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Acquired traumatic central nervous system (CNS) injuries, including traumatic 
brain injury (TBI) and spinal cord injury (SCI), are devastating conditions with 
limited treatment options. Neuroinflammation plays a pivotal role in secondary 
damage, making it a prime target for therapeutic intervention. Emerging 
therapeutic strategies are designed to modulate the inflammatory response, 
ultimately promoting neuroprotection and neuroregeneration. The use of 
anti-inflammatory agents has yielded limited support in improving outcomes 
in patients, creating a critical need to re-envision novel approaches to both 
quell deleterious inflammatory processes and upend the progressive cycle 
of neurotoxic inflammation. This demands a comprehensive exploration of 
individual, age, and sex differences, including the use of advanced imaging 
techniques, multi-omic profiling, and the expansion of translational studies 
from rodents to humans. Moreover, a holistic approach that combines 
pharmacological intervention with multidisciplinary neurorehabilitation is 
crucial and must include both acute and long-term care for the physical, 
cognitive, and emotional aspects of recovery. Ongoing research into 
neuroinflammatory biomarkers could revolutionize our ability to predict, 
diagnose, and monitor the inflammatory response in real time, allowing for 
timely adjustments in treatment regimens and facilitating a more precise 
evaluation of therapeutic efficacy. The management of neuroinflammation in 
acquired traumatic CNS injuries necessitates a paradigm shift in our approach 
that includes combining multiple therapeutic modalities and fostering a more 
comprehensive understanding of the intricate neuroinflammatory processes 
at play.
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Introduction

Neurotrauma research has undergone a remarkable 
transformation in recent years. One of the most pressing and 
intriguing areas of study is the intricate nexus between 
neuroinflammation and traumatic injuries to the central nervous 
system (CNS). Traumatic brain injury (TBI) and spinal cord injury 
(SCI), pose significant challenges to both patients and healthcare 
providers. These injuries result from a wide range of traumatic events, 
including accidents, falls, sports-related incidents, and acts of violence, 
making them a global public health concern (1, 2). Understanding the 
etiology of TBI and SCI is essential to appreciate the complexity of 
these conditions and the hurdles they present to effective treatment. 
Mechanisms of injury include the primary initial impact and the 
direct damage it inflicts on neural tissue, as well as secondary injury, 
which evolves over hours to days due to complex pathological 
processes (3, 4). Secondary injury mechanisms include 
neuroinflammation, oxidative stress, and excitotoxicity, all of which 
exacerbate tissue damage and hinder recovery (5, 6). The severity of 
TBI can range from mild, often characterized by temporary cognitive 
impairment, to severe, causing profound and lasting neurological 
deficits (7, 8). The heterogeneity of TBI’s etiology and outcomes 
underscores the need for individualized treatment approaches. 
Moreover, recent emphasis has been placed on mechanistic 
endophenotypes of TBI, which includes neuroinflammation, that may 
aid in biomarker-based improvements in diagnostic and prognostic 
trajectories (9). Likewise, the location and severity of SCI are key 
determinants of the functional deficits experienced by patients. 
Currently, no curative treatment exists for SCI, making it a life-altering 
condition with limited therapeutic options.

The role of neuroinflammation in the pathophysiology of traumatic 
CNS injury is a subject of increasing importance. Neuroinflammation 
plays a pivotal role in both the acute and chronic phases of these injuries, 
with the potential to either exacerbate damage or contribute to recovery 
(10). Neuroinflammation is a dynamic and complex response involving 
the activation of glial cells, infiltration of immune cells, and the release 
of various inflammatory mediators within the injured CNS (11). This 
response is triggered as a protective mechanism to clear debris, fight 
infection, and facilitate tissue repair. In the acute phase of CNS injury, 
neuroinflammation can exacerbate tissue damage by contributing to 
excitotoxicity, oxidative stress, blood–brain barrier dysfunction, and 
neuronal cell death. Paradoxically, it also participates in reparative 
processes, such as scar formation, neurogenesis, and synaptic plasticity, 
which can influence long-term outcomes (12). The intricate balance 
between neuroinflammation’s detrimental and reparative aspects 
remains a major challenge in the field. Elucidating the specific factors 
that tip the scale toward either neuroprotection or neurodegeneration 
is a crucial objective. Key factors such as timing, location, and duration 
of neuroinflammatory responses influencing acute and chronic 
outcomes require comprehensive investigation.

Current research seeks to decipher the intricate signaling 
pathways and identify potential targets for intervention, aiming to 
exploit the benefits of neuroinflammation while minimizing its 
detrimental effects. Addressing these challenges is essential for 
improving the prognosis and quality of life for individuals affected by 
traumatic CNS injuries.

Understanding the fundamentals of 
neuroinflammation

Neuroinflammation is a fundamental process in the CNS 
characterized by the activation of immune responses within the brain and 
spinal cord. This complex cascade of events involves glial cells, particularly 
microglia and astrocytes, as well as immune cells that infiltrate the CNS 
(13). Neuroinflammation can have both protective and detrimental 
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effects, serving as a double-edged sword. In its protective role, 
neuroinflammation helps clear debris, fight infections, and promote tissue 
repair (14, 15). However, when dysregulated, it can lead to prolonged 
inflammation, contributing to secondary damage, excitotoxicity, oxidative 
stress, blood–brain barrier disruption, and neuronal cell death (16).

Microglia and astrocytes play vital roles in regulating 
neuroinflammation, and their interactions involve complex pathways. 
Promoting the transition of pro-inflammatory microglia to an anti-
inflammatory state, reducing the release of pro-inflammatory 
cytokines, and enhancing the removal of neurotoxic debris through 
phagocytosis is a critical component of combinatory therapy for CNS 
trauma (17, 18). Activated astrocytes can impact the BBB by releasing 
pro-inflammatory cytokines, producing reactive oxygen species 
(ROS), releasing matrix metalloproteinases (MMPs), upregulating 
glial fibrillary acidic protein (GFAP) expression, and promoting the 
expression of chemokines and adhesion molecules, leading to 
increased permeability, oxidative stress, damage to endothelial cells, 
and immune cell infiltration into the central nervous system (19, 20).

Microglia and astrocytes can exchange information via the release 
of signaling molecules such as cytokines, chemokines, and 
neurotrophic factors (21). For instance, microglia can release 
interleukin-1β (IL-1β) or tumor necrosis factor-alpha (TNF-α) in 
response to an inflammatory stimulus, which can then trigger 
astrocytes to produce chemokines like CCL2 (chemokine ligand 2), 
attracting immune cells to the site of injury or inflammation. 
Additionally, both cell types can interact through direct physical 
contact, such as gap junctions, which allow the exchange of ions, 
metabolites, and signaling molecules (22). This coordinated 
communication between microglia and astrocytes is essential for the 
regulation of neuroinflammatory responses.

Navigating the complex interplay 
between the neuroimmune response

The interaction between the nervous and immune systems is a 
central theme in neurotrauma research with profound consequences on 
neurological outcomes. Microglia can adopt different activation states, 
ranging from a pro-inflammatory phenotype that releases cytokines and 
reactive oxygen species, to an anti-inflammatory phenotype that 
promotes tissue repair and resolution of inflammation (23). The balance 
between these activation states is critical in determining the trajectory 
of neuroinflammation and, subsequently, the extent of secondary 
damage and recovery. Crosstalk between neuroimmune players extends 
beyond microglia and infiltrating immune cells. Neurons and astrocytes 
actively communicate with immune cells, influencing their activation 
and response to injury (24–26). This includes releasing 
neurotransmitters and neuropeptides that can modulate the activity of 
microglia and peripheral immune cells.

Microglia and astrocytes also recruit neutrophils to the CNS 
through a coordinated release of signaling molecules, including 
chemokines like IL-8, CXCL1 and MIP-2, pro-inflammatory cytokines 
like IL-1β and TNF-α, and the upregulation of adhesion molecules like 
ICAM-1 and VCAM-1 on the blood vessel walls (27, 28). These 
mechanisms create a chemotactic and adhesive environment that guides 
neutrophils from the bloodstream into the CNS in response to 
inflammatory or injury-related cues (29). Recent efforts have begun to 
dissect the role of neutrophil extracellular traps (NETs), web-like 

structures released by neutrophils to combat infections, in adverse 
effects on neuronal health following trauma (30). The pro-inflammatory 
components within NETs trigger local inflammation, and BBB 
disruption, contributing to neuronal damage. Components of NETs, 
such as histones and proteases, can directly injure neurons, disrupt 
synaptic function, and induce cell death, which may lead to cognitive 
and motor deficits (31–33). Thus, understanding and targeting the 
detrimental effects of NETs in the CNS is an active area of research with 
the potential to offer new therapeutic avenues.

Unraveling metabolic regulation of 
neuroinflammation in neurotrauma

Neuroinflammation is not a one-size-fits-all phenomenon. Its 
consequences can vary depending on factors such as age, sex, 
metabolic conditions, and epigenetic stressors (34–36). The dynamic 
changes in epigenetics and the reprogramming of immunometabolism 
influence modifications in how cells respond to internal and external 
signals and subsequent cell fate decisions. Metabolic regulation is a 
fundamental aspect of how different neuroimmune cells function 
within the central nervous system (CNS). Immune cells, such as 
microglia and infiltrating monocytes, as well as glial cells like 
astrocytes, adapt their metabolic profiles in response to various 
challenges and signaling pathways which allows for plastic use of 
energy substrates (37). Single-cell sequencing and omics analysis have 
provided valuable insights into the metabolic diversity among these 
cells (38, 39). Microglia, for instance, exhibit a high degree of plasticity, 
switching between glycolytic and oxidative phosphorylation pathways 
depending on their activation state. In their pro-inflammatory state, 
microglia tend to favor glycolysis, which generates energy quickly but 
is less efficient, while an anti-inflammatory state often corresponds to 
increased oxidative phosphorylation, which produces more ATP (37). 
Single-cell sequencing has unveiled the complexity of these metabolic 
shifts, highlighting the intricate balance required to maintain immune 
responses and CNS homeostasis.

Astrocytes, on the other hand, primarily rely on glycolysis for 
energy production (40). This metabolic profile supports their critical 
functions in neurotransmitter recycling and maintaining the blood–
brain barrier. Importantly, astrocytes can release lactate, which serves 
as an energy source for neurons, emphasizing their role in the 
metabolic regulation of the CNS. Single-cell sequencing has revealed 
heterogeneity among astrocytes, suggesting that specific 
subpopulations may have distinct metabolic profiles and functions 
(41). Understanding these metabolic differences among neuroimmune 
and glial cells at the single-cell level is essential for developing targeted 
interventions that can modulate their metabolic responses, potentially 
optimizing neuroinflammatory processes and promoting 
neuroprotection in various neurological disorders.

Diverse research approaches and 
developing innovative therapeutic 
strategies to retool the neuroimmune 
response

The intricacies of neurotrauma-induced neuroinflammation 
demand a collaborative endeavor encompassing various research 
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methods, both in basic science and translational applications. 
This multidisciplinary approach fosters advances that underscore 
the importance of inclusivity in the research process. Current 
approaches to date, include the use of immunomodulatory 
therapies, and monoclonal antibodies that block 
pro-inflammatory cytokines like tumor necrosis factor-alpha 
(TNF) or interleukin-1β (IL-1β) that can dampen the 
neuroinflammatory response (42). The use of cell-based 
therapies, such as chimeric antigen receptor (CAR) T-cell therapy, 
and dendritic or myeloid-derived suppressor cell (MDSC) or 
mesenchymal stem cells (MSCs) therapies have been investigated 
(43, 44). Engineered cells may offer a controlled release of anti-
inflammatory factors aimed at creating an immunosuppressive 
environment. Furthermore, nanotechnology-based strategies are 
being explored to enable targeted drug delivery to specific cell 
populations such as phagocytic cells (45).

Artificial intelligence (AI) and machine learning have become 
invaluable tools in the study of neuroinflammation due to their 
ability to analyze complex and vast datasets, recognize patterns, 
and make predictions based on data-driven insights. These 
technologies play a pivotal role in identifying novel biomarkers for 
neuroinflammatory conditions, which can aid in early diagnosis 
and disease monitoring (46). AI and machine learning can 
integrate multi-omics data, including genomics, transcriptomics, 
proteomics, and metabolomics, to uncover intricate molecular 
mechanisms underlying neuroinflammation (47). By identifying 
gene expression patterns, epigenetic modifications, and metabolic 
signatures associated with neuroinflammation, a deeper 
understanding of new and novel pathways may be revealed. As 
such, AI-powered predictive models can help assess treatment 
responses and prognosis, and support the categorization of 
neuroinflammatory endophenotypes in brain trauma (48–50). 
Further, neuromodulation techniques or non-invasive approaches 
including focused ultrasound, are being explored to directly 
influence the activity of neuroimmune cells within the CNS (51). 
These non-invasive approaches have the potential to modulate 
neuroinflammatory responses, by facilitating the delivery of 
immunotherapeutic agents into the brain and exerting direct 
immune-related effects (52, 53). As these technologies continue to 
advance, they hold the promise of revolutionizing our 
understanding of neuroinflammation and improving diagnostic 
and treatment strategies.

Conclusion

Neuroinflammation in the context of acquired traumatic CNS 
injury underscores the complexity and multifaceted nature of the 
neuroimmune response. Recent advances in understanding the 
metabolic and phenotypic regulation of neuroimmune cells, the 
complex interplay between different cell types, and the development 
of innovative therapeutic strategies have shed new light on potential 
interventions for mitigating neuroinflammatory processes. Diverse 
research approaches, from single-cell omics analysis to AI integration, 
offer promising avenues for unraveling the intricate pathophysiological 
dimensions of neuroinflammation.
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