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Background: Previous research has yielded conflicting results on the link 
between epilepsy risk and lipid-lowering medications. The aim of this study is 
to determine whether the risk of epilepsy outcomes is causally related to lipid-
lowering medications predicted by genetics.

Methods: We used genetic instruments as proxies to the exposure of lipid-
lowering drugs, employing variants within or near genes targeted by these drugs 
and associated with low-density lipoprotein cholesterol (LDL cholesterol) from 
a genome-wide association study. These variants served as controlling factors. 
Through drug target Mendelian randomization, we systematically assessed the 
impact of lipid-lowering medications, including HMG-CoA reductase (HMGCR) 
inhibitors, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and 
Niemann-Pick C1-like 1 (NPC1L1) inhibitors, on epilepsy.

Results: The analysis demonstrated that a higher expression of HMGCR was 
associated with an elevated risk of various types of epilepsy, including all types 
(OR  =  1.17, 95% CI:1.03 to 1.32, p  =  0.01), focal epilepsy (OR  =  1.24, 95% CI:1.08 
to 1.43, p  =  0.003), and focal epilepsy documented with lesions other than 
hippocampal sclerosis (OR  =  1.05, 95% CI: 1.01 to 1.10, p  =  0.02). The risk of 
juvenile absence epilepsy (JAE) was also associated with higher expression of 
PCSK9 (OR  =  1.06, 95% CI: 1.02 to 1.09, p  =  0.002). For other relationships, there 
was no reliable supporting data available.

Conclusion: The drug target MR investigation suggests a possible link between 
reduced epilepsy vulnerability and HMGCR and PCSK9 inhibition.
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Introduction

Approximately 70 million people worldwide suffer from epilepsy, 
which has an annual rate ranging from 50.4 to 81.7 per 100,000 people 
(1, 2). Despite ongoing research, the precise mechanisms underlying 
epileptic seizures remain incompletely understood. Genetic 
predispositions, cerebrovascular illness, head traumas, and 
neurodegenerative disorders are only a few of the recognized causes 
of epilepsy. According to earlier research, metabolic variables may 
be very important in the development of epilepsy (3, 4).

Numerous observational studies have to date shown a link 
between higher circulating lipid levels and an enhanced risk of 
epilepsy. They have also suggested that the use of lipid-lowering 
medications might potentially alleviate seizure activity (5–13). 
Contradictory studies, however, have hypothesized that people with 
epilepsy could, in general, have lower amounts of circulating blood 
lipids. Additionally, there are evidence to suggest that increasing 
circulating blood lipids through the adoption of a ketogenic diet may 
result in a reduction in seizure frequency (14–16).

HMG-CoA reductase (HMGCR) inhibitors, sometimes referred 
to as statins, are a very frequently prescribed family of lipid-lowering 
medications. They offer various advantages, including well-established 
safety records, cost-effectiveness, and pleiotropic effects. Additionally, 
the proteins Niemann-Pick C1-like 1 (NPC1L1) and proprotein 
convertase subtilisin/kexin type 9 (PCSK9) play critical roles in 
controlling levels of circulating low-density lipoprotein cholesterol 
(LDL-C) (17, 18).

Genetic epidemiology provides an additional approach to address 
these questions. Variants located within or near genes responsible for 
encoding protein drug targets can potentially influence their 
expression or function. Genetic effects can serve as predictors of drug 
treatment outcomes (19). In contrast to other kinds of observational 
epidemiology, genotypes are randomly inherited at conception, much 
like the treatment allocation in clinical trials; thus, relationships 
between variations, biomarkers, and illness outcomes are less 
susceptible to confounding and reverse causation. The methodology 
known as “Mendelian randomization” (MR) is based on this premise 
(20). In addition, the general expectation is that genotypes contribute 
to the variation in traits throughout life. Consequently, by projecting 
the effects of prolonged therapeutic treatment, MR studies have the 
potential to inform the validation of pharmacological targets (21). The 
targets of drugs administered for primary hypercholesterolemia or 
familial hypercholesterolemia were studied in this study in relation to 
genetic variations. We  also evaluated how they could affect 
epilepsy risk.

Materials and techniques

Research plan

In this two-sample MR analysis, publicly accessible summary-
level data from genome-wide association studies (GWASs) were 
employed (refer to Supplementary Table S1). The following three 
guiding hypotheses served as the foundation for the MR analysis 
in this study: (i) the selected genetic variants should demonstrate 
a significant association with the exposure factor (LDL-C); (ii) the 
chosen genetic variants exhibit no association with other potential 

confounding factors.; and (iii) the chosen genetic variations only 
have an impact on the exposure component (LDL-C), and they 
have no additional effects on the outcome (epilepsy) (Figure 1). 
Only publicly available GWAS data were used in this study, and 
ethical approval and consent to participate could be found in the 
original GWAS study. The research was performed according to 
STROBE-MR guidelines (22).

Genetic tool selection

Three kinds of lipid-lowering medications that have received FDA 
approval were used in this investigation as exposures. HMGCR 
inhibitors, PCSK9 inhibitors, and NPC1L1 inhibitors are the members 
of this class.

Our instrument selection procedure chose single-nucleotide 
polymorphisms (SNPs) located within 100 kb of the gene targeted 
by each medication, as shown in Supplementary Table S2. These 
selected SNPs demonstrated a genome-wide association with 
LDL-C levels (p < 5.0 × 10–8), making them suitable proxies when 
exposed to lipid-lowering drugs. The analysis relied on GWAS data 
for LDL-C levels with a sample size of 173,082 sourced from the 
Global Lipids Genetics Consortium (GLGC) for the identification 
of these SNPs. The research only took into account frequent SNPs 
with a minor allele frequency (MAF) higher than 1% (refer to 
Supplementary Table S2) (23).

Seven SNPs located within 100 kb of the HMGCR gene were 
chosen to serve as proxies for HMGCR inhibitors. There are 12 
SNPs in the PCSK9 gene that have been shown to inhibit PCSK9. 
Additionally, to represent NPC1L1 inhibitors, three SNPs were 
selected from the NPC1L1 gene. To enhance the reliability of each 
instrumental variable for the respective medication, low linkage 
disequilibrium (R2 < 0.30) between the chosen SNPs 
was mandated.

Sources of results

We compiled pooled statistics from the GWAS encompassing 
various forms of epilepsy. These data were sourced from the 
International League Against Epilepsy (ILAE) Consortium cohort 
(refer to Supplementary Table S1) (24, 25).

Statistical analyses

Primary MR analysis
To determine causal estimates for the primary analysis, we used 

the inverse variance weighted (IVW) approach to random effects. 
Given that inhibitors targeting HMGCR, PCSK9, and NC1L1 are 
commonly used in the treatment of coronary artery disease (CAD), 
we utilized data from the CARDIoGRAMplusC4D CAD study, which 
encompasses 60,801 cases and 123,504 control subjects, primarily of 
European descent. This sample size of 60,801 cases served as a positive 
control group to assess the validity of the instruments related to 
HMGCR, PCSK9, and NC1L1 (26, 27). R-version 4.3.1 package was 
used for the analysis and assessment, and the MR and its MR packages 
were implemented (28, 29).
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Analysis of sensitivity
Using the F-statistic, we evaluated the potency of SNPs used as 

instruments. To reduce weak instrumental bias, we took care to only 
include those with an F-statistic greater than 10 (30). The Cochran 
Q-test was used to assess the heterogeneity of certain SNPs. Potential 
pleiotropy was suggested by a Cochran Q-derived p-value of 0.05. It is 
important to note that pleiotropy does not introduce bias to the IVW’s 
estimates, as long as it remains balanced. We estimated the intercept 
using MR-Egger regression as a measure of directional pleiotropy to see 
if the pleiotropy was truly unbalanced. Statistical significance was 
defined as a value of p of 0.05 (31). If a notable outcome was observed, 
it would suggest the presence of imbalanced pleiotropy, which prompted 
us to conduct various sensitivity analyses to validate the findings derived 
from the IVW estimates. We used a variety of MR methods recognized 
for their resistance to pleiotropy in many sensitivity studies to confirm 
the validity of our findings, and Weighted Median Regression was one 
among the MR methods. It mandates that at least 50% of the weight 
used in the MR analysis come from reliable devices (32). Additionally, 
we employed MR-Egger regression, which is capable of detecting and 
adjusting for directional pleiotropy (33).

Results

We retrieved a total of 7, 12, and 3 SNPs from the GWAS summary 
data of LDL-C levels in the GLGC. These SNPs were found within, 
close to, or near the HMGCR, PCSK9, and NPC1L1 genes, respectively 
(refer to Supplementary Table S2). All instrumental variations had 
F-statistics that were more than 30. This suggests that our study’s 
efforts to minimize possible weak instrument bias were successful 
(refer to Supplementary Table S2). The positive control study 
furnished compelling evidence linking drug exposure to coronary 
heart disease, utilizing instruments derived from LDL-C GWAS (refer 

to Supplementary Table S5). This evidence further substantiates the 
soundness of our chosen genetic instruments.

Primary analysis

We started by lining up all of the outcome datasets with the 
exposures of the drug target instruments. We performed associated 
IVW-MR, MR-Egger, and Weighted Median MR experiments in the 
sections that follow. This process yielded test statistics for heterogeneity 
and pleiotropy. The standardized correlated MR effect estimates are 
presented last. According to these estimations, the medication target 
gene is indirectly inhibited by a one standard deviation (SD) decrease 
in biomarker LDL-C levels (SD = 38.7 mg/dL).

The analysis reveals that a higher expression of HMGCR is associated 
with an increased risk of various types of epilepsy, including all types, with 
an odds ratio (OR) of 1.17 with a 95% confidence interval (CI) of 1.03–
1.32, accompanied by a corresponding p-value of 0.01. For focal epilepsy, 
the OR is 1.24 (95% CI = 1.08–1.43, p = 0.003), and for focal epilepsy with 
documented lesions other than hippocampal sclerosis, the OR is 1.05 
(95% CI = 1.01–1.10, p = 0.02) (Figure  2; Supplementary Table S3). 
Similarly, as indicated in Figure 3 and Supplementary Table S3, for a 
heightened expression of PCSK9 that was linked with an elevated risk of 
juvenile absence epilepsy (JAE), the OR is 1.06 (95% CI = 1.02–1.09, 
p = 0.002). There was no evidence of an association between NPC1L1-
mediated LDL-C and the outcome of epilepsy in Supplementary Figure S1 
and Supplementary Table S3.

Sensitivity assessment

The results consistently aligned across all applied Mendelian 
Randomization (MR) methods. The results of the Cochran Q-test did 

FIGURE 1

Study overview and Mendelian Randomization model.
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FIGURE 2

Potential impact of HMGCR inhibition on epilepsy risk.

FIGURE 3

Potential impact of PCSK9 inhibition on epilepsy risk.
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not indicate any evidence of heterogeneity in the epilepsy-related 
endpoints or the HMGCR-mediated LDL-C outcomes. All of the value 
of ps (refer to Supplementary Table S4) were higher than 0.05. 
However, some degree of heterogeneity emerged in the results 
concerning PCSK9-mediated LDL-C, encompassing both all types 
and focal epilepsy (excluding hippocampal sclerosis lesions) 
(Supplementary Table S4). Additionally, in the MR-Egger regression 
analysis, neither intercept term provided substantial evidence of 
pervasive horizontal pleiotropy (every value of p was higher than 0.05; 
refer to Supplementary Table S4).

Discussion

Our drug target MR studies have identified a direct correlation 
between the risk of epilepsy and HMGCR, encompassing all types 
(OR = 1.17, 95% CI = 1.03–1.32, p = 0.01), focal epilepsy (OR = 1.24, 
95% CI = 1.08–1.43, p = 0.003), and focal epilepsy characterized by 
documented lesions other than hippocampal sclerosis (OR = 1.05, 95% 
CI = 1.01–1.10, p = 0.02). These results indicate that HMGCR 
inhibitors might lower the risk of epilepsy. Moreover, our study has 
provided initial evidence supporting a positive correlation between 
PCSK9 expression and susceptibility to JAE (OR = 1.06, 95% CI = 1.02–
1.09, p = 0.002). This result also suggests a potential risk reduction in 
epilepsy with the use of PCSK9 inhibitors. It reinforces the notion that 
these inhibitors could be  a valuable consideration in epilepsy 
prevention. Conversely, we found no association between NPC1L1 
expression and epilepsy outcomes.

Epilepsy, with its significant morbidity and mortality, is a prevalent 
chronic neurological condition. The ILAE describes it as a disorder 
brought on by either the breakdown of systems that should end 
seizures or the onset of mechanisms that should end excessively 
protracted seizures (34). With an estimated yearly prevalence of 
800,000 occurrences of vascular epilepsy globally, stroke is also the 
main cause of acquired epilepsy in elderly people (35, 36). Statins, 
which are HMGCR inhibitors, have been commonly used for several 
years in the prevention of both ischemic and hemorrhagic strokes, 
according to randomized controlled studies and meta-analyses (37, 
38). Furthermore, numerous studies have indicated enhanced 
neurological outcomes and a better acute stroke prognosis with statin 
administration (39, 40). Since neuroprotective agents have the capacity 
to influence the onset of epilepsy (41), statins have also been proposed 
for their potential anticonvulsant properties in epilepsy (42–46). 
Numerous neurosynaptic transmissions and molecular processes 
contribute to the antiepileptic properties of statins. PCSK9 inhibitors, 
serving as a crucial regulator of LDL-C, have become a significant 
focus in the development of cholesterol-lowering medications (17, 47, 
48). Our MR study revealed a previously unreported protective role of 
PCSK9 inhibitors against JAE. Our study has identified a potential 
benefit of statins in reducing the risk of epilepsy. This finding suggests 
that statins could be considered a therapeutic option for patients with 
post-stroke epilepsy, particularly elderly patients. Additionally, it 
introduces a novel avenue for drug therapy in both clinical and 
preclinical studies.

As a genetic epidemiological method, MR overcomes the 
limitations of conventional observational studies. Previous clinical 
studies in epilepsy have suffered from varying designs, inconsistent 
terminology, limited sample sizes, fluctuating durations of follow-up, 

and uncertainty in the identification and classification of seizures, 
which has led to inconsistent results. Additionally, there is a limited 
amount of data available regarding particular subtypes of seizures. 
Our study effectively circumvents these issues. Previous attempts to 
establish a causal link between lipids and seizures using two-sample 
Mendelian randomization techniques yielded conflicting results (49). 
In this specific investigation, we utilized genetic variants associated 
with HMGCR-mediated LDL-C levels as instrumental proxies for 
statin exposure, effectively reducing the potential for confounding 
bias. This approach harnesses the wealth of currently available genetic 
information on epilepsy. Furthermore, our study addresses concerns 
of reverse causality and residual confounding through meticulous MR 
analysis. We applied various methodologies to validate MR estimates, 
ensure the consistency of our estimates across different MR models, 
and check for any violations of MR assumptions.

Genomic analytic techniques such as MR offer early evidence of long-
term LDL-C modulation by drug targets; given the recent development 
of PCSK9 inhibitors, long-term trial data are still lacking. The consistency 
of our results across different MR methods, accommodating varied 
assumptions about genetic pleiotropy, significantly strengthens the causal 
inference of our analysis. Our research indicates that statins demonstrate 
a risk reduction in the occurrence of various forms of epilepsy, including 
all types, focal epilepsy, and focal epilepsy with documented lesions other 
than hippocampal sclerosis. The association between PCSK9 inhibitors 
and JAE has not been previously documented in existing literature. This 
unexplored area will be  the central focus of our upcoming research 
endeavors and investigations.

Research limitations

Our research contains a number of limitations, primarily stemming 
from the inherent assumptions and constraints of MR. First, while MR 
is a powerful tool for identifying genetic associations, it cannot fully 
replace rigorous, long-term randomized controlled trials for potential 
future gene-editing therapeutics. MR’s conclusions are contingent on 
the quality and scope of the underlying data. Second, the available data 
on epilepsy outcomes are relatively small and may lack the power 
needed to detect potential relationships adequately. It is therefore 
imperative to replicate these biometric analyses in epilepsy with larger 
datasets as they become available. Third, it is important to note that 
statins and PCSK9 inhibitors have limited penetration across the blood–
brain barrier. Additionally, their mechanisms of action within the brain 
might not be reflected in our findings, which may not encompass tissue-
specific correlations of statin and PCSK9 expression that could 
be altered in diseased brain states. Fourth, we admit that, despite our 
thorough sensitivity analyses that were created to carefully examine the 
fundamental assumptions of our MR study, there is still a chance of 
confounding bias and/or horizontal pleiotropy. Finally, it is crucial to 
note that the majority of the populations of European heritage were 
included in the GWAS data we  used for this study. Consequently, 
we advise caution when generalizing these findings to other populations.

Conclusion

In this study, we furnish genetic evidence supporting a worldwide 
as well as a regional link between lipid-lowering drugs such as 
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HMGCR and PCSK9 inhibitors and epilepsy. Grasping this correlation 
offers potential for pioneering epilepsy treatments. Our MR research 
establishes a link between the risk of epilepsy and lipid-
lowering medications.
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Glossary

CAD Coronary artery disease

CAE Childhood absence epilepsy

F=F statistic

FDA Food and Drug Administration

GWAS Genome-wide association study

GLGC The Global Lipids Genetics Consortium

GTCS Generalized tonic–clonic seizures alone

HMGCR 3-Hydroxy-3-methylglutaryl coenzyme A reductase

ILAE The International League Against Epilepsy

IVs Instrumental variables

IVW Inverse-variance weighted

JME Juvenile myoclonic epilepsy

JAE Juvenile absence epilepsy

LDL-C Low-density lipoprotein cholesterol

MR Mendelian randomization

MAF Minor allele frequency

NPC1L1 Niemann–Pick C1-like 1

OR Odds ratio

PCSK9 Proprotein convertase subtilisin/kexin type 9

R2 Percentage of the variation explained by the SNP

SNPs Single-nucleotide polymorphisms

STROBE-MR Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization
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