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In recent years, artificial intelligence (AI) has undergone remarkable advancements, 
exerting a significant influence across a multitude of fields. One area that has 
particularly garnered attention and witnessed substantial progress is its integration 
into the realm of the nervous system. This article provides a comprehensive 
examination of AI’s applications within the peripheral nervous system, with 
a specific focus on AI-enhanced diagnostics for peripheral nervous system 
disorders, AI-driven pain management, advancements in neuroprosthetics, 
and the development of neural network models. By illuminating these facets, 
we unveil the burgeoning opportunities for revolutionary medical interventions 
and the enhancement of human capabilities, thus paving the way for a future in 
which AI becomes an integral component of our nervous system’s interface.
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Introduction

Artificial intelligence (AI) in the peripheral nervous system represents a synergy between 
computational technologies and the complexities of neural networks. It aims to decode the 
intricacies of neural circuitry and develop advanced therapies to treat neurological disorders 
and enhance human performance (1, 2). This article explores the integration of AI in the 
peripheral nervous system, focusing on applications and the potential implications for medical 
science and neuro-engineering. Therefore, fostering integration among these applications 
holds the potential to catalyze the emergence of novel ideas and technologies aimed at 
advancing the field of peripheral nervous system injury management.

AI-enhanced PNS disorders diagnostics

Diagnosing PNS disorders is a complex and challenging task, requiring the integration 
of data from various sources and a comprehensive understanding of nerve function (3). 
AI, with its ability to process vast amounts of data and identify patterns that might 
be overlooked by human experts, offers tremendous potential to improve the accuracy 
and efficiency of PNS diagnostics (4–6). The PNS is composed of an intricate network of 
nerves that extend throughout the body. Disorders affecting the PNS can lead to a wide 
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range of symptoms, including pain, weakness, numbness, and 
abnormal reflexes (7). Diagnosing these conditions involves a 
series of clinical assessments, electrophysiological tests, imaging 
studies, and sometimes invasive procedures such as nerve biopsies. 
However, the complex and often subtle nature of PNS disorders can 
make an accurate diagnosis a formidable challenge for healthcare 
professionals. Traditionally, PNS diagnostics have been heavily 
reliant on the expertise of neurologists and other specialists, which 
can lead to delays in diagnosis and potential misdiagnoses (8). 
Moreover, the interpretation of test results can be subjective and 
vary between different practitioners. A review indicated that in 
PNS-related cases, there was a delay in diagnosis in 82% of patients, 
largely due to misdiagnoses. This delay often resulted in nerve 
damage and disability, underscoring the critical nature of timely 
and accurate diagnosis in PNS disorders (9). In addition, the 
inherent variability and approximation in dermatome maps, which 
are used to diagnose PNS conditions, have been identified as 
factors contributing to delays in diagnosis and potential 
misdiagnoses. This variability can lead to confusion and 
inaccuracies in pinpointing neurological issues within the PNS 
(10). These limitations highlight the need for advanced 
technological solutions that can augment human expertise and 
improve the overall diagnostic process (Figure 1).

AI’s impact on PNS Image Analysis has been significantly 
transformed the field of neurology. The analysis of images from 
techniques like magnetic resonance imaging (MRI), computed 
tomography (CT), and electromyography (EMG) is critical for 
diagnosing various PNS disorders, including nerve injuries, 
neuropathies, tumors, and entrapment syndromes (11–14). Carpal 
tunnel syndrome (CTS) is caused by compression of the median nerve 
as it passes through the carpal tunnel in the wrist. AI algorithms can 
analyze EMG data and aid in identifying CTS with high sensitivity and 
specificity. Park et  al. (15) utilized a machine learning-based 
methodology to explore the potential of assessing the severity of CTS 
by considering individual, clinical, and sonographic characteristics. 
The performance of all machine learning models surpassed a 70% 
accuracy threshold, with the extreme gradient boosting (XGB) model 
demonstrating the most impressive results. Moreover, the adoption of 
a one-versus-rest classification strategy further enhanced accuracy in 
contrast to the traditional multiclass classification approach.

Traditional manual analysis of these images is labor-intensive, 
time-consuming, and susceptible to human error. AI, particularly 
deep learning models, has shown tremendous potential in overcoming 
these limitations and revolutionizing PNS image analysis (16, 17).

Matsuda et  al. (18) developed a method using deep learning 
models for analyzing images of soma and axons. This method is 
promising in predicting chemotherapy-induced peripheral 
neuropathy and understanding the mechanisms of action of different 
drugs. In the study by Umansky et al. (19), deep learning models were 
employed as a part of their innovative approach to analyze gait in mice 
following sciatic nerve injuries. Specifically, they utilized the Visual 
Gait Lab (VGL) deep learning system for gait analysis. This deep 
learning approach was used alongside standard manual gait and 
sensory assays as well as semi-automated analysis methods.

One of the primary challenges in PNS image analysis is the 
accurate segmentation of neural structures from background tissues. 
AI-based algorithms can automatically segment and label neural 
elements in MRI, CT, single photon emission computed tomography 
(SPECT) and positron emission tomography (PET) scans, allowing for 
precise anatomical localization (20–22). By identifying nerves, nerve 
roots, and other structures of interest, AI algorithms streamline the 
analysis process and provide neurologists with more comprehensive 
and detailed information for accurate diagnosis (11, 21). Chen et al. 
(23) explores the automation of quantifying axonal loss in patients 
with peripheral neuropathies. They developed a deep learning-derived 
muscle fat fraction (FF) method using a 3D U-Net computational 
model to segment muscle MRI images for individual muscle FF 
quantification. This approach significantly improved the efficiency and 
reduced the labor intensity of manual segmentations. Importantly, the 
study demonstrated good accuracy and agreement with manual 
methods. The findings suggest that this automated method can 
be  valuable in the early detection of axonal loss in peripheral 
neuropathies. A study by Yeh et  al. (24) focuses on the real-time 
automated segmentation of the median nerve in dynamic 
ultrasonography using deep learning. They developed a lightweight 
instance segmentation model, SOLOv2-MN, tailored for real-time 
segmentation of the median nerve in dynamic ultrasonography. This 
model outperformed several state-of-the-art models in terms of 
inference speed, while maintaining comparable segmentation 
accuracy. The study indicates that this model can be  potentially 

FIGURE 1

The integration of AI and precision medicine enhances individual healthcare by optimizing therapy planning and diagnostic methods.
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integrated into the clinical setting to assist in the real-time diagnosis 
and evaluation of carpal tunnel syndrome using dynamic 
ultrasonography (Figure 2).

Other study explores the application of deep radiomics in 
diagnosing CTS by focusing on analyzing the deep radiomics features 
of median nerves using ultrasound images, which could potentially 
automate and improve the accuracy of CTS diagnosis (25).

AI models can be trained on large datasets of normal and abnormal 
images to learn subtle patterns and abnormalities in medical images that 
might go unnoticed by the human eye and assist in identifying and 
classifying PNS pathologies more accurately (21). This early detection 
facilitates timely interventions, potentially preventing further nerve 
damage and enhancing patient outcomes. Zhou et al. (26) present a 
deep learning framework called “Deep CTS” designed to address the 
challenges in segmenting the carpal tunnel region from MRI images, a 
critical aspect in the diagnosis and treatment of CTS. Deep CTS 
integrates a shape classifier with a simple convolutional neural network 
(Figure 3A) and a simplified U-Net for segmenting the carpal tunnel 
region (Figure 3B). This specialized structure is tailored specifically for 
the carpal tunnel, enabling efficient segmentation and improvement in 
the accuracy of intersection over union of results (Figure 3C). The 
article reports that this deep learning framework outperforms other 
segmentation networks for small objects. The model was trained with 
333 images and tested with 82 images, achieving accuracy rate on 
reached 97.07% and a segmentation efficiency of 0.17 s. These results 
demonstrate the potential of Deep CTS for clinical application in 
accurately diagnosing CTS through MRI images. In addition, employing 
a cluster algorithm for the purpose of feature selection from datasets has 
yielded a notable degree of purity in the characterization of Guillain–
Barré syndrome (GBS) through the application of AI. This outcome 
underscores a prospective pathway for the realization of computer-
assisted GBS diagnosis (27). Furthermore, a study by Preston et al. (28) 
developed an AI algorithm using deep learning to classify peripheral 
neuropathy in diabetes and prediabetes. The algorithm achieved high 
precision, recall, and F1-score for both healthy participants and those 
with and without neuropathy. In the context of facial nerve paralysis, 
Song et al. (29) proposed a method for classifying facial nerve paralysis 
using a convolutional neural network (CNN) trained on clinical images, 
achieving 97.5% accuracy compared to neurologists’ assessments. While 
this study is specific to facial nerve paralysis, the approach might 
be  adaptable to other peripheral nerve conditions. For epilepsy 

diagnosis, Krishnan et al. (30) evaluated DNNs using Gramian Angular 
Summation Field (GASF) images derived from EEG signals. A custom 
CNN showed high precision, recall, and F1-score in distinguishing 
between focal and normal GASF images, suggesting that DNNs could 
be a promising alternative for epilepsy detection, a condition often 
related to peripheral nervous system disorders. AI can fuse MRI and 
diffusion tensor imaging (DTI) data to map neural fiber trajectories and 
assess nerve integrity in cases of nerve injuries (31, 32). During certain 
procedures, such as nerve biopsies or nerve decompressions, real-time 
image analysis can be crucial for ensuring optimal surgical outcomes. 
DTI is based on the diffusion of water molecules in biological tissues. In 
peripheral nerves, the anisotropic diffusion of water can be quantified 
to assess nerve integrity. Key DTI metrics include fractional anisotropy 
(FA) and apparent diffusion coefficient (ADC), which provide 
information about nerve density, axonal diameter, and myelination. This 
technique is increasingly recognized as a valuable tool in peripheral 
imaging, particularly for assessing nerve abnormalities in conditions 
like diabetic peripheral neuropathy (DPN). DTI parameters, such FA 
and ADC, have been found effective in detecting nerve abnormalities 
in patients with type 2 diabetes and peripheral neuropathy. Decreased 
FA and increased ADC values are observed in the lumbosacral nerve 
roots of patients with DPN compared to healthy controls (33, 34). A 
study reported that acupoint injection of mecobalamin at Zusanli 
(ST36) could treat DPN and repair damaged nerves, as indicated by 
increased FA and decreased ADC in DTI (35). In addition, DTI 
provides reproducible measures of nerve microstructure and is used to 
assess the “health” of major nerves in the upper limb and its metrics 
vary with experimental conditions and the age of the subject (36). 
Furthermore, DTI has been used to evaluate the structure of lower limb 
muscles in chronic peripheral artery disease, which are not visible on 
traditional T1- and T2-weighted images (37).

AI-based pain management

Pain management is a critical aspect of healthcare, particularly 
when dealing with conditions involving the peripheral nerve system. 
Neuropathic pain, caused by nerve damage or dysfunction, is a 
prevalent condition that can significantly impact a patient’s quality of 
life (38). Over the years, medical advancements, including the use of 
AI, have revolutionized pain management (39).

FIGURE 2

The initial steps for preparing images for analysis, and the layout of the SOLOv2-MN deep learning model. The figure initially shows how images are 
pre-processed, including normalization and augmentation techniques and provides visual representation of the SOLOv2-MN model’s architecture, 
critical for their method of automated median nerve segmentation in dynamic ultrasound imaging (24).
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AI algorithms have demonstrated remarkable capabilities in pain 
assessment and diagnosis. These algorithms can analyze vast amounts 
of patient data, including medical history, imaging results, and sensory 
feedback, to identify patterns indicative of neuropathic pain (40). 
Matsangidou et al. (39) conducted a comprehensive systematic review 
delving into the clinical applications of machine learning (ML) in the 
context of pain. Their investigation unveiled compelling outcomes, 
particularly in the domain of pain intensity classification. The efficacy 
of ML techniques in this regard was substantiated across various 
medical conditions, encompassing sickle cell disease, spinal cord injury, 
osteoarthritis, evoked heat pain, low back pain, and thoracic pain, 
among others. Remarkably, their analysis showcased the versatility of 
machine learning algorithms in accurately categorizing pain intensity, 
irrespective of its underlying nature (39, 41–45). With the ability to 
recognize subtle features that may be overlooked by human clinicians, 
AI can aid in accurate and timely diagnosis, reducing the risk of 
misdiagnosis and providing targeted treatment options (40). The study 
by Coombes et al. (46) presents an eHealth intervention using Personal 
Activity Intelligence (PAI) for people with DPN. The intervention aimed 
to enhance physical activity self-management and examine its impact 
on foot symptoms. It involved weekly sessions with exercise tasters, 
behavior change counseling, and PAI self-monitoring. The results 
indicated significant reductions in aching and burning pain in the feet, 
suggesting the feasibility and potential benefits of the PAI eHealth 
intervention for managing pain in DPN patients.

Furthermore, AI-powered diagnostic tools can incorporate 
machine learning techniques, constantly improving their accuracy and 
efficiency. These tools can assist clinicians in selecting the most 
appropriate treatment plans tailored to each patient’s specific condition, 

leading to personalized and more effective pain management strategies 
(47). Amaya-Rodriguez et al. (48), showed that the use of machine 
learning is specifically employed in the context of identifying and 
analyzing druggable sites within the TRPV1 channel. This involves 
computational approaches that aid in drug discovery and repositioning 
for pain management. Machine learning algorithms play a pivotal role 
in understanding the molecular structure of the TRPV1 channel and its 
interaction with various compounds, thereby informing the 
development of targeted therapies in pain management. Multiple 
studies embarked on the creation of innovative models for pain 
recognition through the utilization of machine learning techniques. 
And each of these studies achieved remarkable success in accurately 
detecting instances of pain, showcasing commendable levels of accuracy 
in their outcomes (49–51). In a separate investigation, a cutting-edge 
deep-learning model was harnessed to automate pain assessment by 
analyzing facial expressions, a particularly valuable application in 
critically ill patients with a high accuracy rate (52). Magoon and Suresh 
(53) discusses the use of AI in various aspects of perioperative medicine, 
with a particular focus on pain management. They explore how AI can 
contribute to objective analgo-scoring and enhance the effectiveness of 
regional anesthesia. They specifically highlight the role of AI in 
improving the precision of ultrasound-guided nerve blocks, a critical 
component in pain management. AI’s predictive capabilities have 
proved instrumental in determining a patient’s response to different 
pain management interventions. Fleck et  al. (54) examines 
neurocognitive predictors of adherence to an online pain self-
management program for individuals undergoing long-term opioid 
therapy. The key findings indicate that selective attention and response 
inhibition/speed are significant predictors of program engagement. 

FIGURE 3

A deep neural network for MRI identification of carpal tunnel syndrome. (A) classification model to determine which MRI category. (B) U-Net for carpal 
tunnel area segmentation. (C) The result of the new proposed deep neural network, where the marker position (left) and predicted position (right) of a 
carpal tunnel.
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Furthermore, the study employs a machine learning approach to 
enhance the accuracy of predictions. These findings underscore the 
importance of cognitive factors in the effective management of chronic 
pain and adherence to self-management programs.

By analyzing historical patient data and treatment outcomes, AI 
algorithms can predict which interventions are more likely to 
be effective for specific neuropathic pain conditions. This predictive 
approach can significantly reduce the trial-and-error process, where 
patients may undergo various treatments before finding one that 
works for them (55–57). Moreover, AI can help identify potential side 
effects or complications associated with certain pain management 
medications or procedures, enabling clinicians to make informed 
decisions and minimize risks. This not only enhances patient safety 
but also leads to more cost-effective healthcare (57–59).

AI plays a pivotal role in precision medicine, especially in the 
context of pain management. By analyzing genetic and molecular 
data, AI algorithms can identify specific biomarkers associated with 
certain neuropathic pain conditions. This information allows 
clinicians to predict a patient’s susceptibility to particular types of pain 
and helps design targeted therapies for optimal pain management 
outcomes (40, 60, 61). Zhao et al. (62) utilized AI in the form of the 
Weighted Gene Co-expression Network Analysis (WGCNA) 
algorithm. This method was applied to analyze RNA data, helping to 
identify modules and RNAs significantly associated with disease 
characterization in spinal cord injury (SCI) patients. The study also 
involved constructing co-expression networks and identifying 
pathways and biomarkers related to neuropathic pain post-SCI. Huang 
et al. (63) highlights the integration of advanced AI techniques in 

neuroimaging studies to understand and classify neuropathic pain 
conditions using specifically machine learning methods to analyze 
fMRI data of patients with herpes zoster (HZ) and postherpetic 
neuralgia (PHN). Their approach involved the use of support vector 
machine (SVM) algorithms for the classification of subjects based on 
brain activity patterns. The advent of AI in precision medicine opens 
up new possibilities for developing innovative treatments and 
breakthroughs in peripheral nerve system pain management. Pain 
management often involves non-pharmacological interventions to 
complement medical treatments. Virtual reality (VR) and distraction 
techniques have shown promise in reducing pain perception by 
diverting the patient’s attention away from the pain. Dy et al. (64) 
explored the usability and acceptability of VR for chronic pain 
management among a diverse group of patients in a safety-net 
healthcare setting. Using semi-structured interviews and observations 
of VR usage, the study found that most participants had no prior 
experience with VR for pain management but were interested in 
trying it. The results indicated that VR could be  a usable and 
acceptable tool for chronic pain management, with many participants 
reporting positive experiences and expressing interest in future use. 
AI-driven VR experiences can be personalized based on a patient’s 
preferences and pain sensitivity levels (65, 66). Using AI to analyze 
patient feedback and physiological responses, VR systems can adapt 
in real-time to deliver content that provides the greatest distraction 
and pain relief. Additionally, AI can be  used to monitor patient 
progress during VR therapy and adjust the treatment plan accordingly 
for optimal results (66–68) (Figure 4). Moreover, Suominen et al. (69) 
contributed to the advancement of pain assessment instruments. They 

FIGURE 4

Different methods that help the patient to manage the neuropathic pain using artificial algorithms and neural networks.
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proposed that pain-related textual notes could serve as fertile ground 
for the development of new pain assessment tools through the 
integration of human language technology, thereby promising a more 
refined and nuanced approach to pain evaluation.

Neuro-prosthetics

AI and neuro-prosthetics are rapidly converging fields that hold 
immense promise in revolutionizing healthcare and improving the 
quality of life for individuals with neurological impairments (70). Neuro-
prosthetics aims to restore lost sensory or motor functions by creating 
interfaces between the nervous system and external devices (71). Within 
this realm, advancements in AI have been instrumental in enhancing the 
efficacy and usability of neuro-prosthetic devices. In particular, AI’s 
integration into neuro-prosthetics in the PNS has opened up new 
possibilities for patients with amputations, paralysis, or sensory 
deficits (70).

For individuals who have suffered injuries or disorders affecting the 
PNS, controlling and interacting with their limbs becomes challenging, 
leading to motor impairments or sensory loss (72, 73). Neuro-prosthetics 
that target the PNS aims to bridge this gap by using external devices to 
interface with nerves, muscles, or sensory receptors, facilitating 
communication between the nervous system and the outside world (71).

One of the primary challenges in developing effective neuro-
prosthetic devices lies in deciphering the complex neural signals 
generated by the PNS and translating them into meaningful actions for 
external prostheses or feedback for sensory restoration (71). This is 
where AI-powered signal processing techniques come into play. Machine 
learning algorithms, such as deep learning and neural networks, can 
process large datasets of neural signals to extract patterns and identify 
the intended movements or sensations (74).

For instance, AI algorithms have been used to decode neural signals 
from residual limb muscles in amputees, enabling intuitive and natural 
control of prosthetic limbs (75). By analyzing muscle activation patterns, 
AI can predict the intended movement and execute the corresponding 
action in the prosthetic limb. The study by Li et al. (76) presented a novel 
approach for planning and controlling a prosthetic arm using muscle-
synergy-based methods and neural-adaptive control. The research 
focused on upper limb prosthetics, aiming to improve the motor control 
of artificial limbs through a better understanding of muscle synergies. 
They developed a muscle synergy-based framework that combines 
intention decoding with motion control, using surface electromyography 
(sEMG) signals for extracting muscle synergies. Additionally, they 
implemented a neural network-based control system for the prosthetic 
arm, demonstrating its effectiveness in practical applications with both 
healthy participants and an upper limb amputee. This approach has 
shown significant advancements in dexterity, allowing users to perform 
complex tasks with more ease and accuracy (77).

Apart from motor control, AI has been pivotal in providing sensory 
feedback to users of neuro-prosthetic devices. Sensory feedback is crucial 
for users to perceive the environment, exert the right amount of force, 
and interact safely. Sensory restoration in neuro-prosthetics involves 
recording sensory information from the PNS, transmitting it to the brain, 
and integrating it with other sensory inputs, often in real-time (78, 79). 
Ghildiyal et al. (80) applied electromyography pattern recognition for 
controlling prosthetic limbs using various machine learning techniques. 
They developed a force-controlled prosthetic limb that improves the 

self-reliance, quality of life, and mental strength of amputees. The study 
employed machine learning regression approaches, such as support 
vector regressor (SVR), linear regression, and random forest models, to 
predict the force required to regulate the voltage for the servomotors in 
the prosthetic limb. The Random Forest model provided the most 
accurate prediction for controlling the voltage and, consequently, the 
limb’s movements. AI algorithms play a central role in interpreting and 
integrating sensory data. They can recognize and classify different 
sensory stimuli, such as pressure, temperature, and texture, and relay this 
information back to the user through the neuro-prosthetic device. This 
feedback loop facilitates better control and enhances the sense of 
embodiment, making neuro-prosthetic devices feel like a natural 
extension of the user’s body (81). Hasse et al. (82) demonstrated the 
potential of machine learning-based functional electrical stimulation 
(FES) to evoke complex arm movements, they used FES combined with 
machine learning to control complex movements in paralyzed upper 
limbs. In addition, they recorded arm kinematics and electromyographic 
(EMG) activity from a “trainer” monkey making a range of arm 
movements. This data was used to train an artificial neural network 
(ANN) to predict muscle activity patterns. These patterns were converted 
into stimulus pulses delivered to muscles in paralyzed monkeys.

AI’s adaptability and capacity to learn from user interactions have 
enabled neuroprosthetic devices to evolve and personalize their 
functionality (71, 83). Traditional prostheses were often rigid and 
required manual adjustments to fit individual user needs (84, 85). 
However, AI-driven neuro-prosthetics can continuously adapt their 
control mechanisms based on the user’s behavior and preferences. For 
instance, AI algorithms can learn from a user’s neural signals to optimize 
control strategies, making the neuro-prosthetic more efficient over time. 
This adaptability allows users to fine-tune their control, resulting in a 
more natural and seamless experience with the device (86). Due to the 
constraints in material selection, sensory synaptic devices can only 
perform relatively simple functions and lack diverse synaptic 
characteristics. Consequently, a higher level of device structures must 
be  devised to compensate for this limitation (87). Chun et  al. (81) 
introduced an innovative artificial neural tactile skin system which 
emulates the intricate human tactile recognition mechanism through the 
utilization of particle-based polymer composite sensors along with a 
signal conversion setup. These sensors exhibit discerning responsiveness 
to pressure and vibration, mirroring the behavior of both slow adaptive 
and fast adaptive mechanoreceptors found in human skin (Figure 5). 
This intricate functionality enables the generation of output signal 
patterns reminiscent of sensory neurons. Moreover, they developed an 
artificial finger endowed with the capability to acquire the proficiency of 
categorizing intricate and multifaceted textures. This is achieved by 
seamlessly integrating the sensor signals with a cutting-edge deep 
learning technique (81). Luu et al. (88) have introduced a groundbreaking 
neuro-prosthetic system that showcases a fundamental principle by 
harnessing the capabilities of AI to translate an amputee’s intended 
movements via a peripheral nerve interface. Their study reveals that the 
AI neural decoder, implemented through this nerve interface, exhibits 
distinct characteristics of robust control over prosthetics. Through this 
AI agent, individuals with limb amputations can seamlessly command 
prosthetic upper limbs using their mental intentions, as the AI system 
deciphers their genuine motor intents (Figure 6). Furthermore, the AI 
agent demonstrates its potential in enabling intricate hand gestures, 
effectively decoding multiple degrees of freedom (DOF) simultaneously 
(88, 89). This aspect becomes particularly significant when coupled with 
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substantial training data, allowing the agent to fully exploit the 
capabilities of near-anatomic prostheses. This advancement paves the 
way for diverse hand movements, fulfilling the essential prerequisites for 
achieving natural hand control. The efficacy of AI agent is substantiated 

by the hand matching task, underscoring its ability to deliver real-time 
performance with remarkable accuracy. Notably, the agent attains an 
impressive prediction accuracy exceeding 99% across all gestures, 
accompanied by minimal latency of approximately 0.81 s (88). This low 

FIGURE 5

Illustrates the signal-processing procedure in an artificial tactile sensing system. It shows how signals from two types of sensors (SA and FA) are 
processed through an artificial mechanoreceptor neural board. This processing mimics the responses of real nerve cells to pressure and vibration 
stimuli, replicating the sensory functions of biological skin (81).

FIGURE 6

(A) Data from nerves in the individual’s amputated arm are collected using Neuronix neural interface chips. This is followed by the process of extracting 
key features. Subsequently, a deep learning AI utilizes these features to ascertain the individual’s intention to move multiple degrees of freedom at 
once. These predictions are then translated into real-time movements of either a virtual hand or a prosthetic hand. (B) The deep learning AI based on 
the recurrent neural network (RNN) architecture (88).
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latency translates to a substantial information throughput rate of 365.4 
beats per minute (bpm), further emphasizing the agent’s efficacy and 
potential impact.

A pioneering study has conceptualized and demonstrated the 
inaugural utilization of graphdiyne-based artificial synapse components, 
boasting both parallel processing capabilities and adept information 
integration. This innovative approach involves the interconnection of the 
graphdiyne artificial synapse (GAS) with artificial motor neurons, 
resulting in the construction of synthetic efferent nerves, which, in turn, 
propel artificial muscles into motion (90). The GAS component exhibits 
the remarkable capacity to concurrently process multiple input sets, 
effectively amalgamating their respective outputs to exert precise control 
over the degree of artificial muscle flexion. This dynamic integration of 
parallel processing and output amalgamation holds significant promise 
for advanced control mechanisms (90, 91).

Challenges and future directions

One significant challenge is the complexity of neural data 
interpretation. AI algorithms rely on vast datasets for training and 
validation, but neural signals can be highly variable and noisy (92). 
Developing AI models that accurately interpret and distinguish between 
different neural patterns is crucial for reliable diagnosis and treatment. 
Additionally, the adaptability of AI algorithms to individual variations in 
the PNS presents a formidable obstacle that demands sophisticated 
customization and optimization strategies. Data privacy and security also 
emerge as critical concerns (93). The transmission and storage of 
sensitive neural information for AI analysis raise ethical questions 
regarding patient consent, data ownership, and the potential for breaches 

(94, 95). Safeguarding patient privacy while harnessing the power of AI 
necessitates the establishment of robust security protocols and 
transparent regulatory frameworks. Furthermore, the successful 
integration of AI into the PNS requires interdisciplinary collaboration 
between medical professionals, neuroscientists, engineers, and computer 
scientists. Bridging the gap between these fields is essential to ensure 
seamless communication and effective translation of research findings 
into clinical applications (96). Transfer learning allows AI models trained 
on large datasets from one healthcare institution to be fine-tuned on 
smaller datasets from another institution, thus adapting the model to 
local patient demographics and variations in image acquisition protocols 
(39–41). Data augmentation techniques also help improve AI model 
performance by creating synthetic data variations, thereby increasing the 
diversity of training data and making the models more robust to unseen 
cases (42). The preeminence of research articles concentrated on the 
application of AI in the central nervous system within a prominent 
citation database highlights the pressing need for expanded research 
efforts dedicated to the peripheral nervous system. As for future 
directions, the potential of AI in the PNS is immense. Advances in neural 
interface technology and machine learning algorithms could lead to 
more precise and personalized treatments for neurological disorders. 
Enhanced real-time monitoring and adaptive interventions driven by AI 
could provide patients with proactive care and symptom management 
(97). AI algorithms can be deployed on the imaging systems used in the 
operating room to provide instant feedback to surgeons. By identifying 
critical structures and avoiding inadvertent damage (15, 98–100). 
Research efforts should also focus on the long-term effects of AI-PNS 
interactions. Safety, reliability, and the potential for neural plasticity need 
to be  thoroughly investigated to understand the lasting impact of 
AI-based interventions on the nervous system (Table 1).

TABLE 1 Summary of AI application in the peripheral nervous system.

Application Area AI utilization Description

Neural signal processing Signal enhancement AI algorithms enhance weak neural signals by reducing noise and improving signal-to-noise ratio

Feature extraction AI identifies relevant features in neural signals for better understanding and analysis

Pattern recognition AI recognizes patterns in neural signals, aiding in the diagnosis of neurological disorders

Signal decoding AI decodes neural signals to control prosthetic devices, restoring motor function in patients

Neuroimaging analysis Image enhancement AI improves the quality of neuroimages, aiding in clearer visualization of peripheral structures

Lesion detection AI assists in identifying lesions or abnormalities in peripheral nerves from neuroimaging data

Nerve segmentation AI automates the process of segmenting peripheral nerves from imaging data for quantitative analysis

Diagnostics Disease classification AI algorithms classify peripheral nerve disorders based on symptoms, patient history, and data

Risk prediction AI helps assess the risk of developing peripheral nerve problems by analyzing various factors

Early detection AI aids in the early identification of peripheral nerve dysfunction, enabling timely interventions

Assistive devices Prosthetic control AI allows amputees to control prosthetic limbs through neural signals, restoring limb functionality

Exoskeletons AI-powered exoskeletons assist individuals with mobility impairments, adapting to their movements

Sensory feedback AI enables the integration of sensory feedback into prosthetic devices, enhancing user experience

Pain management Predictive modeling AI predicts pain levels based on neural responses, assisting in personalized pain management plans

Treatment optimization AI optimizes pain treatment regimens by analyzing patient responses and adjusting therapies

Neurostimulation AI-controlled neurostimulation devices deliver targeted therapy for pain relief in specific conditions

Research Data analysis AI analyzes large-scale neural datasets, revealing insights into peripheral nervous system functions

Drug development AI accelerates drug discovery by simulating neural interactions and predicting potential drug candidates

Modeling and simulation AI-based models simulate peripheral nerve behavior, aiding in understanding neural responses
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Conclusion

The integration of artificial intelligence (AI) into the peripheral 
nervous system (PNS) marks a remarkable advancement in the field 
of medical technology. The utilization of AI in the PNS holds immense 
promise for diagnosing, monitoring, and treating various neurological 
disorders, thereby enhancing the quality of life for countless 
individuals. Through the synergy of AI algorithms and neural 
interfaces, we are witnessing the development of innovative solutions 
that bridge the gap between the biological and technological realms. 
The incorporation of AI enables real-time data analysis, providing 
healthcare professionals with unprecedented insights into neural 
activities and patterns. This, in turn, leads to more accurate diagnoses 
and personalized treatment strategies tailored to each patient’s unique 
neural response. Moreover, the application of AI in the PNS holds the 
potential to restore lost sensory or motor functions, offering renewed 
independence to those with disabilities.
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