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Objective: To examine the association of lactate-to-albumin ratio (LAR) with 
30-day and 90-day mortality in patients with cerebral infarction admitted to the 
intensive care unit (ICU).

Methods: In this retrospective observational study, 1,089 patients with cerebral 
infarction were recruited. The concentration of blood lactate and serum albumin 
on the first day of ICU admission were recorded. The relationship between LAR 
levels and mortality was evaluated through univariate and multivariate Cox 
regression analyses, four-knot multivariate restricted cubic spline regression, 
and Kaplan–Meier (KM) curves.

Results: The overall 30-day and 90-day mortality rates in the entire cohort 
were 27.3 and 35.8%, respectively. KM analysis revealed a significant relationship 
between high LAR index and the risk of all-cause mortality (log-rank p  <   0.001). 
Furthermore, multivariate Cox proportional risk analysis showed that the LAR 
index independently predicted the risk of 30-day mortality (HR: 1.38, 95% CI 
1.15–1.64, p  =  0.004) and 90-day mortality (HR: 1.53, 95% CI 1.32–1.77, p  <   0.001) 
in the study population. Furthermore, a higher LAR exceeding 0.53 was positively 
correlated with the risk of 30-day and 90-day mortalities. Subsequent subgroup 
analyses demonstrated that LAR could predict the primary outcome.

Conclusion: In summary, the LAR index is a reliable and independent predictor of 
increased mortality among critically ill patients suffering from cerebral infarction. 
Nonetheless, there is a need for additional comprehensive prospective studies 
to validate these findings.
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Introduction

According to the Global Burden of Disease Study 2019 report, 
stroke remains the second most common cause of mortality and the 
third most prevalent cause of disability globally (1). Cerebral 
infarction (CI) is the predominant form of stroke, characterized by 
compromised blood flow in the brain, causing tissue ischemia, 
hypoxia, and potentially localized necrosis (2). Although high-
income nations have reported a gradual reduction in both morbidity 
and mortality linked to cerebral infarction in recent decades, 
several low-income and middle-income countries have had stagnant 
or even increasing rates (3). Research has shown that despite the 
beneficial effects of tissue plasminogen activator (tPA)-induced 
thrombolysis or endovascular therapy on functional outcomes in 
individuals with acute cerebral infarction, the overall prognosis for 
these patients remains unfavorable (4, 5), as evidenced by 
approximately 20% of patients needing intensive care unit (ICU) 
treatment (5). Consequently, it is imperative to identify dependable 
biomarkers responsible for the prognosis of patients with cerebral 
infarction in the ICU, thereby promoting improved 
patient management.

Notably, the measurement of serum lactate (Lac) level is an 
important indicator in clinical medicine for assessing insufficient 
tissue perfusion. This marker has been extensively associated with 
organ failure and tissue necrosis, including cerebral infarction, sepsis, 
pediatric critical, and trauma (6–9). An increase in lactate levels is 
primarily because of cellular hypoxia-ischemia, resulting in metabolic 
disruptions as the effective circulating volume of brain tissue 
diminishes. Hypoxia and energy depletion can induce injury response 
thereby causing poor outcomes in patients with acute cerebral 
infarction. Hypoalbuminemia, characterized by an adult serum 
albumin (Alb) level below 35 g/L, is a prevalent complication in 
patients with cerebral infarction. Patients admitted with concurrent 
hypoalbuminemia are vulnerable to infections and experience poor 
functional outcomes as well as high in-hospital mortality rates (10, 
11). Previous research has shown that low serum Alb levels indicate 
recurrence and mortality in patients with cerebral infarction (12, 13). 
Therefore, the Alb level acts as a significant parameter in assessing 
the nutritional status of patients and plays a crucial role in the 
mortality of cerebral infarction.

In this regard, the lactate-to-albumin ratio (LAR) is a valuable 
indicator for assessing overall mortality in patients with cerebral 
infarction. We used data from the MIMIC-IV database to examine the 
relationship between LAR and overall mortality. In this study, 
we  aimed to explore whether can LAR predict the prognosis of 
patients with CI in the ICU.

Methods

Study population

A retrospective cohort study was performed using data from 
the MIMIC-IV database between 2008 and 2019. The MIMIC 
database is a publicly available comprehensive and population-
based critical database overseen by the Computational Physiology 
team at the Massachusetts Institute of Technology, which can 
be downloaded from.1 The author (Record ID 57310450), who was 
granted access to this database, extracted all the data. All the data 
used in this study were de-identified, ensuring patient anonymity. 
Therefore, there was no need for informed consent. We recruited 
participants aged 18 years or older admitted to the intensive care 
unit (ICU). We excluded patients who lacked albumin and lactate 
data on the first day of admission. Subsequently, a 1% winsorization 
was used for the LAR variable to minimize the impact of outliers on 
the accuracy of study results. Data from the initial ICU stay were 
considered for individuals with multiple admissions to both the 
ICU and hospital. This study specifically targeted individuals 
diagnosed with cerebral infarction based on the International 
Classification of Diseases, 10th edition (ICD-10, code 163) and 9th 
edition (ICD-9, codes 433.01, 433.11, 433.81, 433.91, 434.01, 
434.11, 434.91). The study enrolled a cohort of 1,089 patients who 
were categorized into five groups based on the orderly increment 
ranges of LAR ratio on the first day of ICU admission, Includes: L1 
(0.19 ≤ LAR≤0.3), L2 (0.3 < LAR≤0.5), L3 (0.5 < LAR≤0.7), L4 
(0.7 < LAR≤0.9), L5 (0.9 < LAR≤4.16). Figure 1 shows the flowchart 
of patient screening.

Data collection

Data were extracted from the MIMIC-IV database using 
PostgreSQL (version 11.21) and structured query language (SQL). 
The code of demographic data, comorbidities, and severity score were 
acquired from the GitHub website.2 The following data were collected: 
(1) Demographics: age, gender, race, height, weight, and other 
general demographics; (2) Comorbidities included diabetes, 
hypertension, heart failure, Atrial fibrillation and sepsis; (3) The 
laboratory results extracted were from first-day inspection after 
admission to the ICU, including Serum sodium, Serum potassium, 
Creatinine, Chloride, blood urea nitrogen, Hemoglobin, white blood 
cell, red blood cell, platelet count, prothrombin time, Glucose, 
Albumin, and Lactate; (4) SOFA sequential organ failure assessment, 
SAPSII simplified acute physiological score II and Glasgow Coma 
Scale score were also included.

Missing values were assumed to be randomly missing. Variables 
with missing values exceeding 20% were excluded from the univariate 
analysis. The multiple imputation method was used to impute 
variables with missing values below 20%. All the included variables 
had less than 20% missing values.

1 https://physionet.org/content/mimiciv/2.2/

2 https://github.com/MIT-LCP/mimic-code

Abbreviations: ICU, Intensive care unit; LAR, Lactate-to-albumin ratio; CI, 

Cerebral  infarction; MIMIC-IV, Medical information mart for intensive care IV; SQL, 

Structured Query Language; SOFA, Sequential organ failure assessment; SAPSII, 

Simplified acute physiological score II; BUN, Blood urea nitrogen; WBC, White 

blood cell; RBC, Red blood cell; PT, Prothrombin time; Alb, Albumin; Lac, Lactate; 

AF, Atrial Fibrillation; RCS, Restrictive cubic spline; AUC, Area under the curve; 

ROC, Receiver Operating Characteristic; HR, Hazard ratio.
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Primary outcome

The primary outcomes examined were all-cause 30-day mortality 
and 90-day mortality, whereas the secondary outcome assessed 
all-cause mortality within a follow-up period of 180 days.

Data analysis

The Shapiro–Wilk test was used to assess continuous variables, 
which were presented as mean ± SD if they adhered to a normal 
distribution, or as median [interquartile range (IQR)] if they did not. 
The comparison of continuous variables was conducted using either 
the Student T-test or the Mann–Whitney test, based on their 
distribution. Categorical variables were represented by frequencies 
with percentages. The evaluation of significant differences was 
performed using either the Pearson Chi-square test or Fisher’s 
exact test.

The continuous variables of age and weight were transformed 
into categorical variables, specifically age (≤70 years and > 70 years) 
and weight (≤80 kg and > 80 kg). Kaplan–Meier survival analysis 
was performed to assess the relationship between LAR and overall 
mortality, assessing the differences using the log-rank test. 
Additionally, multivariable Cox proportional hazard regression 
analysis was used to evaluate the effect of LAR on the overall 
mortality of individuals with cerebral infarctions, estimating hazard 
ratios (HRs) and 95% confidence intervals (CIs). Variables with a 
p-value less than 0.2  in the univariate Cox analysis were 
incorporated into the multivariate Cox regression analyses. 
We excluded variables with a variance inflation factor (VIF) greater 
than 5. The model included LAR as both continuous and categorical 
variables, with the lowest level (L1) acting as the reference, p for 
trends was also calculated. Ultimately, a multivariate model was 

used to analyze clinically significant and prognostic-related factors. 
Model 1 without any adjustments. In model 2, adjustments were 
made for age, race, and Sepsis. Model 3 included adjustments for 
age, race, blood urea nitrogen, white blood cells, platelets, and 
Sepsis. The assumption of proportional hazards in the Cox 
proportional hazards regression models was evaluated using the 
Proportion Hazards Assumption test.

Exploratory restricted cubic spline (RCS) Cox regression was used 
to investigate the presence of a potential non-linear relationship between 
the rate of LAR and adverse perinatal outcomes, including 30-day and 
90-day mortalities, among individuals diagnosed with cerebral 
infarction. Further, interaction tests and stratified analyses were 
conducted to validate the consistency of the prognostic value of the LAR 
for major outcomes, considering age (≤70 and > 70 years), SOFA score 
(<5 and ≥ 5), Heart failure (yes and no), Atrial fibrillation (yes and no), 
and Sepsis (yes and no). All statistical analyses were performed using 
Stata (17.0, IBM) and R (version 4.3.1, Austria) software. All analyses 
were two-tailed. A p-value < 0.05 was considered statistically significant.

Results

The present study enrolled 1,089 participants, with an average age 
of 68.39 among patients diagnosed with cerebral infarction; 571 
(52.43%) were males and 518 (47.57%) were females. The mean value 
of LAR was 0.68 (0.37, 0.78).

Baseline characteristics of cerebral 
infarction patients

All the participants were categorized into two cohorts based on 
their survival outcome within 30 days. Table 1 shows the fundamental 

FIGURE 1

Flowchart illustrating the selection of patients from the MIMIC-IV database. MIMIC, Medical Information Mart for Intensive Care.
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attributes of these cohorts. Patients in the non-surviving cohort were 
of advanced age and had a greater probability of developing sepsis 
(p < 0.05). Regarding laboratory indicators, the non-surviving cohort 
had significantly higher levels of white blood cell count, serum 
sodium, serum potassium, serum chlorine, blood glucose, serum 
creatinine, blood urea nitrogen, and blood lactate compared to the 
surviving cohort (p < 0.05). In contrast, the groups that survived had 
significantly higher levels of red blood cells (RBC), hemoglobin (Hb), 
and albumin, unlike the groups that did not survive (p < 0.05). The 
non-survival group had a considerably increased LAR unlike the 
survival group (p < 0.001).

Incidence of all-cause mortality among 
different groups

The LAR ratio was divided into five groups based on increasing 
ranges in an orderly manner: L1 (0.19 ≤ LAR≤0.3), L2 (0.3 < LAR≤0.5), 
L3 (0.5 < LAR≤0.7), L4 (0.7 < LAR≤0.9), L5 (0.9 < LAR≤4.16). The 
patient survival in all groups was presented in Kaplan–Meier curves, 
indicating a statistically significant difference in survival rate between 
groups at 90 days (L1: 80.2% vs. L2: 70.5% vs. L3: 67.6% vs. L4: 56% 
vs. L5: 43.1%, log-rank p = 0.021, Figure 2A). Similarly, a significant 
outcome was observed during the 180-day follow-up period (L1: 

TABLE 1 Comparisons of baseline characteristics between survivors and non-survivors.

Characteristic Overall (N =  1,089) Survivors (N =  792) Non-survivors (N =  297) p-value

Age, years 68.39 (57.88, 80.62) 66.98 (56.60, 79.19) 72.17 (62.58, 83.68) <0.001

Weight, kg 80.52 (65.8, 91) 81.50 (66.85, 91.9) 77.89 (63.2, 90) 0.0421

Male, n (%) 571 (52.43) 417 (57.20) 155 (52.19) 0.55

Race

1. Other 226 127 99 <0.001

2. Asian 35 26 9

3. Black 141 110 31

4. White 647 496 151

5. Hispanic 40 33 7

SAPSII score 38.85 (29, 47) 35.97 (27, 43) 46.53 (37, 56) <0.001

SOFA score 6.36 (4, 8) 5.75 (3, 7) 7.98 (5, 11) <0.001

GCS score 12.57 (11, 15) 12.77 (11, 15) 12.03 (10, 15) 0.72

Laboratory tests

Serum sodium, mEq/L 134.54 (132, 138) 134.00 (132, 138) 135.96 (133, 140) <0.001

Serum potassium, mEq/L 3.39 (3, 3.7) 3.35 (3, 3.6) 3.48 (3.1, 3.8) 0.0064

Creatinine mg/dL 0.96 (0.6, 1) 0.90 (0.5, 1) 1.13 (0.6, 1.3) <0.001

Chloride, mEq/L 98.31 (95, 102) 97.54 (95, 101) 100.36 (96, 105) <0.001

BUN, mg/dL 16.54 (9, 20) 14.35 (9, 17) 22.38 (12, 28) <0.001

Hemoglobin, g/dL 12.20 (10.7, 13.5) 12.31 (10.9, 13.6) 11.89 (10.3, 13.4) 0.0031

WBC, K/uL 7.78 (5.6, 9.4) 7.06 (5.5, 8.5) 9.71 (6.2, 12.3) <0.001

RBC, K/uL 4.03 (3.55, 4.47) 4.06 (3.6, 4.5) 3.95 (3.4, 4.42) 0.0073

platelet count, K/uL 327.04 (215, 415) 344.9 (228, 431) 279.42 (176, 363) <0.001

PT 12.72 (11.4, 13.2) 12.46 (11.3, 13) 13.42 (11.8, 14.1) <0.001

Glucose, mg/dL 150.92 (106, 173) 147.15 (104, 167) 161.96 (115, 190) <0.001

Albumin, g/dL 3.36 (2.9, 3.9) 3.41 (2.9, 4) 3.21 (2.7, 3.7) <0.001

Lactate, mmol/L 2.18 (1.3, 2.5) 2.04 (1.2, 2.35) 2.54 (1.3, 3) <0.001

LAR 0.68 (0.37, 0.78) 0.63 (0.36, 0.70) 0.82 (0.43, 0.94) <0.001

Comorbidities, n (%)

Sepsis 624 (57.30) 417 (52.65) 207 (69.70) <0.001

Hypertension 523 (48.03) 373 (47.10) 150 (50.50) 0.316

Heart failure 312 (28.65) 218 (27.53) 94 (31.65) 0.18

Atrial fibrillation 421 (38.66) 300 (37.88) 128 (43.10) 0.116

Diabetes 356 (32.69) 262 (33.08) 94 (31.65) 0.654

Survivors and non-survivors were based on 30-day mortality, Values are number (percentage), or median (25th-75th percentile). SOFA, sequential organ failure assessment; SAPSII, simplified 
acute physiological score II; GCS, Glasgow Coma Scale; BUN, blood urea nitrogen; WBC, white blood cell; RBC, red blood cell; PT, prothrombin time; LAR, lactate to albumin ratio.
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77.0% vs. L2: 67.4% vs. L3: 64.3% vs. L4: 53.6% vs. L5: 39.7%, log-rank 
p = 0.021, Figure 2B).

A linear association between LAR and all-cause mortality.
After adjusting for age, race, blood urea nitrogen, white blood cells, 

platelets, and sepsis (Figure  3A), RCS models were used to further 
investigate the potential linear relationship between LAR (as a categorical 
variable) and the risk of 30-day mortality (p for non-linearity = 0.1465). 
Furthermore, we assessed the potential linear relationship between LAR 
and 90-day fatality (p value for non-linearity = 0.0716), at the same time 
adjusting for age, race, blood urea nitrogen, white blood cells, platelets, 

and sepsis (Figure 3B). When the LAR exceeded 0.53, we noted a positive 
correlation with the risk of 30-day and 90-day mortality in individuals 
suffering from cerebral infarction. Additionally, the HR approached 1 
and the cutoff value remained at 0.53.

LAR level and all-cause mortality

In the initial step, we preformed COX univariate analysis in 
which variables with a significance level of p < 0.2 were included in 

FIGURE 2

Kaplan–Meier survival analysis curves for all-cause mortality. LAR orderly increment: L1 (0.19  ≤  LAR≤0.3), L2 (0.3<LAR≤0.5), L3 (0.5<LAR≤0.7), L4 
(0.7<LAR≤0.9), L5 (0.9<LAR≤4.16). Kaplan–Meier curves showing cumulative probability of all-cause mortality according to groups at 90  days (A), and 
180  days (B).

FIGURE 3

Multivariable RCS regression showed the linear association between the LAR and 30-day (A) and 90-day (B) mortality afteradjusted for age, race, blood 
urea nitrogen, white blood cells, platelets, and Sepsis. The solid line depicts the estimated values, while the blue area represents their corresponding 
95% confidence intervals (CIs). The dotted horizontal lines show the 1.0 hazard ratio. HR, hazard ratio; CI, confdence interval; LAR, lactate/albumin 
ratio; RCS, restricted cubic spline.
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the subsequent COX multivariate analysis. Additionally, 
we  systematically eliminated variables with Variance Inflation 
Factor (VIF) values exceeding 5 individually (14). The detailed 
procedure for this screening process is presented in 
Supplementary Tables S1 and S2. The Cox proportional risk analysis 
revealed a significant relationship between the LAR and 30-day 
mortality. This relationship was observed upon using LAR as a 
continuous variable in both crude Cox models (HR, 1.61 [95% CI 
1.37–1.89], p < 0.001) and multivariate Cox models (HR, 1.38 [95% 
CI 1.15–1.64], p = 0.004). When the LAR was treated as a categorical 
variable, the crude Cox model displayed varying levels of risk across 
different categories (L1 vs. L2: HR, 1.64 [95% CI 0.99–2.72] 
p = 0.0.0561; L3: HR, 1.78 [95% CI 1.05–3.02] p = 0.031; L4: HR, 
2.60 [95% CI 1.50–4.51] p = 0.001; L5: HR, 3.64 [95% CI 2.19–6.05] 
p < 0.001 p for trend <0.001). These relationships remained 
statistically significant even after adjusting for confounding factors 
in fully adjusted models (L1 vs. L2: 95% CI HR, 1.47 [95% CI 0.88–
2.45] p = 0.137; L3: HR, 1.67 [95% CI 0.98–2.84] p = 0.057; L4: HR, 
2.14 [95% CI 1.23–3.73] p = 0.007; L5: HR, 2.23 [95% CI 1.33–3.76] 
p = 0.0032 p for trend <0.001). The test for the proportional hazard 
assumption yielded a non-significant result (p = 0.2481). 
Additionally, we  obtained similar findings when conducting 
multivariate Cox proportional risk analysis to assess the relationship 
between the LAR and 90-day mortality (Table 2). Specifically, the 
proportional hazard assumption remained valid when considering 
LAR as categorical variables in fully adjusted models (p = 0.115).

Subgroup analysis

The association between the LAR level and all-cause mortality was 
examined in various subgroups of the study population, including age, 
sepsis, heart failure, atrial fibrillation, and SOFA score. The 
relationship between the LAR ratio and the 90-day mortality in 
patients with critical cerebral infarction was assessed, with subgroup 
analyses conducted for age, sepsis, heart failure, atrial fibrillation, and 
SOFA score. The results of all subgroup analyses were consistent and 
indicated a significant association between the LAR ratio and 90-day 
mortality (all p < 0.05), with no interactions observed (all p for 
interaction>0.05). Similar findings were noted when conducting 
stratified analyses of the LAR level and 30-day mortality. However, no 
statistically significant differences were found in subgroups of 
individuals aged ≥70 years (HR, 1.27 [95% CI 0.95–1.69]), with SOFA 
scores ≤5 (HR, 1.23 [95% CI 0.78–1.93]), and without sepsis (HR, 1.55 
[95% CI 0.98–2.45]) (all p > 0.05) in relation to 30-day mortality. 
Table 3 shows that data.

Discussion

Stroke is the second most common cause of mortality across the 
globe, with the highest rates of both fatality and morbidity among all 
diseases, after premature death and disability arising from illness (1, 
15). Cerebral infarction, the primary manifestation of stroke, accounts 

TABLE 2 Cox proportional hazard ratios (HR) for 30-day mortality and 90-day mortality.

Categories Model 1 Model 2 Model 3

HR (95%) p-value p for 
trend

HR (95%) p-value p for 
trend

HR (95%) p-value p for 
trend

30-day mortality

Continuous variable 

per

1.61 (1.37–1.89) <0.001 1.65 (1.27–2.13) <0.001 1.38 (1.15–1.64) 0.004

1 unit

Orderly increment

L1 (N = 126) <0.001 <0.001 <0.001

L2 (N = 393) 1.64 (0.99–2.72) 0.056 1.51 (0.91–2.51) 0.113 1.47 (0.88–2.45) 0.137

L3 (N = 241) 1.78 (1.05–3.02) 0.031 1.60 (0.94–2.72) 0.081 1.67 (0.98–2.84) 0.057

L4 (N = 125) 2.60 (1.50–4.51) 0.001 2.48 (1.43–4.32) 0.001 2.14 (1.23–3.73) 0.007

L5 (N = 204) 3.64 (2.19–6.05) <0.001 3.02 (1.80–5.04) <0.001 2.23 (1.33–3.76) 0.003

90-day mortality

Continuous variable 

per

1.71 (1.49–1.95) <0.001 1.63 (1.41–1.87) <0.001 1.53 (1.32–1.77) <0.001

1 unit

Orderly increment

L1 (N = 126) <0.001 <0.001 0.001

L2 (N = 393) 1.58 (1.02–2.43) 0.039 1.43 (0.93–2.22) 0.104 1.44 (0.93–2.23) 0.098

L3 (N = 241) 1.73 (1.10–2.71) 0.017 1.54 (0.98–2.42) 0.063 1.63 (1.04–2.56) 0.035

L4 (N = 125) 2.56 (1.59–4.10) <0.001 2.40 (1.49–3.87) <0.001 2.04 (1.36–3.52) 0.001

L5 (N = 204) 3.78 (2.45–5.82) <0.001 3.11 (2.01–4.83) <0.001 2.57 (1.65–3.99) <0.001

Cox proportional hazards models were employed to estimate HR and 95% CI. Model 1, unadjusted; Model 2, adjusted for age, race, and Sepsis; Model 3, adjusted for age, race, blood urea 
nitrogen, white blood cells, platelets, and Sepsis. LAR, Orderly increment: L1 (0.19 ≤ LAR ≤ 0.3), L2 (0.3<LAR ≤ 0.5), L3 (0.5<LAR ≤ 0.7), L4 (0.7<LAR ≤ 0.9), L5 (0.9<LAR ≤ 4.16).
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for most of the fatalities and impairments globally. Furthermore, 
approximately 20% of individuals afflicted with cerebral infarction 
require intensive care intervention (5). This study provides evidence 
of a significant effect of the lactate-to-albumin ratio (LAR) as an 
independent determinant of mortality rates in patients with cerebral 
infarction, both within 30 days and 90 days. The findings revealed a 
consistent increase in mortality rates within these timeframes as LAR 
increases, with a statistically significant trend (p-value for trend = 0). 
As the ratio increased, the distinction became more discernible, and 
a positive correlation was observed between the risk of mortality 
within 30 days, 90 days, and the LAR, but solely when the LAR 
exceeded 0.53. In this study, the fully adjusted model showed that the 

LAR, as an ordinal variable, confirms the Cox proportional risk 
assumption with a p-value exceeding 0.5. Furthermore, our viewpoint 
is strengthened by subgroup analyses.

In recent years, researchers have increasingly studied the 
association of inflammation with outcomes of patients with cerebral 
infarction. Among patients with cerebral infarction, the relationship 
between the distribution width of red blood cells in peripheral blood 
(RDW) and human serum albumin (Alb) acts as a dependable 
indicator for acute ischemic stroke (AIS) and a distinct predictor for 
all-cause mortality within 30 days (16). The clinical assessment of 
30-day mortality in patients with ischemic stroke or hemorrhagic 
stroke can be conducted using various ratios, including neutrophil/

TABLE 3 The subgroup analysis results of the multivariable-adjusted HR for the association between the LAR and 30-day and 90-day mortality.

Subgroup analysis Model 1 Model 2 Model 3

N OR p-value p for 
interaction

OR p-value p for 
interaction

30-day mortality

AGE, year 0.419 0.425

≥70 556 ref 1.42 (1.10–1.83) 0.007 1.27 (0.95–1.69) 0.11

<70 553 ref 1.57 (1.26–1.96) <0.001 1.42 (1.13–1.77) 0.003

SOFA 0.854 0.66

>5 615 ref 1.49 (0.98–2.25) 0.062 1.35 (1.10–1.66) 0.005

≤5 474 ref 1.49 (1.24–1.79) <0.001 1.23 (0.78–1.93) 0.383

Sepsis 0.094 0.208

Yes 624 ref 1.46 (1.21–1.75) <0.001 1.34 (1.10–1.62) 0.004

No 465 ref 2.0 (1.38–2.90) <0.001 1.55 (0.98–2.45) 0.06

Heart failure 0.55 0.36

Yes 312 1.74 (1.33–2.27) <0.001 1.54 (1.13–2.10) 0.007

No 777 1.56 (1.27–1.90) <0.001 1.31 (1.05–1.63) 0.015

Atrial fibrillation 0.059 0.921

Yes 428 2.04 (1.56–2.67) <0.001 1.52 (1.12–2.07) 0.007

No 661 1.46 (1.18–1.80) 0.001 1.39 (1.11–1.74) 0.004

90-day mortality

AGE, year 0.893 0.963

≥70 556 ref 1.60 (1.31–1.96) <0.001 1.52 (1.21–1.90) <0.001

<70 553 ref 1.59 (1.31–1.93) <0.001 1.48 (1.22–1.80) <0.001

SOFA 0.3 0.842

>5 615 ref 1.54 (1.32–1.80) <0.001 1.48 (1.24–1.76) <0.001

≤5 474 ref 1.77 (1.27–2.47) 0.01 1.57 (1.10–2.22) 0.012

Sepsis3 0.09 0.12

Yes 624 ref 1.56 (1.33–1.82) <0.001 1.47 (1.25–1.72) <0.001

No 465 ref 2.05 (1.49–2.80) <0.001 1.69 (1.17–2.44) 0.005

Heart failure 0.426 0.266

Yes 312 1.86 (1.49–2.32) <0.001 1.76 (1.37–2.26) <0.001

No 777 1.64 (1.39–1.95) <0.001 1.43 (1.19–1.72) <0.001

Atrial fbrillation 0.132 0.942

Yes 428 2.05 (1.61–2.61) <0.001 1.62 (1.24–2.12) <0.001

No 661 1.62 (1.37–1.92) <0.001 1.55 (1.30–1.86) <0.001

Model 2, adjusted for age, race, and Sepsis; Model 3, adjusted for age, race, blood urea nitrogen, white blood cells, platelets, and Sepsis.
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lymphocyte ratio (NLR), platelet/lymphocyte ratio, neutrophil/
albumin ratio, prognostic nutritional index (PNI), systemic immune 
inflammation index (SII), and red cell distribution width/albumin 
ratio (RA) (17–19). In our research, the LAR, which is an innovative 
predictor of inflammation, holds significant clinical importance in 
evaluating the risk of death from any cause among individuals with 
cerebral infarction.

The presence of lactate (Lac) in the body indicates inadequate 
tissue perfusion and cellular hypoxia due to anaerobic metabolism. In 
the absence of adequate oxygen and tissue perfusion, lactate 
dehydrogenase suppresses the breakdown of pyruvate, resulting in 
lactate accumulation. Previous studies have shown that individuals 
with brain injury have increased lactate levels (8). Within the scope of 
our study, we observed significantly increased lactate levels in patients 
with cerebral infarction who did not survive, unlike those who 
survived. These results align with previous research on critically ill 
patients (20, 21). Moreover, lactate is a marker for organ failure and 
mortality. Nonetheless, alternative studies have shown that in severe 
cases, patients may present reduced levels of lactate in their venous 
bloodstream, thereby compromising the reliability of using lactate as 
the sole predictor of patient prognosis (22). Albumin, a key nutrient 
primarily synthesized by the liver, plays a critical role in stabilizing the 
colloid osmotic pressure of plasma and acts as an important means of 
material transportation within the bloodstream (23). Furthermore, 
the serum Alb level is influenced by the nutritional status of patients 
and is closely associated with the inflammatory response. The presence 
of Alb causes the synthesis of anti-inflammatory molecules including 
lipoxins, lysins, and protections, thus promoting wound healing and 
limiting disease progression (24). This process involves a significant 
consumption of Alb, and the extent of its decline directly correlates 
with the inflammation degree (25, 26). Previous studies have shown 
that Alb can act as an independent prognostic factor for ischemic 
stroke (13, 27). Furthermore, our findings confirmed that Alb levels 
significantly decreased in the cohort of cerebral infarction patients 
who did not survive. However, the concentration of serum albumin 
can be  influenced by various factors, including inflammation, 
nutritional support, and chronic illness. Consequently, its predictive 
value in a single assessment may be limited. The use of the serum 
lactate to serum Alb ratio (LAR) can improve the accuracy of 
prognosticating outcomes in patients with cerebral infarction by 
counterbalancing the effect of a singular factor on regulatory 
mechanisms through the contrasting effects induced by two 
separate mechanisms.

Several studies have demonstrated that oxidative stress, 
inflammatory damage, and immune injury contribute to the onset and 
progression of cerebral infarction (28–30). The inflammatory and 
oxidative stress conditions within the body have been found to directly 
trigger abnormal glycolysis, resulting in the accumulation of lactic 
acid and excessive glycogen consumption. This increases the 
production of lactic acid during the biological aging process (31, 32). 
Lactic acid is generated as a result of immune activation, and may 
stimulate pro-inflammatory and immune-regulating processes (33). 
In addition, endogenous lactic acid serves a neuroprotective function 
by mitigating excitotoxicity, oxidative stress, and traumatic injury 
(34–36). This potentially provides a mechanism by which lactate is 
generated during cerebral infarction, suggesting its impact on the 
prognosis of patients. Research has demonstrated that serum Alb not 
only signifies the nutritional status of the individual but also correlates 

with the extent of inflammatory response and oxidative stress, with 
decreased Alb levels indicating heightened oxidative stress and 
inflammation (37, 38). In addition, Alb can reduce blood viscosity and 
improve arterial reactivity, thereby mitigating the detrimental effects 
of ischemia–reperfusion injury (39, 40). A previous study found that 
Alb, acting as an antithrombotic agent, reduces the levels of multiple 
coagulation factors, destabilizes blood clots, and prevents platelet 
aggregation, thereby influencing thrombosis (41). Consequently, it 
may affect the prognosis of patients with cerebral infarction.

LAR has been used in prognostication of overall mortality in 
patients diagnosed with sepsis, acute cardiac insufficiency, respiratory 
insufficiency, and acute pancreatitis-induced inflammation (42–44). 
Research has shown a significant relationship between increased LAR 
values in the early stages of the disease and an augmented likelihood 
of concurrent organ dysfunction (45). Infections related to stroke can 
potentially cause sepsis, which is characterized by a disruption of host 
response to infection, subsequently causing organ impairment and an 
increased mortality rate (46). The research findings indicate a 
correlation between sepsis and cerebral infarction (CI), suggesting 
that sepsis increases the probability of developing CI and is linked to 
increased negative outcomes and mortality rates in patients with CI 
(47–50). Subgroup analyses revealed no significant interaction 
between the subgroups sepsis, heart failure, and atrial fibrillation. This 
indicates that the LAR acts as a dependable indicator of all-cause 
mortality in the entire population. Moreover, within the realm of 
medical practice, the SOFA scale assumes a pivotal function in sepsis 
detection (51) acting as an appropriate tool for prognosticating 
mortality rate among individuals with severe acute cerebral infarction 
(52). We classified the subjects based on their sofa score to mitigate 
the effect on outcome prediction. No correlation was observed 
between the two subcategories. Although no interaction was observed 
among all subgroups, specific analyses showed inconsistent p values 
within the two subgroups, yet consistently exceeding 1 on hazard 
ratios. These discrepancies may be attributed to the limited sample 
size and survival data. Consequently, future studies with a substantial 
number of participants are necessary to verify our findings.

Limitations

This work provides evidence that LAR is an independent predictor 
of 30-day and 90-day mortality in patients with cerebral infarction. 
However, it has compelling limitations. First, despite conducting 
subgroup analyses and using multivariable-adjusted analyses, there is 
a possibility of selection bias and limited sample size. Secondly, the 
LAR may be influenced by several factors. For instance, shock, sepsis, 
and poor systemic or local tissue perfusion may alter the lactate (lac) 
level, as well as other factors such as comorbidities with alcoholism, 
severe hepatitis, diabetes mellitus, severe asthma, malignant tumors, 
underlying diseases, use of medications such as biguanides, 
catecholamines, and other drugs that can increase the concentration 
of lactate (53–55). In addition to inflammation, nutritional support, 
liver function, cardiovascular disease, viral infections, renal disease, 
neoplasms, and auto-rheumatic immune disorders can potentially 
lower albumin levels (56). Moreover, this analysis mainly focused on 
the prognostic significance of the LAR at the initial day of ICU 
admission in patients with cerebral infarction. However, it is possible 
that the LAR may have continuously fluctuated during the follow-up 
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period. Thus, failure to analyze the potential effect of dynamic changes 
of LAR on patient outcomes may be a limitation of our study. This was 
a retrospective study conducted in a single center. Thus, rigorous 
prospective and multicenter studies are required to validate 
our findings.

Conclusion

In conclusion, this is the first study to establish a correlation 
between the LAR and both 30-day and 90-day mortality rates within 
a cohort of individuals with cerebral infarction. Our findings indicate 
that an increased LAR acts as an autonomous prognostic indicator for 
overall mortality in patients with cerebral infarction. This relationship 
remains statistically significant even after accounting for potential 
confounding factors. Further analyses are advocated to further 
confirm the association between the LAR and all-cause mortality 
among critically ill patients with cerebral infarction.
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