume
0.79 1.11e-16 3.04e-16 0.76 7.51e-15 1.97e-14 −1.94 0.052 0.072

Subcortical Gray 

Matter Volume
0.66 1.46e-10 3.40e-10 0.71 2.32e-12 5.61e-12 0.91 0.360 0.398

Cortical Volume 0.61 1.08e-08 2.34e-08 0.49 7.32e-06 1.36e-05 −1.53 0.126 0.165

Cerebral White 

Matter Volume
0.24 0.024 0.036 0.30 0.006 0.010 2.11 0.035 0.051

Total Brain Volume 0.56 1.43e-07 2.90e-07 0.66 1.98e-10 4.46e-10 3.38 7.27e-04 0.001

Brain 
measure

Standard Axial 64mT ICCs with 
3T

SynthSR-Processed Multi-
Orientation 64mT ICCs with 3T

Steiger’s

ICC p q ICC p q Z p q

Total Surface Area 0.71 1.65e-12 4.15e-12 0.87 3.67e-23 1.78e-22 3.50 4.72e-04 7.62e-04

Mean Cortical 

Thickness
−0.05 0.668 0.701 0.12 0.160 0.194 1.07 0.282 0.324

Estimated 

Intracranial Volume
0.79 1.11e-16 3.04e-16 0.83 2.01e-19 7.04e-19 1.45 0.147 0.185

Subcortical Gray 

Matter Volume
0.66 1.46e-10 3.40e-10 0.86 2.58e-22 1.16e-21 3.91 9.17e-05 1.52e-04

Cortical Volume 0.61 1.08e-08 2.34e-08 0.84 5.64e-20 2.09e-19 4.45 8.54e-06 1.54e-05

Cerebral White 

Matter Volume
0.24 0.024 0.036 0.92 2.41e-29 1.69e-28 8.47 2.45e-17 7.34e-17

Total Brain Volume 0.56 1.43e-07 2.90e-07 0.96 1.56e-38 1.64e-37 8.43 3.42e-17 9.80e-17

Top section: Left column shows ICC values between standard single low-field (64mT) and high-field (3T) images for each brain measure. Middle column shows ICCs between SynthSR-
processed low-field and high-field estimates. Right column shows results of Steiger Z-tests, assessing whether the ICCs for standard and SynthSR-processed scans are statistically different. 
Middle section: Left column shows ICCs between standard single low-field (64mT) and high-field (3T) images for each brain measure. Middle column shows ICCs between standard multi-
orientation low-field and high-field estimates. Right column shows results of Steiger Z-tests, assessing whether the ICCs for single and multi-orientation approaches are statistically different. 
Bottom section: Left column shows ICCs between standard single low-field (64mT) and high-field (3T) images for each brain measure. Middle column shows ICCs between SynthSR-processed 
multi-orientation low-field and high-field estimates. Right column shows results of Steiger Z-tests, assessing whether the ICCs for standard and SynthSR-processed multi-orientation 
approaches are statistically different. Values in bold survive correction for multiple comparisons.
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middle frontal (z = −2.30, p = 0.021, q = 0.040) and bilateral 
supramarginal gyri (left, z = −2.69, p = 0.007, q = 0.015; right, z = −3.57, 
p = 3.63e-04, q = 9.60e-04; Figure 3D and 3E; Supplementary Table 4; 
corresponding ICC values can be found in Supplementary Table 5). 
Correlations also became significantly more negative in the right 
middle temporal gyrus for estimates of cortical surface area (z = −2.26, 
p = 0.024, q = 0.044) and cortical volume (z = −2.23, p = 0.026, q = 0.047).

A combination of SynthSR and 
multi-orientation approaches achieved 
significant improvements in image 
correspondence over a standard 
single-pair acquisition

When we combined the multi-orientation (N = six T1/T2 multi-
orientation scan pairs) and SynthSR processing approaches, we found 
significantly improved correspondence compared to a standard single-
pair acquisition for almost all brain measures (Tables 2, 3). Following 
this combined approach, almost all global measures showed excellent 
correspondence (Pearson r’s > 0.85, ICC values >0.84) with high-field 
images, with the exception of mean cortical thickness, of which 
correspondence was not significantly improved following additional 
processing (Pearson’s r = 0.12, p = 0.317, q = 0.363; ICC = 0.12, p = 0.160, 
q = 0.194). We found that the combined approach resulted in uniform 
increases in global estimates across all individuals, with cortical 
thickness as the exception (Supplementary Figure 5). At a regional 
level, the combined approach improved correspondence for surface 

area and volume across widespread cortical and subcortical regions, 
with strongest effects observed in the temporal lobe and supplementary 
motor areas (Figure 3F and 3G).

Multi-orientation scans processed with 
SynthSR improved image correspondence 
over single-acquisition scans processed 
with SynthSR in localized regions of the 
cortex

Finally, we compared the difference in correspondence between 
single-acquisition (N = one T1/T2 pair) scans processed with SynthSR 
and multi-orientation (N = six T1/T2 pairs) scans processed with 
SynthSR. We found that this approach decreased the correspondence 
for estimates of global surface area (z = −2.16, p = 0.031, q = 0.042), but 
did not significantly influence other global measures 
(Supplementary Table 6). At a regional level, increasing the number 
of scans acquired and processed with SynthSR improved the 
correspondence of regions primarily within the cingulate cortex 
(Supplementary Figure 6).

Correlations with age and motion

We tested whether age or motion were associated with individual-
level differences between low- and high-field estimates of each brain 
measure. After correction for multiple comparisons, there were no 
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FIGURE 4

Comparison of individual-level global measurements across standard 64mT axial scans, SynthSR-processed 64mT axial scans, and traditional 3T scans. 
Boxplots show individual estimates for global brain measures (A–G) derived from standard axial 64mT scans (64mT), SynthSR-processed axial 64mT 
scans (SynthSR 64mT) and 3T scans (3T). Gray lines connect the same individuals across the three approaches.
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statistically significant relationships between the individual-level 
differences in high- and low-field data and participant motion (See 
Supplementary Table  7). Age was negatively correlated with 
discrepancies in estimates of cortical thickness following processing 
with SynthSR (Pearson’s r = −0.59, p = 8.36e-08, q = 2.73e-06; 
Supplementary Table  8), and was also negatively correlated with 
discrepancies in estimates of cortical volume across all processing 
approaches. This indicates that the younger the participant, the greater 
the discrepancy between low-field and the 3T estimates. Further, 
we observed a negative correlation between age and discrepancies in 
estimates of surface area in the standard acquisition (Pearson’s 
r = −0.59, p = 8.36e-08, q = 2.73e-06), which was not present in images 
processed with SynthSR.

Discussion

In this study, we  evaluated the correspondence between MR 
images acquired from low- and high-field scanners in a community 
sample of young people. We found that pairs of T1- and T2-weighted 
images obtained at low-field (64mT) showed high fidelity to images 
acquired at high-field (3T) for most global and regional brain 
measures, most notably measures of surface area, cortical volume, and 
subcortical volume. When we implemented a novel super-resolution 
method via a CNN [i.e., SynthSR, (44)], we  found significantly 
improved image correspondence across almost all brain measures. 
When we increased the number of low-field scan acquisitions and 
orientations, we  observed improvements in low-field image 
correspondence for estimates of cerebral white matter volume and 
total brain volume. The discrepancy between low-field and 3T 
measurements was not related to motion during the low-field scan 
session. These results demonstrate the potential of low-field imaging 
in young people and provide a foundation for future work to further 
improve low-field image quality and fidelity.

We found that standard single-acquisition low-field scans 
showed high correspondence with high-field-acquired scans for 
estimates of intracranial volume (r = 0.82) and surface area (r = 0.76), 
and moderate correspondence for estimates of subcortical, cortical 
gray and total brain volume (r = 0.60–0.67). These findings support 
previous work in children and adolescents demonstrating high 
fidelity between low-field and high-field scans for estimates of global 
gray matter, white matter, and total intracranial volume (22). 
Further, we extend previous work by characterizing the regional 
variation in LF-3T correspondence in cortical surface area, cortical 
volume, and subcortical volume, identifying regions with the 
greatest fidelity to high-field scans. Regions with the strongest 
correlations between low- and high-field tended to be larger and are 
typically high-contrast (i.e., the brainstem and ventricles), consistent 
with previous work demonstrating greater image fidelity for 
low-field data within larger brain regions (33). Within cortical 
regions, the greater correspondence within temporal, prefrontal, and 
cingulate lobes are important developmentally as these regions show 
protracted maturational trajectories (51, 52) and are commonly 
implicated in mental health disorders (53). The considerably lower 
cost and increased accessibility offered by low-field technology, 
coupled with demonstrated correspondence with high-field scans, 
provide a compelling argument for implementation of low-field 
technology at scale among young people.

We found that processing scans via SynthSR significantly 
improved image correspondence for global and regional estimates of 
gray and white matter volume, subcortical volume, surface area and 
total brain volume in young people. Regions that showed the greatest 
improvements included temporal and prefrontal regions, parts of the 
brain which have a developmental peak last, as opposed to sensory 
and motor cortices, which reach maturation at earlier points in 
development (54, 55). Our findings build on and extend recent work 
in adults demonstrating high correspondence between low- and high-
field images following processing with SynthSR (44). While no 
incidental findings were reported in this study, future work should 
seek to investigate how SynthSR and other super-resolution methods 
might help to improve the ability to identify these findings in clinical 
and non-clinical samples.

We found that individual-level differences in estimates between 
low-field and high-field data were negatively correlated with age for 
cortical thickness and cortical volume several brain measures, 
indicating that with both standard and SynthSR-processed low-field 
estimates data were more accurate in older individuals for these 
measures. This might be partly explained by the existing reference 
library used to build SynthSR, which was built on an adult sample 
(44). Alternatively, age-associated patterns in gray-white matter 
contrast may contribute to the ability to differentiate the pial surface 
and white matter boundary at differing ages (56, 57). However, on the 
whole, despite being derived from adult training data, SynthSR still 
performed quite well in improving image correspondence in our 
sample, which included youth from middle childhood, adolescents, 
and young adults. These results demonstrate the validity of using 
SynthSR in estimating global and regional cortical surface area, 
cortical volume, and subcortical volume measures in 
younger populations.

We found that implementing a multi-orientation scan series 
yielded modest improvements in image correspondence for estimates 
of cerebral white matter and total brain volume. However, these 
improvements were not observed in other brain measures. There was 
decreased correspondence for estimates of surface area and 
intracranial volume, and null effects for cortical thickness. While our 
approach did not show the same degree of improvement displayed in 
previous work (31, 32), we note that these studies were acquired with 
a high-field (3T) magnet, in contrast to the low-field magnet used in 
our study.

It is also possible that we could employ alternative co-registration 
procedures to improve this correspondence, as we only implemented 
one type of co-registration in this study (i.e., an affine transformation 
registered to the axial image). In future, we may also achieve improved 
low-field and 3T measure correspondence if we employ alternative 
multi-orientation approaches. These approaches might include, for 
example, combining a multi-orientation approach with variable echo 
times (58), or obtaining multiple scans in a single orientation (59). The 
variable results we observed across brain measures may suggest that 
specific super-resolution approaches might be  more effective for 
specific brain tissues — further research is necessary to investigate 
this possibility.

In this sample, neither super-resolution approach improved the 
correspondence of low-field estimates for total mean cortical 
thickness. However, at the regional level, processing with SynthSR 
yielded significant improvements in correspondence within the 
prefrontal and temporal lobes; for example, correspondence increased 
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from r = −0.18 to r = 0.43 within the right temporal lobe following 
processing with SynthSR. As cortical thickness is measured at the 
sub-millimeter level, changes in voxel size can greatly affect those 
measurements. As a result, estimation of cortical thickness remains 
challenging at low field, whereby images are acquired with larger voxel 
size and slice thickness than traditional high-field-strength systems 
(44). In addition, the lower contrast-to-noise ratio of low-field images 
increases the difficulty for software to accurately estimate gray and 
white matter boundaries, which are required for accurate estimation 
of cortical thickness (45). In order to address these challenges, further 
refinement of acquisition and processing pipelines, or deployment of 
alternative super-resolution approaches, will be  necessary to 
successfully recapitulate estimates of cortical thickness in low-field-
strength systems. We are rigorously investigating additional methods 
at this time. Improvements to the measurement of cortical thickness 
with low-field MRI are important for implementation of low-field MR 
systems among youth and young adults, given the marked changes in 
cortical thickness that occur during this developmental period (25, 
60) and its relevance to several psychiatric disorders (61, 62). One 
approach may be to leverage the advantages of both low- and high-
strength MRI systems by employing a sequential staging approach, 
using low-field systems at scale for initial identification of high-risk 
cases, and reserving high-field MR for later classification of true-
positive from false-positive findings (63). Alternatively, one promising 
approach may be to use measurement-in-error statistical modeling. 
In other fields of medicine, measurement-in-error statistical modeling 
is often used to develop low-cost, convenient measures for risk 
assessment (64–66). Firstly, a functional relationship is established 
between a ‘gold standard’ measure (e.g., 3T-acquired image) and a 
noisier, low-cost, convenient measure (e.g., LF-acquired image) for 
risk assessment (67). This model is then transported to an external 
sample where a proxy estimate of the gold standard measure is 
obtained using only the noisier measure. We plan to test the feasibility 
of this approach once we  have collected sufficient data in an 
independent sample of youth.

Characterization of the diverse neurodevelopmental trajectories 
in mental health and illness is integral to understanding the etiology 
of mental disorders in youth. Despite the advent of ‘big data’ and the 
emergence of several large neuroimaging datasets, most samples only 
include individuals who can travel to fixed MR scanners within urban 
medical and research centers (68, 69), commonly termed “samples of 
convenience.” Systemic and structural barriers prohibiting widespread 
MR access limit the diversity and generalizability of neuroimaging 
samples, which may act to reinforce systemic biases in inference and 
interpretation (68). Low-field technology offers an opportunity to 
improve the accessibility of MR technology to underserved 
populations, thereby addressing systemic biases in healthcare access 
and in representation within neuroscience (68, 69). Also, for 
neuroimaging to have practical prognostic and diagnostic utility, 
we must be able to obtain MRI scans in a variety of settings, not only 
in urban research centers. Incorporating community settings into risk 
assessment programs is crucial to identify at-risk individuals earlier, 
reach individuals traditionally underserved by medical research 
centers, and progress toward the goal of universal screening and 
prevention (70–72). This approach will also satisfy service users’ 
preference for community settings and easily implemented 
assessments (72). Finally, in young people in particular, increasing 

diversity in neuroscience is essential to improving our ability to 
understand inter-individual differences in brain development, identify 
emerging neurodevelopmental and psychiatric disorders, and discover 
biomarkers that are generalizable to diverse populations (68, 73).

We must acknowledge the limitations of this study. This study was 
conducted in healthy children, adolescents, and young adults; further 
work is necessary to test the generalizability of these findings to 
clinical populations. Further, we assumed high-field acquired images 
as the “ground truth,” although the accuracy of high-field MR images 
in estimating structural brain measures has not been established. 
While we  used pairs of T1- and T2-weighted images, previous 
low-field studies have used only T2-weighted scans (22); thus, 
additional work is necessary to quantitatively compare and evaluate 
these contrasting approaches. We did not apply distortion correction 
or concomitant field correction for either low-field or high-field scans; 
employing these correction strategies may help to further improve 
image quality, as has been demonstrated elsewhere (74). In addition, 
our selected acquisition parameters and image processing and super-
resolution software were not specifically developed for pediatric 
populations; developmentally-specific software has yet to 
be developed, and may further improve image fidelity and quality.

In summary, we found that brain structural images acquired in a 
sample of young people in a portable low-field MR system showed 
high fidelity to high-field MR images for measures of brain volume 
and surface area. Additionally, we found that greater correspondence 
to high-field images could be  achieved for cerebral white matter 
volume and subcortical volume following processing via a CNN 
developed for low-field images. In contrast, using a multi-orientation 
image averaging approach resulted in modest improvements in image 
correspondence for measures of white matter volume and total brain 
volume, but resulted in lower correspondence for surface area and 
intracranial volume. Finally, we found that using a combined multi-
orientation and CNN-processing approach significantly improved 
image correspondence when compared to standard single-acquisition 
scans, but negligible improvements in correspondence above single-
acquisition, CNN-processed scans. Taken together, our results indicate 
that using single pairs of T1- and T2-weighted images, combined with 
super-resolution of images via SynthSR, yielded the greatest 
improvements in correspondence between low-field and high-field 
MR images. Future work should seek to evaluate different 
combinations of acquisition and processing approaches to further 
improve images acquired with portable low-field systems.
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