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Background: Patients with severe neurological conditions are at high risk during 
withdrawal and extubation, so it is important to establish a model that can 
quantitatively predict the risk of this procedure.

Methods: By analyzing the data of patients with traumatic brain injury and 
tracheal intubation in the ICU of the affiliated hospital of Hangzhou Normal 
University, a total of 200 patients were included, of which 140 were in the 
modeling group and 60 were in the validation group. Through binary logistic 
regression analysis, 8 independent risk factors closely related to the success of 
extubation were screened out, including age  ≥  65  years old, APACHE II score  ≥  15 
points, combined chronic pulmonary disease, GCS score  <  8 points, oxygenation 
index <300, cough reflex, sputum suction frequency, and swallowing function.

Results: Based on these factors, a risk prediction scoring model for extubation 
was constructed with a critical value of 18 points. The AUC of the model was 
0.832, the overall prediction accuracy was 81.5%, the specificity was 81.6%, 
and the sensitivity was 84.1%. The data of the validation group showed that the 
AUC of the model was 0.763, the overall prediction accuracy was 79.8%, the 
specificity was 84.8%, and the sensitivity was 64.0%.

Conclusion: These results suggest that the extubation risk prediction model 
constructed through quantitative scoring has good predictive accuracy and 
can provide a scientific basis for clinical practice, helping to assess and predict 
extubation risk, thereby improving the success rate of extubation and improving 
patient prognosis.
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1 Introduction

With the continuous advancement of medical technology, mechanical ventilation, as an 
important treatment method in the field of critical care medicine, has been widely used in the 
treatment of neurocritical patients, significantly improving the survival rate of patients (1, 2). 
However, mechanical ventilation also brings many complications, such as pulmonary 
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infection, tracheal injury, pulmonary hyperinflation, increased 
circulatory load, changes in hemodynamics, urinary tract infection, 
etc. Therefore, how to reasonably remove the endotracheal tube 
(extubation) is one of the urgent problems to be solved in the field of 
critical care medicine (3).

Due to the specificity of their conditions, the process of extubation 
for neurocritical patients is more complicated than for other patients, 
involving more risk factors (insufficient respiratory muscle strength, 
swallowing reflex disorders, pulmonary infection, atelectasis, 
intracranial hypertension, etc.) (4–7). Therefore, how to scientifically 
and reasonably assess the extubation risk of neurocritical patients and 
formulate appropriate extubation strategies has become an important 
content of clinical work (8).

Patients with severe neurological impairments frequently 
necessitate the provision of mechanical ventilation to sustain 
respiratory function, and the process of extubation necessitates a 
scaling back or cessation of this support, presenting a substantial 
challenge to the patient’s physiological resilience. These individuals 
frequently lack the autonomy to breathe independently, hence their 
reliance on ventilatory assistance; extubation, thus, demands the 
reinstatement of their self-sustaining respiratory capabilities, which 
exert significant pressure on the respiratory centers and associated 
musculature. In the context of severe neurological patients, 
determining the optimal moment for extubation can be a daunting 
task, as it involves precise ascertainment of the patient’s resumption of 
autonomous breathing and the assurance of a safe extubation process. 
Inappropriate timing of extubation can precipitate a decline in the 
patient’s health status, potentially culminating in life-
threatening complications.

The contemporary paradigms within neurological intensive 
care lack robust empirical substantiation for the algorithmic 
management of airway interventions, such as intubation, 
extubation, and pneumatectomy. The existing randomized 
controlled trials (RCTs) and cohort investigations do not 
sufficiently mirror the patient demographic encompassing severe 
neurological pathologies (9–11). Consequently, the determinants 
heralding the success of extubation remain elusive, and the patient 
subset that might advantageously undergo direct tracheotomy 
(i.e., tracheotomy performed without prior extubation) is 
indeterminate. Scholarships that have endeavored to construct 
predictive indices for the likelihood of successful extubation have 
been hampered by methodological constraints, including the 
enrollment biases of single-center studies and the absence of a 
validation cohort (12). Hence, there exists a paucity of evidence-
informed clinical guidelines to direct the clinical practice of 
tracheal extubation and tracheotomy in patients afflicted with 
severe neurological ailments.

Cinotti et al. have disseminated the outcomes of the Extubation 
Strategy and Prognosis (ENIO) study conducted among patients 
within neurointensive care units (13). The study found that 19.4% of 
patients who underwent extubation experienced failure of the 
extubation process within a 5-day window (serving as the primary 
endpoint). Extubation failure was observed to be less prevalent among 
youthful patients, those suffering from Traumatic Brain Injury (TBI), 
and individuals exhibiting optimal levels of alertness. Respiratory 
insufficiency was identified as a more common rationale for 
reintubation than instances of airway or nervous system failure (14). 
Additionally, a further 21.1% of patients ultimately underwent direct 

tracheotomy, subsequent to a median interval of 9 days (with a range 
of 5 to 15 days, as indicated by the interquartile range) (15).

In recent annums, a cadre of studies has been endeavored to 
prognosticate the likelihood of extubation failure among neurological 
patients. In the absence of a proprietary extubation metric tailored for 
patients with Traumatic Brain Injury (TBI), the VISAGE score has 
been predominantly adopted within the broader population of 
neurology intensive care units, factoring in laryngeal reflexes, cough 
efficacy, sputum expectoration, and the neurological status as gaged 
by the visual subscale of the revised Coma Recovery Scale (16). 
Nonetheless, this scoring system necessitates external validation. 
Indeed, the extant corpus of research includes investigations into the 
prevalent scenarios and determinants of extubation failure. Current 
methodologies, however, lack a systematic appraisal of the precision 
and relative accuracy of extubation risk prediction models for 
craniocerebral injured patients, precluding the empirical endorsement 
of extant risk prediction models. This limitation hampers the clinical 
application of precise and pertinent risk assessment methodologies. It 
is imperative for subsequent scholarly inquiries to delve into the 
pathophysiology of extubation failure in cerebral-injured patients, 
thereby ameliorating the risk profile for those susceptible to extubation 
failure and forestalling subsequent reintubation. Establishment of a 
risk prediction model that can objectively ascertain risk and augment 
the success rate of extubation is a critical imperative. This research is 
dedicated to constructing a predictive model and scoring system for 
extubation, that will quantitatively assess the suitability of tracheal 
intubation patients with craniocerebral injury in the intensive care 
unit for extubation, as well as the influence of pertinent factors. The 
study aims to furnish practical guidance for the prevention of post-
extubation complications, thereby mitigating the incidence of 
extubation-related failures.

Although there are currently some studies exploring the risk 
factors for extubation in critically ill patients, most of these studies are 
single-center and small-sample studies, and the generalizability and 
accuracy of their results remain to be further verified. Therefore, this 
study intends to explore the actual situation and related risk factors of 
extubation in ICU neurocritical patients with mechanical ventilation 
through evidence-based methods, screen out independent risk factors, 
and construct a quantitative extubation risk prediction model based 
on these factors to provide a more scientific and reasonable basis for 
clinical extubation decision-making. At the same time, this study will 
also strictly validate the constructed risk prediction model to ensure 
its accuracy and reliability in clinical practice (17). The main objective 
of this study was to develop and validate a quantitative risk prediction 
model for predicting risk during withdrawal and extubation in 
patients with severe neurological conditions.

2 Materials and methods

2.1 Study subjects

A total of 200 critically ill neurology patients admitted to the 
Intensive Care Unit of our hospital from January 2020 to December 
2022, and who underwent invasive mechanical ventilation for more 
than 24 h, were selected for this study. This study was approved by the 
Ethics Committee of Hangzhou Normal University.
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2.1.1 Inclusion criteria
Neurocritical patients: TBI, SAH, intracranial hemorrhage (ICH), 

ischemic stroke, and central nervous system infections (brain abscess, 
ventriculitis, meningitis, encephalitis, or brain tumors), etc., who 
completed the acute phase treatment in the ICU, and meet the 
following criteria: (1) Aged ≥18 years, admitted to the ICU with a GCS 
<12 before endotracheal intubation, requiring invasive mechanical 
ventilation for ≥24 h and have attempted extubation (i.e., underwent 
an extubation trial) and/or tracheostomy.

2.1.2 Exclusion criteria
(1) Age < 18 years old; (2) Pregnant or lactating patients at the time 

of onset; (3) Spinal cord injury above T4, cardiac arrest resuscitation, 
Guillain-Barre syndrome, motor neuron disease, myopathy and severe 
myasthenia gravis, death before extubation, end-of-life extubation, 
withdrawal of life-sustaining treatment (WLST) within 24 h of ICU 
admission, respiratory system complications (long-term home oxygen 
therapy, chronic obstructive pulmonary disease Gold grade III or IV), 
and severe chest trauma (Abbreviated Injury Score, AIS ≥ 3); (4) 
Patients with tracheostomy before ICU admission are also excluded; 
(5) Patients who have never been weaned from IMV are not included; 
(6) Patients with incomplete clinical data.

2.2 Sample size

N = Z2 × [P × (1-P)]/E2, the confidence interval Z is set to 1.96, the 
probability value P is set to 90%, and the allowable error is set to less 
than 10%. It is concluded that the sample size required for this study 
is at least 60–80 cases. Considering that the success rate of extubation 
in ICU patients with traumatic brain injury is approximately 62% (14), 
the minimum sample size required for modeling is 96–129 cases. In 
this study, there were 140 patients in the modeling group, meeting the 
sample size requirement for modeling. At the same time, to ensure 
that there is a sufficient sample size to obtain the risk factors for 
extubation, the ratio of the sample size of the modeling group to the 
validation group was set at 7:3 (18). This not only ensures a sufficiently 
large modeling sample size but also avoids the problem of excessive 
sampling error due to the small number of data in the validation 
group. Therefore, the total sample size for this study is 200 cases, 
which is sufficient to ensure the reliability and accuracy of the research 
results. This investigation employed a stratified randomization 
technique to allocate subjects to diverse treatment cohorts. Stratified 
randomization is a strategy devised to enhance the integrity of 
randomization by dividing participants based on recognized pivotal 
variables (such as age, gender, body mass index) and subsequently 
randomizing within each stratum to guarantee an equitable 
distribution of these variables across the treatment groups within each 
stratum. To ascertain that the randomization remains balanced 
throughout the process, the distribution of treatment groups within 
each stratum and collectively is periodically scrutinized to detect any 
substantial imbalances.

2.3 Data collection

The data collection work includes three aspects: demographic and 
baseline data, extubation-related data, and prognosis-related data. 

Demographic and baseline data mainly include age, gender, baseline 
Glasgow Coma Scale (GCS), BMI, location of brain injury, 
comorbidities (such as diabetes, hypertension, chronic lung disease, 
etc.), and the Acute Physiology and Chronic Health Evaluation 
(APACHE II) within 24 h of ICU admission.

Extubation is a critical procedure within the domain of intensive 
care. Its successful execution necessitates a meticulous evaluation of 
various physiological indices, the acuity of the illness, respiratory 
competence, coughing efficiency, and the presence of airway edema. 
Throughout the extubation process, a battery of standardized tests and 
clinical assessments are employed to gage the viability of extubation 
and to anticipate potential post-extubation complications. These 
include, but are not limited to:

Spontaneous Breathing Test (SBT): This test evaluates a patient’s 
capability to breathe independently of mechanical ventilation. It 
serves to assess the strength and synchronization of respiratory 
muscles. The success of an SBT is commonly correlated with 
parameters such as the peak expiratory flow rate of cough (C-PEFR), 
and diaphragmatic function.

Balloon Leak Test (BLT): This test is utilized to determine the 
extent of airway edema and to verify airway patency by observing 
whether the patient is able to breathe normally following deflation of 
the tracheal intubation balloon.

Diaphragmatic Ultrasound: As the diaphragm is the primary 
respiratory muscle, its movement and contraction rate can 
be monitored via ultrasound, thereby providing an indirect assessment 
of the patient’s respiratory function.

Clinical Scoring Systems including the Visual Inspiratory Sniffing 
Angle (VISAGE) Score and the Respiratory Insufficiency Intubation 
Score (RIS-1): These scoring systems integrate multiple clinical 
variables to offer a holistic evaluation of a patient’s risk profile during 
extubation. SBT and diaphragmatic function tests primarily reflect the 
patient’s respiratory muscle function, while the BLT and airway 
patency assessments are centered on identifying airway-related risks. 
The VISAGE and RIS-1 scores encapsulate the patient’s general health 
status and the risks associated with extubation.

Extubation-related data mainly includes records of successful 
spontaneous breathing trials (SBT), the date of the first extubation 
attempt or tracheotomy, and general management data collected on 
the day of extubation, such as the use of corticosteroids (to prevent 
wheezing after extubation) or the interruption of enteral nutrition, 
swallowing function, duration of tracheal intubation, cough reflex, 
sputum volume, and lung infection status. Standardized clinical 
examination on the day of extubation: vital signs (body temperature, 
heart rate, systolic blood pressure), breathing (including the type and 
time of SBT), physical examination (cough assessment, GCS eye 
language movement items, vomiting reflex). The definitions of these 
features were standardized based on previously described data. For 
example, a 4-level scale was used to assess cough intensity: severe, 
moderate, weak, and none. Record the time and reason for 
re-intubation. The swallowing function assessment uses the 
Standardized Swallowing Assessment (SSA) to screen patients for 
swallowing disorders before extubation. The scale consists of three 
parts, ranging from easy to difficult: preliminary clinical examination, 
5 mL water test, and 60 mL water test. If any item is abnormal during 
the test, the test is immediately terminated, and the patient is judged 
to have a positive swallowing disorder. The score of this scale is 
negatively correlated with the patient’s swallowing function, with a 

https://doi.org/10.3389/fneur.2024.1337225
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Cheng et al. 10.3389/fneur.2024.1337225

Frontiers in Neurology 04 frontiersin.org

minimum score of 18 and a maximum score of 46. Prognosis-related 
data mainly includes ICU length of stay, total length of hospital stay, 
and clinical outcome (death/transfer, etc.).

The extubation test usually refers to a series of examinations and 
assessments to assess a patient’s suitability for removal of the tracheal 
tube, which may include airway patency, the patient’s respiratory 
function, coughing ability, and swallowing ability. Swallowing grading 
usually refers to a method of assessing a patient’s ability to swallow, 
and it can help determine if the patient has dysphagia, which is related 
to whether the patient can eat and water safely after extubation. 
Swallowing grading may include observing the patient’s mouth and 
throat movements while swallowing, as well as assessing whether there 
is a risk of aspiration of food or fluid after swallowing. The cough 
reflex refers to a patient’s ability to clear foreign objects or secretions 
from the airway by coughing. This is an important defense mechanism 
for maintaining airway patency and is often evaluated before and after 
extubation. These assessment methods, including SBT, extubation 
tests, swallowing grading, and cough reflex assessment, are also 
applicable in neurosurgical patients. Since neurosurgical patients may 
be  affected by surgical trauma, disturbance of consciousness, 
dysphagia, and other factors, these assessments are even more 
important because they can help physicians determine the safety of 
patients after extubation and possible risk of complications. 
Anesthetics may affect the evaluation of extubation tests. Anesthesia 
can affect a patient’s respiratory center, muscle strength, and 
coordination, so extubation tests performed during or immediately 
after anesthesia withdrawal may not accurately reflect a patient’s 
ability to breathe on his or her own in a fully awake state. Therefore, 
when evaluating extubation tests, we need to take into account the 
patient’s current state of anesthesia and evaluate after the patient is 
awake and the effects of anesthesia have subsided to obtain more 
accurate results.

2.4 Establishment and grouping of model 
datasets

2.4.1 Modeling method
The data of 200 cases in the modeling group database were used 

to construct the model. Taking whether the extubation was successful 
as the dependent variable, univariate analysis was performed on 
general and clinical data that may affect the extubation of ICU patients 
with tracheal intubation. Before conducting the logistic regression 
analysis, tolerance and variance inflation factor (VIF) tests were used 
to check whether there was multicollinearity among the variables. 
Then, each variable was included in the binary logistic regression 
analysis according to the entry standard of 0.05 and the removal 
standard of 0.10 to further determine the independent risk factors of 
PED. The partial regression coefficient values, 95% confidence 
interval, and OR values of each independent risk factor were obtained 
through binary logistic regression analysis, and the calculation 
formula of the risk prediction model was obtained. Based on the 
partial regression coefficient values of each indicator in the logistic 
regression analysis model, a score can be assigned to each indicator, 
thereby establishing a risk scoring model for extubation in ICU 
patients with tracheal intubation, which is convenient for clinical use. 
The specific steps are as follows: Divide the partial regression 
coefficient of each variable by the smallest regression coefficient value 

in the logistic regression analysis model, then multiply by a constant 
2, and finally round to obtain the score of that variable. In this way, the 
PED risk scoring model can be established. According to the scoring 
standard of the predictive model, the scores can be substituted into the 
regression equation, and the ROC curve of risk scoring can be plotted. 
The sensitivity and specificity at different scores can be obtained from 
the curve, and the Youden index (sensitivity + specificity − 1) can also 
be calculated from the curve. By maximizing the Youden index, the 
critical point can be determined for risk assessment.

2.4.2 Validation method
To verify the accuracy and clinical applicability of the extubation 

risk prediction model, we evaluated the model using 140 validation 
group data from the database. Firstly, the variables of the validation 
group were input into the established extubation risk prediction 
model to calculate the risk of extubation failure. Then, we evaluated 
the model using three indicators: discrimination, consistency, and 
clinical utility. Discrimination reflects the model’s ability to 
differentiate whether patients will undergo re-intubation, typically 
evaluated using the C-statistic. The C-statistic is the area under the 
ROC curve (AUC), with values closer to 1 indicating better predictive 
accuracy. Generally, a C-statistic greater than 0.7 indicates good 
predictive ability, while a C-statistic greater than 0.8 indicates excellent 
predictive ability. Consistency reflects the agreement between the 
predicted probabilities and actual probabilities, usually assessed using 
the Hosmer-Lemeshow (H-L) goodness-of-fit test. A p-value greater 
than 0.05 indicates good consistency. Clinical utility refers to the 
guidance value of the model in categorizing patients into low-risk and 
high-risk groups, aiming to help clinicians decide whether preventive 
interventions are necessary. Setting an appropriate threshold can 
balance the need for necessary interventions and avoid unnecessary 
ones. In this study, we determined the sensitivity and specificity at 
different scores according to the scoring standard of the predictive 
model and ROC curve, and identified the critical point by calculating 
Youden’s Index (YI).

2.5 Statistical analysis

Data were analyzed using SPSS 26.0. For data that followed a 
normal distribution, mean ± standard deviation (mean ± SD) was used 
to express the results; for non-normally distributed data, median and 
interquartile range (IQR) were used. Analysis of variance (ANOVA) 
was employed to test the differences among groups, Mann–Whitney 
U test was used for between-group comparisons with unequal 
variances, and t-test was used for comparisons between groups. 
Logistic regression analysis and other statistical methods were also 
applied. A p-value less than 0.05 was considered statistically significant.

3 Results

3.1 Clinical data

In this study, we collected data on 200 ICU patients who met the 
inclusion criteria. Among them, 61 cases (43.6%) were spontaneous 
intracerebral hemorrhages, 73 cases (52.1%) were traumatic 
intracerebral hemorrhages, and 6 cases (4.3%) were ischemic strokes. 
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The median age was 54 years old (ranging from 19 to 91 years old), and 
the baseline GCS score was 12 points (ranging from 3 to 15 points). 
Using a random number table method, 60 patients were selected for 
validation of the extubation risk prediction model (validation group). 
The construction of the risk prediction model (modeling group) was 
validated with the remaining 140 patients. Table 1 shows the general 
information and clinical characteristics of the patients in the 
derivation group, of which 115 cases (82.1%) were male, 25 cases 
(17.9%) were female, with an average age of 63 years old (ranging from 

19 to 91 years old). 45.7% of patients were aged ≥65 years old; 15.7% 
of patients had a BMI <18.5, and 20% had a BMI ≥24. The APACHE 
II score within 24 h of ICU admission was 13.12 ± 3.75, with 33.6% of 
patients scoring ≥15. 77.1% of patients primarily underwent surgeries 
such as hematoma removal, decompressive craniectomy, and 
stereotactic puncture drainage. The length of ICU stay was 
10.48 ± 5.26 days, and the total hospital stay was 28.54 ± 6.15 days. 
Finally, Table  1 also shows the general situation and clinical 
characteristics of patients in the verification group.

TABLE 1 General information and clinical characteristics of patients (derivation, n  =  140 and Validation group, n  =  60).

Variable name Variable 
classification

Frequency 
(cases)

Percentage (%) Frequency 
(cases)

Percentage (%)

Derivation group Validation group

Reason for admission
Spontaneous intracerebral 

hemorrhage
61 43.6 25 41.7

Traumatic intracerebral 

hemorrhage
73 52.1 34 56.7

Ischemic stroke 6 4.3 1 1.7

Age (years) <65 87 62.1 23 38.8

≥65 53 37.9 37 61.2

Gender Male 115 82.1 48 80

Female 25 17.9 12 20

BMI <18.5 22 15.7 7 11.7

18.5–23.9 90 64.3 37 61.7

≥24 28 20 16 26.7

APACHE II score <15 79 56.4 34 56.7

Medical history Diabetes 33 23.6 8 13.3

Hypertension 92 65.7 72 53.3

Coronary heart disease 14 10.0 7 11.7

Cerebrovascular disease 13 9.3 5 8.3

Chronic pulmonary disease 15 10.7 8 13.3

Other 21 15 8 13.3

Surgical treatment Yes 111 79.3 48 80

No 29 20.7 12 20

ICU Length of Stay 

(days)
≤5 24 17.1 10 16.7

6 ~ 10 53 37.9 18 30.0

11 ~ 15 34 24.3 11 18.3

≥15 29 20.7 21 35.0

Total hospital length 

of stay (days)
≤10 14 10 7 11.7

11 ~ 20 26 18.6 10 16.7

21 ~ 30 44 31.4 10 16.7

≥30 56 40 33 55.0

Clinical outcome Improved 77 55.7 36 60.0

Not cured 35 25 5 8.3

Deceased 28 20 19 31.7
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3.2 Univariate regression analysis

Before conducting regression analysis, continuous variables in this 
study were transformed into categorical variables according to 
literature review and clinical experience to make the predictive model 
more convenient for clinical use. Factors that may be significantly 
correlated with successful extubation include general characteristics 
of the patients such as age, APACHE II score, BMI, etc.; GCS score, 
oxygenation index on the day of extubation; airway characteristics 
including cough reflex, frequency of tracheal suctioning, and 
swallowing function (Table 2).

For whether the extubation was successful or not as the dependent 
variable, single-factor analysis was conducted on the general and 
clinical data that may affect critically ill neurologic patients and 
mechanically ventilated patients undergoing extubation. The results 
are shown in Tables  3, 4. Among the patients, 113 cases (80.7%) 
attempted extubation at least once, and 5 cases (3.6%) required 
reintubation within 48 h after extubation. In patients with extubation 
failure, there were fewer cases of spontaneous intracerebral 
hemorrhage [22 cases (52.4%) vs. 39 cases (39.8%), p = 0.02], older age 
[61 years old (19–91 years old) vs. 54 years old (20–89 years old), 
p = 0.001], and lower GCS scores on the day of extubation [7 points 
(5–8 points) vs. 7 points (5–9 points), p = 0.003]. Details are shown in 
Table 3.

The data of 140 patients was used to construct the model. The 
single-factor analysis results of the general data of the two groups 
showed that age, APACHEII score, and whether there was a 
combination of COPD had statistical significance (all p < 0.05), as 
shown in Table 3. Age ≥ 65 years old (2 = 11.685, p = 0.001), APACHEII 
score ≥ 15 points (2 = 6.734, p = 0.009), and the combination of chronic 
lung disease (2 = 4.879, p = 0.027) are potential risk factors for 
extubation failure. As age increases, the possibility of extubation 
failure tends to increase. As the APACHEII score increases, especially 
in patients with scores ≥15, the incidence rate of extubation failure 
increases. Patients with combined chronic lung disease have a higher 
proportion of eventual extubation failure clinically. The single-factor 
analysis results of the two groups with different characteristics showed 
that the GCS score on the day of extubation, sputum volume, cough 
strength, and swallowing function were statistically significant (all 
p < 0.05), as shown in Table 4.

3.3 Multivariate regression analysis

Tolerance and variance inflation factor (VIF) were used to test for 
multicollinearity among variables prior to logistic regression analysis 
to determine if there is multicollinearity among variables. Based on 
the standard proposed by Kleinbaum DG, the criterion for the 

TABLE 2 Variables assignment table for analysis of extubation risk factors in patients with craniocerebral injury.

Variable name Assignment Variable type

Age 1 = <65 years old; 2 = ≥65 years old Binary variable

Gender 1 = Male; 2 = Female Binary variable

BMI 1 = <18.5 kg/m2; 2 = 18.5 ~ 23.9 kg/m2; 3 = ≥24.0 kg/m2 Ordinal variable

APACHE II score 1 = <15 points; 2 = ≥15 points Binary variable

Diabetes Yes/No (1 = Yes; 0 = No) Binary variable

Hypertension Yes/No (1 = Yes; 0 = No) Binary variable

Coronary heart disease Yes/No (1 = Yes; 0 = No) Binary variable

Cerebrovascular Disease Yes/No (1 = Yes; 0 = No) Binary variable

COPD Yes/No (1 = Yes; 0 = No) Binary variable

Surgical treatment Yes/No (1 = Yes; 0 = No) Binary variable

Smoking history Yes/No (1 = Yes; 0 = No) Binary variable

Use of steroids before extubation Yes/No (1 = Yes; 0 = No) Binary variable

Enteral nutrition interruption Yes/No (1 = Yes; 0 = No) Binary variable

Sputum volume (suctioning frequency) 3= > 3time/h；2 = 2 ~ 3time/h；1 = ≤1time/h Ordinal variable

Cough strength 3 = Strong；2 = Moderate；1 = Weak Ordinal variable

Swallowing function (SAA Score) 4 = 18 ~ 24；3 = 25 ~ 31；2 = 32 ~ 38；1 = 39 ~ 46 ordinal variable

SBT test 1 = Pass; 0 = Fail Binary variable

Leak test 1 = Pass; 0 = Fail Binary variable

Oxygenation index 0 ≥ 300; 1<300 Binary variable

Heart rate 1 = <60 beats/min; 2 = 60–100 beats/min; 3 = >100 beats/min Ordinal variable

GCS score 1 = <8 points; 2 = 8 ~ 15 points Binary variable

Respiratory rate 1 = <18 breaths/min; 2 = ≥18 breaths/min Binary variable

Body temperature 1 = <36.5°C; 2 = 36.5–36.9°C; 3 = 37–37.9°C; 4 = ≥38°C Ordinal variable
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presence of multicollinearity is a tolerance of <0.1 or a VIF of >10.0 
(19). In this study, there was no multicollinearity among the variables. 
The dependent variable is whether the extubation is successful, with 
an entry standard of 0.05 and a removal standard of 0.10. The 
meaningful variables in the univariate analysis: age ≥ 65 years 
(p = 0.001), APACHE II score ≥ 15 points (p = 0.009), combined 
chronic pulmonary disease (p = 0.027), etc., were included in the 
equation by the stepwise forward method (Likelihood Ratio, LR: 
forward) of the maximum likelihood ratio estimate. Table 5 shows the 
results of the binary logistic regression analysis. The equation itself is 
meaningful (χ2 = 46.806, p < 0.001), NagelkerkeR2 = 0.401. Seven risk 
factors affecting whether the patient is successfully extubated entered 
the Logistic regression equation, namely age ≥ 65 years, high APACHE 
II score (≥ 15 points), chronic pulmonary disease, GCS score on the 

day of extubation, sputum volume (sputum suction frequency), cough 
reflex, and swallowing function. As age increases, the risk of 
extubation failure in ICU patients increases; simultaneously, as the 
severity of the patient’s disease increases, such as an increase in the 
APACHE II score, the incidence of extubation failure also increases, 
that is, the higher the severity of the disease, the higher the incidence 
of extubation failure; if chronic pulmonary disease is combined, the 
possibility of extubation failure increases; on the day of extubation, the 
results of the blood gas analysis of the SBT test, if the oxygenation 
index is less than 300, then re-intubation or tracheostomy is required 
after extubation. In addition, if the patient is in a deeper coma, with a 
GCS score of <8, and at the same time has a large amount of sputum, 
poor cough reflex, and swallowing dysfunction, it will greatly increase 
the failure rate of extubation.

TABLE 3 Single-factor analysis of general information for the two groups [case (%)/M (Q)].

Variable name Stratification Successful 
extubation group

Failed extubation 
group

x2 p-value

n  =  98 n  =  42

Reason for admission
Spontaneous intracerebral 

hemorrhage
39 (39.8%) 22 (52.4%) 0.2

Traumatic intracerebral 

hemorrhage
54 (55.10%) 19 (45.2%) 0.06

Ischemic stroke 5 (5.1%) 1 (2.4%) 0.4

General characteristics

Age >65 years old 27 (27.6%) 26 (61.9%) 11.685 0.001**

≤65 years old 71 (72.4%) 16 (38.1%)

Gender Male 81 (82.7%) 33 (78.6%) 0.118 0.732

Female 17 (17.3%) 9 (21.4%)

Smoking history Yes 25 (25.5%) 7 (16.7%) 0.574 0.751

No 73 (74.5%) 36 (83.3%)

BMI <18.5 15 (15.3%) 7 (16.7%) 4.447 0.108

18.5 ~ 23.9 66 (67.3%) 23 (54.8%)

≥24.0 17 (17.4%) 12 (28.5%)

APACHEII score <15 points 42 (42.9%) 37 (88.1%) 6.734 0.009**

≥15 points 56 (57.1%) 5 (11.90%)

Surgical treatment Yes 81 (82.7%) 30 (71.4%) 1.341 0.247

No 17 (17.3%) 12 (28.6%)

Past medical history

Diabetes Yes 12 (12.2%) 5 (11.9%) 0.46 0.498

No 86 (87.8%) 37 (88.1%)

Hypertension Yes 56 (57.1%) 22 (52.4%) 0.194 0.66

No 42 (42.9%) 21 (47.6%)

Coronary heart disease Yes 9 (9.2%) 5 (11.9%) 3.758 0.053

No 89 (90.8%) 37 (88.1%)

Cerebrovascular disease Yes 7 (7.1%) 4 (9.5%) 0.378 0.539

No 91 (92.9%) 38 (90.5%)

Chronic pulmonary disease Yes 6 (6.1%) 9 (21.4%) 4.879 0.027*

No 92 (93.9%) 33 (78.6%)
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TABLE 4 Univariate analysis of different characteristics between two groups [case (%)].

Variable name Stratification Successful 
extubation group

Failed extubation 
group

x2 p-value

n  =  98 n  =  42

Days of endotracheal 

intubation 6 [3–14] 7 [5–17] 0.539

SBT test T-tube oxygenation 59 (60.2%) 27 (64.3%) 0.569 0.451

CPAP mode 39 (39.8%) 15 (25.7%)

Days from SBT to 

extubation 0 [0–2] 1 [0–2] 0.4

Assessment on the day of 

extubation

SBT test Passed 98 (100%) 35 (83.3%) 3.106 0.078

Failed 0 (0%) 7 (16.7%)

Leak test Passed 96 (97.9%) 38 (90.5%) 3.237 0.072

Failed 2 (2.1%) 4 (9.5%)

Steroid use Passed 41 (41.8%) 18 (42.9%) 0.025 0.873

Failed 57 (58.2%) 24 (57.1%)

Enteral nutrition 

interruption Yes 72 (73.5%) 30 (71.4%) 1.783 0.209

No 26 (26.5%) 12 (10.6%)

Oxygenation index ≥300 89 (90.8%) 28 (66.7%) 8.105 0.004**

<300 9 (9.2%) 14 (33.3%)

Heart rate (beats/min) <60 22 (22.4%) 9 (21.4%) 0.015 0.904

60–100 59 (60.2%) 20 (47.6%)

>100 17 (17.4%) 13 (31.0%)

Temperature (°C) <36.5 12 (12.2%) 4 (9.6%) 0.508 0.476

36.5–36.9 41 (41.8%) 15 (25.7%)

37–37.9 31 (31.6%) 15 (25.7%)

≥38.0 14 (14.3%) 8 (19.0%)

Respiratory rate 

(breaths/min) <18 69 (70.4%) 25 (59.5%) 0.088 0.767

≥18 29 (29.6%) 17 (40.5%)

GCS score (points) <8 points 16 (16.3%) 33 (78.6%) 8.604 0.003**

≥8 points 82 (83.7%) 9 (21.4%)

Sputum volume (suction 

frequency) >3 time/h 13 (13.3%) 24 (57.1%) 4.826 0.028*

2-3 time/h 31 (31.6%) 10 (23.8%)

0-1 time/h 54 (55.1%) 8 (19.1%)

Cough strength Severe 58 (59.2%) 7 (16.7%) 4.104 0.043*

Moderate 31 (31.6%) 20 (47.6%)

Weak 9 (9.2%) 15 (25.7%)

Swallowing function 

(SSA score) 18 ~ 24 2 (2.0%) 18 (42.9%) 17.147 0.001**

25 ~ 31 9 (9.2%) 12 (28.6%)

32 ~ 38 28 (28.6%) 8 (19.0%)

39 ~ 46 59 (60.2%) 4 (9.4%)
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3.4 Establishment of risk prediction model

In this cohort, 140 patients were available for constructing a 
scoring system to predict successful extubation. The simplified score 
retained 8 predictive factors (Supplementary material 1): age, 
APACHE II score, comorbid chronic pulmonary disease, oxygenation 

index, severe cough, swallowing function, suction frequency, and GCS 
score total. Based on the partial regression coefficients of the above 
variables, the ICU post-extubation dysphagia risk prediction model 
formula was constructed as follows: Risk of extubation failure = 

e
e

a

a
1

100

+
× % , where e is the exponential function. a = 1.374 × age  

(= 0 or 1) + 1.518 × APACHE II score (= 0 or 1) + 0.971 × comorbid 
chronic pulmonary disease (= 0 or 1) + 1.038 × GCS score (= 0 or 
1) + 2.020 × oxygenation index (= 0 or 1) + 1.225 × airway sputum 
volume [hourly suction frequency (= 1 or 2 or 3)] + 0.873 × cough 
intensity (= 1 or 2 or 3) + 1.170 × swallowing (SSA score) (= 1 or 2 or 
3) − 4.330.

Based on the logistic regression analysis model, we  assigned 
corresponding scores to each indicator’s partial regression coefficient, 
making the ICU extubation risk scoring model for severe neurological 
patients easier to use in clinical practice. Specifically, for each variable, 
we divided its partial regression coefficient by the smallest regression 
coefficient value in the logistic regression analysis model (0.971), then 
multiplied it by a constant 2, and rounded to the nearest integer (20). The 
final scores for each variable are shown in Table 6. The scores for age < 65, 
APACHE II score < 15, no history of chronic pulmonary disease, GCS 
score ≥ 8, oxygenation index ≥300, suction frequency, cough intensity, 
and swallowing function are 3, 3, 2, 3, 3, 2, 3, and 4, respectively.

The scoring criteria of the prediction model were substituted into 
the regression equation, and the ROC curve was drawn. The sensitivity 
and specificity at different scores can be obtained from this curve, and 
Youden’s index (sensitivity + specificity − 1) can also be calculated 
from this curve. By maximizing Youden’s index, the critical point can 
be determined for risk assessment. Table 7 shows that the highest 
Youden’s index total score is 18 points. Therefore, the critical value of 
this study model is set at 18 points. A score of less than 18 suggests 
that the risk of extubation failure may be higher, and a tracheotomy 
may be clinically recommended. Patients with a score of 18 or more 
have a relatively higher success rate of extubation and may try to wean 
off the ventilator.

To evaluate the established risk prediction model for extubation 
failure, the ROC curve method and the H-L goodness-of-fit test were 

TABLE 5 Multifactorial logistic regression analysis of risk factors for extubation in patients with mechanical ventilation.

Risk factor Bias regression 
coefficient

Standard p-value OR value 95%CI

Elderly (≥65 years old) 1.374 0.370 0.000 3.95 1.912–8.159

High APACHEII score (≥15 

points)

(≥15 分)

1.518 0.409 0.000 4.563 2.046–10.176

Chronic lung disease 0.971 0.395 0.014 2.64 1.218–5.724

Characteristics on the day of 

extubation

GCS score 1.038 0.507 0.041 2.824 1.045–7.633

Oxygenation index 2.020 0.381 0.000 7.538 3.575–15.892

Airway mucus volume 1.225 0.384 0.001 3.404 1.605–7.220

Cough strength 0.873 0.250 0.000 2.394 1.468–3.905

Swallowing function 1.170 0.420 0.005 3.223 1.414–7.345

Constant −4.330 0.557 0.000 0.013

TABLE 6 Scoring criteria for the Logistic model of extubation risk in 
mechanically ventilated patients.

Risk factors Score

Advanced age (≥65 years) 

(NO) 3

High APACHE II score (≥15 

points) (NO) 3

Chronic pulmonary disease 

(NO) 2

Characteristics on the day of 

extubation

GCS score ≥ 8 points (Yes) 3

Oxygenation index ≥300 

(Yes) 3

Airway secretions (suction 

frequency) ≥3 times/h 0

2 times/h 1

1 time/h 2

Cough strength Severe 3

Moderate 2

Weak 1

Swallowing function (SSA 

score) 18 ~ 24 1

25 ~ 31 2

32 ~ 38 3

39 ~ 46 4
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used to test the discrimination and consistency of the model. The 
results of the H-L goodness-of-fit test showed that there was no 
statistical difference between the predicted incidence rate and the 
actual incidence rate of the model (x2 = 5.241, p = 0.732, p > 0.05), 
indicating that the prediction model has good consistency. Figure 1 is 
the ROC curve of the extubation risk prediction model. The area 
under the curve (AUC), or C-statistic, is 0.832 (95% CI, 0.770–0.894), 
which is close to 1, indicating that the model can well distinguish 
whether the patients can be successfully extubated. At a score of 18, 
the specificity of the ROC curve of this model is 81.6%, and the 
relative sensitivity is 84.1%. The overall prediction accuracy rate is 
81.5%, and the negative predictive value is 90.8%, which is relatively 
high, while the positive predictive value is relatively low at 66.3%, 
which may be due to the small number of positive samples (only 42 

cases). Therefore, to further verify the predictive performance of the 
model, it is necessary to increase the sample size.

3.5 Validation of risk prediction model

Table 8 shows the distribution of clinical variables in the two 
groups. There was no statistically significant difference in clinical 
variables between the two groups.

The variables of the validation group were input into the 
established risk prediction model of post-extubation dysphagia to 
calculate the risk of occurrence of dysphagia. The discriminative 
power and consistency of the prediction for the patients in the 
validation group were tested using the ROC curve method and the 
H-L goodness-of-fit test. The area under the curve (AUC) was 0.763 
(95% CI, 0.652–0.875), as shown in Figure 2. The H-L goodness-of-fit 
test chi-square was 5.372, p = 0.717 (p > 0.05), suggesting that the 
established risk prediction model for extubation failure had good 
discriminative power and consistency. As shown in Table  9, the 
prediction results of the validation group indicate that the model has 
a high specificity of 84.8%, but a low sensitivity of 76.0%. The model’s 
negative predictive value is at a high level of 88.20%, while the positive 
predictive value is at a lower level of 59.20%. Overall, the model has a 
prediction accuracy of 79.8%. This indicates that the model can 
accurately predict the occurrence rate of extubation failure in ICU 
patients with severe neurological conditions who require 
tracheal intubation.

4 Discussion

This study focuses on cases of patients with severe neurological 
diseases undergoing tracheal intubation. Through logistic multivariate 
regression analysis, eight independent risk factors were successfully 
screened out, including age, APACHE II score, chronic pulmonary 

TABLE 7 Sensitivity and specificity of the predictive model at different 
cutoff values.

Total 
score

Sensitivity Specificity Youden 
index

3 1.000 0.000 0.000

4 1.000 0.000 0.000

5 1.000 0.000 0.000

6 1.000 0.092 0.092

7 0.969 0.138 0.107

8 0.938 0.345 0.283

9 0.922 0.420 0.342

10 0.911 0.534 0.445

11 0.906 0.583 0.565

12 0.898 0.604 0.502

13 0.875 0.629 0.657

14 0.864 0.641 0.505

15 0.862 0.705 0.507

16 0.853 0.712 0.565

17 0.849 0.724 0.573

18 0.841 0.816 0.657

19 0.703 0.816 0.519

20 0.652 0.855 0.507

21 0.516 0.861 0.377

22 0.492 0.919 0.411

23 0.313 0.931 0.244

24 0.250 0.951 0.201

25 0.247 0.954 0.201

26 0.215 0.977 0.377

27 0.186 0.983 0.411

28 0.142 0.994 0.244

29 0.094 1.000 0.201

30 0.031 1.000 0.094

31 0.000 1.000 0.031

32 0.000 1.000 0.000

33 0.000 1.000 0.000

FIGURE 1

ROC curve of the risk prediction model in the modeling group.
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disease, GCS score, oxygenation index, sputum volume, cough reflex, 
and swallowing function. A risk prediction model for extubation was 
constructed based on these factors and their partial regression 
coefficients. The study shows that the Logistic regression prediction 

model has a good fit, with both H-L goodness-of-fit test and ROC 
curve analysis indicating that the model has high discriminability and 
consistency, as well as high specificity, although the sensitivity is 
relatively low. The overall accuracy of prediction is high, with a high 

TABLE 8 Distribution of clinical variables in the modeling group and validation group.

variables Stratification Modeling group Validation group x2 p-value

n  =  140 n  =  60

Reason for admission
Spontaneous cerebral 

hemorrhage
61 (43.6%) 25 (41.7%) 0.377 0.539

Traumatic cerebral hemorrhage 73 (51.14%) 34 (56.7%) 0.569 0.451

Ischemic stroke 6 (4.3%) 1 (1.7%) 0.948 0.330

General Characteristics

Age >65 years old 54 (38.6%) 37 (61.2%) 0.005 0.944

≤65 years old 87 (62.1%) 23 (38.8%)

Gender Male 114 (81.4%) 52 (86.7%) 0.407 0.524

Female 26 (18.6%) 8 (13.3%)

Smoking history Yes 32 (22.9%) 19 (31.7%) 0.177 0.674

No 109 (77.9%) 41 (68.3%)

BMI <18.5 22 (15.7%) 7 (11.7%) 0.123 0.94

18.5 ~ 23.9 89 (63.6%) 35 (58.3%)

≥24.0 29 (20.7%) 18 (30.0%)

APACHEIIScoring <15 99 (70.7%) 38 (63.3%) 0.097 0.755

≥15 41 (29.3%) 22 (36.7%)

Surgical treatment Yes 101 (72.1%) 47 (78.3%) 0.056 0.814

No 39 (27.9%) 13 (21.7%)

Past medical history

Diabetes Yes 33 (23.6%) 6 (10.0%) 0.581 0.446

No 107 (76.4%) 54 (90.0%)

Hypertension Yes 92 (65.7%) 31 (51.7%) 0.013 0.911

No 48 (34.3%) 29 (48.3%)

Coronary heart disease Yes 12 (8.6%) 7 (11.7%) 2.903 0.088

No 128 (91.4%) 53 (88.3%)

Cerebrovascular disease Yes 13 (9.3%) 2 (3.3%) 0.082 0.774

No 127 (90.7%) 58 (96.7%)

Chronic pulmonary disease Yes 15 (10.7%) 3 (5%) 0.004 0.949

No 125 (90.3%) 57 (95.0%)

ICU length of stay (days) ≤5 24 (17.1%) 10 (16.7%) 0.023 0.879

6 ~ 10 53 (37.9%) 24 (40.0%)

11 ~ 15 34 (24.3%) 15 (25.0%)

≥15 29 (20.7%) 11 (18.3%)

Total hospital stay (days) ≤10 14 (10.0%) 5 (8.3%) 0.304 0.581

11 ~ 20 26 (18.6%) 10 (16.7%)

21 ~ 30 44 (31.4%) 19 (31.7%)

≥30 56 (40%) 26 (43.3%)

Clinical outcome Improved 77 (55.7%) 29 (48.3%) 3.329 0.066

Unresolved 35 (25%) 18 (30.0%)

Deceased 28 (20%) 13 (21.7%)
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negative predictive rate and a low positive predictive rate, which may 
be related to the small number of positive samples. Therefore, future 
research needs to expand the sample size to further verify the 
performance of this prediction model. In addition, this study assigned 
scores to ICU tracheal intubation patients according to the scoring 
rules, and divided them into low-risk and high-risk groups, with 18 
points as the critical value. The study found that the higher the score 
of the model, the higher the likelihood of successful extubation. This 
scoring model is easy to use, highly operable, and can effectively 
predict the risk of extubation failure in patients with traumatic brain 
injury and tracheal intubation, providing a strong basis for 
implementing individualized, targeted precision nursing, and 
preventing re-intubation and its complications.

The incidence of extubation failure in general critically ill 
patients is relatively high (10–15%), and in patients with 
neurological diseases, this proportion is even higher, reaching 
25% (9, 11). In past studies on extubation in patients with severe 
neurological conditions, the extubation failure rate was 
approximately 21–25% (14, 21, 22). It is worth noting that there 
are differences in the definition of extubation failure across 
various studies, and to date, there is no consensus on the time 
frame for defining extubation failure. In recent years, some 
scholars have suggested extending the time range for extubation 
failure from 3 days after extubation to 7 days天 (23, 24). Miltiades 
et al. recommended using a time frame that captures more than 

90% of extubation failures. Patients who underwent tracheotomy 
after attempting extubation failure were also included in this 
study (25).

We found that the rate of extubation failure was 25%, and the 
model score can predict successful extubation. Patients who 
underwent tracheotomy and those with extubation failure both 
showed longer invasive mechanical ventilation (IMV) times, higher 
rates of respiratory infections, and higher mortality rates. Vallverdu 
et  al. (26) pointed out more than 20 years ago that safe delayed 
extubation is related to increased IMV time and hospital-acquired 
pneumonia for neurological recovery (26). In addition, we found that 
the independent risk factors affecting the success of extubation in 
neurocritical patients include age ≥ 65, APACHE II score ≥ 15, 
comorbid chronic lung disease, GCS score < 8, oxygenation index 
<300 on the day of extubation, frequent need for sputum suction due 
to excessive sputum, poor cough reflex, and comorbid dysphagia. It is 
worth noting that most patients in this study were intubated for 
neurological problems rather than respiratory diseases. Our study 
shows that the GCS score is an important indicator for assessing 
neurological conditions and is also an important factor in predicting 
successful extubation. Vallverdu and colleagues found in a prospective 
study that the re-intubation rate for patients with central nervous 
system (CNS) injuries was 36%, while Koh et  al. observed a 22% 
re-intubation rate in a retrospective analysis. This difference may 
reflect higher standards for extubation and a higher frequency of 
tracheotomy (27). Our study supports the views of Epstein and 
Ciubotaru (1998), who identified several factors associated with 
increased risk of re-intubation, including non-airway-related causes, 
increased APACHE II score, and comorbid conditions. They also 
emphasized the importance of changes in neurological function and 
the characteristics of re-intubation due to extubation failure or 
weaning failure. Our study results also support the importance of this 
distinction. Although we took a conservative approach, only about 
70% of the patients in our study were successful in the first attempt at 
extubation, in contrast to other populations in the ICU, where 85% of 
patients were successful in the first attempt at extubation (28, 29). 
Finally, although previous studies have reported that factors such as 
gender, BMI, and diabetes are related to the risk of extubation failure, 
these factors did not show statistical significance in our study (30–32). 
This may be  related to our study subjects, screening criteria, and 
limited sample size. Although our study results are not entirely 
consistent with previous studies, they are still of great value for 
understanding and preventing extubation failure.

The novelties of this investigation are multifaceted: it is 
inceptioned from clinical conundrums with the aspiration to 
furnish innovative perspectives for their resolution. Currently, there 
is a paucity of systematic appraisals concerning the precision and 
comparative accuracy of extubation risk prognostication in patients 
with cranial injuries, precluding the ability to endorse any extant 

FIGURE 2

ROC curve of the risk prediction model in the validation group.

TABLE 9 Risk prediction model results validation.

Group H-L test 
p-value

AUC Sensitivity Specificity PPV NPV Predictive 
Accuracy

Modeling Group 0.732 0.832 84.10% 81.60% 66.30% 90.80% 81.50%

Validation Group 0.717 0.763 76.00% 84.80% 59.10% 88.20% 79.80%

AUC, Area Under the Curve, area under the curve; PPV, Positive Predictive Value, positive predictive value; NPV, Negative Predictive Value, negative predictive value.
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risk prediction models on the basis of empirical evidence. This 
study is underpinned by a theoretical ingenuity that is 
complemented by robust operational and practical attributes. 
Moreover, the research has led to the creation of an extubation risk 
prediction model and a scoring system through the quantification 
of risk factors associated with extubation failure, thereby 
undergoing rigorous validation, enhancing its operational and 
practical viability. It is anticipated that this model will aid in the 
prevention of various post-extubation complications in patients, 
thereby diminishing the rate of clinical extubation failures, and will 
hold significant clinical applicability.

Although our study has achieved positive results, there are 
some limitations to be noted. First, our sample size is small, which 
may affect the reliability and generalizability of the results. 
Second, our prediction model is based on data from a single 
center and may not be fully applicable to patient populations in 
other centers. Therefore, future research needs to be conducted 
with larger samples and at different centers to further establish the 
validity of our prediction model. The study’s cohort comprised 
merely six individuals with strokes, representing a notably limited 
sample size. Such a diminutive sample may precipitate less stable 
and dependable statistical analyses, given the vulnerability of 
small samples to chance factors. During the establishment and 
validation of the model, a petite sample size may fall short in 
encapsulating all variables influencing extubation outcomes, 
potentially compromising the model’s predictive capabilities. 
Owing to the restricted sample size and the singularity of the data 
source, the dependability of the findings may be compromised. 
Consequently, external validation across diverse patient cohorts 
is imperative. External validation serves primarily to substantiate 
the prevalence of various patient populations (33). Regional and 
institutional variations in patient demographics, disease severity, 
comorbidities, and treatment modalities may sway study 
outcomes. Future inquiries should endeavor to amass additional 
data, pursue multicenter investigations, and explore alternative 
methodologies to enhance the generalizability and dependability 
of the research findings. The marginally reduced sensitivity 
observed in the validation cohort warrants scrutiny and further 
exploration. In the context of clinical research, sensitivity is 
intrinsically linked to the efficacy of diagnostic tests or treatments. 
For diseases where early intervention is critical, decreased 
sensitivity may precipitate treatment delays, thereby influencing 
patient outcomes. With a fixed sample size, reduced sensitivity 
may diminish statistical power, thereby increasing the risk of type 
II errors (false negatives). In light of the study’s single-center 
design, it is crucial to replicate these findings across multicenter 
research settings to affirm the research conclusions. While our 
data delineated an association between extubation strategies and 
outcomes, the study’s framework precluded causal inferences. 
Data collection was confined to specific temporal points, such as 
the day of successful SBT or the day of tracheotomy. To facilitate 
data collection, we deliberately focused on pivotal clinical features 
pertinent to extubation day and ICU outcomes. Being an open-
label study, we could not discount the potential influence of inter-
clinician variability in extubation practices or adjust for patient 
management nuances. Furthermore, the study overlooked critical 
ICU-specific factors, including nurse-to-patient ratios, the 

availability of respiratory therapists, local protocols, and post-
extubation management strategies (e.g., high-flow nasal catheter 
oxygen therapy). Notwithstanding, extubation procedures were 
conducted in adherence to clinical guidelines within this study. 
Lastly, the validation cohort was derived from the same sample as 
the training cohort, negating independence between the two. 
Therefore, our observations must be  substantiated within an 
independent, prospective cohort.

Future scholarly endeavors ought to persevere in refining an 
efficacious and precise of extubation strategies, delineating 
unambiguous criteria for the commencement of extubation (upon 
the establishment of neurological stability and the resolution of 
respiratory insufficiency), delineating extubation protocols 
(encompassing spontaneous breathing trials of adequate duration), 
and specifying extubation criteria (entailing requirements for 
vomiting, swallowing efforts, coughing, and sputum aspiration) 
through formal evaluation. The utilization of non-invasive 
ventilation and high-flow oxygen in patients at elevated risk of 
extubation failure may constitute a beneficial approach for certain 
individuals with less compromised airway reflexes. In light of the 
ENIO findings and the outcomes of a recent randomized trial 
investigating early tracheotomy in ICU patients with severe 
cerebrovascular trauma, the avoidance of early direct tracheotomy 
may be warranted (15). In this context, although a higher level of 
consciousness has been associated with an increased likelihood of 
successful extubation in ENIO and other prior studies, it may not 
be imperative to extend invasive mechanical ventilation solely due 
to a persistent low Glasgow Coma Score if the patient’s neurological 
status is stable. Consequently, the safety of extubation in patients 
with diminished consciousness (inclusive of coma) warrants 
further investigation.
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