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Ultra-low field (ULF) magnetic resonance imaging (MRI) holds the potential 
to make MRI more accessible, given its cost-effectiveness, reduced power 
requirements, and portability. However, signal-to-noise ratio (SNR) drops with 
field strength, necessitating imaging with lower resolution and longer scan times. 
This study introduces a novel Fourier-based Super Resolution (FouSR) approach, 
designed to enhance the resolution of ULF MRI images with minimal increase 
in total scan time. FouSR combines spatial frequencies from two orthogonal 
ULF images of anisotropic resolution to create an isotropic T2-weighted fluid-
attenuated inversion recovery (FLAIR) image. We hypothesized that FouSR could 
effectively recover information from under-sampled slice directions, thereby 
improving the delineation of multiple sclerosis (MS) lesions and other significant 
anatomical features. Importantly, the FouSR algorithm can be  implemented 
on the scanner with changes to the k-space trajectory. Paired ULF (Hyperfine 
SWOOP, 0.064 tesla) and high field (Siemens, Skyra, 3 Tesla) FLAIR scans were 
collected on the same day from a phantom and a cohort of 10 participants 
with MS or suspected MS (6 female; mean  ±  SD age: 44.1  ±  4.1). ULF scans were 
acquired along both coronal and axial planes, featuring an in-plane resolution 
of 1.7  mm  ×  1.7  mm with a slice thickness of 5  mm. FouSR was evaluated against 
registered ULF coronal and axial scans, their average (ULF average) and a gold 
standard SR (ANTs SR). FouSR exhibited higher SNR (47.96 ± 12.6) compared to 
ULF coronal (36.7 ± 12.2) and higher lesion conspicuity (0.12 ± 0.06) compared 
to ULF axial (0.13 ± 0.07) but did not exhibit any significant differences contrast-
to-noise-ratio (CNR) compared to other methods in patient scans. However, 
FouSR demonstrated superior image sharpness (0.025 ± 0.0040) compared to 
all other techniques (ULF coronal 0.021 ± 0.0037, q  =  5.9, p-adj.  =  0.011; ULF axial 
0.018 ± 0.0026, q  =  11.1, p-adj.  =  0.0001; ULF average 0.019 ± 0.0034, q  =  24.2, 
p-adj.  <  0.0001) and higher lesion sharpness (−0.97 ± 0.31) when compared to 
the ULF average (−1.02 ± 0.37, t(543)  =  −10.174, p  =  <0.0001). Average blinded 
qualitative assessment by three experienced MS neurologists showed no 
significant difference in WML and sulci or gyri visualization between FouSR and 
other methods. FouSR can, in principle, be  implemented on the scanner to 
produce clinically useful FLAIR images at higher resolution on the fly, providing 
a valuable tool for visualizing lesions and other anatomical structures in MS.
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1 Introduction

Magnetic resonance imaging (MRI) holds critical clinical 
importance in neuroradiology due to its exceptional ability to visualize 
soft tissue contrast; however, substantial financial barriers associated 
with purchasing, installing, and maintaining routinely used MRI 
scanners restrict easy access to MRI, especially in developing and 
underdeveloped countries (1). Recent advancements in ultra-low field 
(ULF) brain MRI (main magnetic fields less than 0.1 tesla) offer a 
compelling alternative to their high field (HF), high-cost counterparts 
(2). These advantages come at the cost of reduced image quality, 
including reduced contrast-and signal-to-noise ratios (CNR, SNR) 
associated with the lower main magnetic field.

Reduced SNR at low fields can be at least partially compensated 
by signal averaging over multiple acquisitions or, more often, by 
lowering the overall resolution in the scan. However, increasing the 
scan time through more signal averaging may lead to image 
degradation through patient motion, and lowering resolution can lead 
to missing small but potentially clinically important features in 
neuroimaging, such as the white matter lesions (WML) common in 
small vessel disease and multiple sclerosis (MS) (3). Acquiring 
multiple scans and combining them through super-resolution (SR) 
could potentially address the limitations of ULF MRI systems, as it can 
improve image quality beyond the native resolution, allowing for more 
detailed and sharper visualization of anatomical structures (3, 4).

One SR approach that has shown promise in improving the 
quality of ULF MRI images is interpolation-based SR methods, which 
estimate voxel values at subvoxel positions by averaging or 
interpolating neighboring voxel values, effectively increasing the 
resolution (4). This has been applied to ULF MRI by reslicing and 
averaging orthogonal acquisitions of simultaneously acquired T2 
weighted and T2 maps (5) and orthogonal FLAIR acquisitions (3). 
Importantly, acquiring multiple planes to reconstruct a higher-
resolution image dramatically increases scan time, which can 
compromise the clinical appeal of such methods. Alternatively, 
frequency domain SR approaches can enhance image resolution by 
transforming low-resolution images into the discrete Fourier 
transform (DFT) domain (6). This allows for precise estimation of 
motion parameters, including planar rotation and horizontal and 
vertical shift, through phase correlation analysis of spatially shifted 
images in the Fourier domain (7). Transforming MRI data into the 
frequency space is valuable as it separates low-frequency components, 
carrying contrast information, from high-frequency components 
containing high-resolution details. This approach proves especially 
beneficial for enhancing the resolution of aliased images, as 
low-frequency components are free from aliasing effects, enabling 
improved image registration before averaging (7).

In this work, we introduce an SR algorithm that combines spatial 
frequencies (Fourier-based SR or FouSR) obtained from ULF 
T2-weighted fluid-attenuated inversion recovery (FLAIR) brain 
images acquired along two orthogonal planes to produce an isotropic 
image of higher resolution, opening the possibility of performing SR 
on the fly during patient scanning. This method is similar in approach 
to the keyhole imaging technique implemented for dynamic scanning, 
where only the low-frequency components of successive images are 
collected to improve the time-resolution of bolus passage (8). Here, 
we use the high-frequency component of a second scan to improve 
spatial resolution and visualization of small features in a structural 

scan. We collected 0.064 T (64 mT) FLAIR images along orthogonal 
planes and paired 3 T FLAIRs on a phantom and 10 participants with 
MS. We hypothesized that the FouSR algorithm would effectively add 
information from the under-sampled slice directions with additional 
data within the ULF images, leading to enhanced delineation of MS 
lesions and other significant anatomical features. The results were 
quantitatively compared for SNR and CNR and visually rated.

2 Algorithm theory

The fundamental principle of Fourier imaging in MRI is that the 
spatial information of an object is encoded in the frequency domain 
during data acquisition and then reconstructed back into the spatial 
domain to form the final image. The relationship between 
2-dimentional k-space and image space in MRI can be given as:

 ( ) ( ) ( ), , exp i i d d ,x y x y x yx y S k k k x k y k k= ∫ ∫ +ρ

where ρ x y,( ) is the image in spatial domain, and S is the detected 
signal in the frequency domain (k-space). The signal is a complex 
valued-function that characterizes the amplitude and phase of the 
signal at each point in k-space and the expression exp i ik x k yx y+( )  
represents the spatial information encoded by the magnetic field 
gradients during the data acquisition process. The inverse 2D Fourier 
transform, denoted by ∫ ∫  integrates over all spatial frequencies, to 
recover the image.

As shown in Figure 1, when only the center of frequency space, or 
low frequencies are retained, the resulting image preserves contrast 
but at the expense of spatial resolution, leading to a blurry appearance. 
When high frequencies are sampled, the resulting image preserves 
sharp edges but may sacrifice contrast resolution. In the case of an 
anisotropic 3D acquisition, with lower resolution through-plane than 
in-plane, one frequency-space extent along the slice direction would 
be  limited. Additional high-frequency component data could 
be acquired by switching the scanning to an orthogonal plane. As 
more data is acquired in the periphery of the k-space, higher 
frequencies components in the image are added increasing the overall 
quality of the image (Figure 1).

3 Methods and materials

3.1 Data collection

Same-day paired MRI data were acquired using ULF and HF 
scanners (Figure  2A) on MRI phantoms and participants of the 
Natural History of MS Study protocol at the NIH. Ethical approval was 
obtained from the institutional review board at the NIH 
(NCT00001248), and all participants provided written 
informed consent.

The ULF data were obtained using the 64mT Hyperfine SWOOP 
system (software version: rc8.6.0) and included two ULF FLAIR 
images in the axial (3D FLAIR, TR = 4 s TE = 166.72, TI = 1,426 ms, 
scan time = 10.15 min with an in-plane resolution of 1.7 mm × 1.7 mm 
and a slice thickness of 5 mm) and coronal (3D FLAIR, TR = 4,000 ms, 
TE = 166.72 ms, TI = 1,426 ms, scan time = 8.38 min with an in-plane 
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resolution of 1.7 mm × 1.7 mm and a slice thickness of 5 mm) 
directions (ULF coronal, ULF axial). The HF data were acquired on a 
3 T Siemens scanner and followed a standardized protocol, which 
included a FLAIR (3D FLAIR, TR = 4,800 ms TE = 352 ms, 
TI = 1800 ms, scan time = 7 min with 1 mm isotropic resolution) and a 
T1-weighted (MP2RAGE, TR = 5,000 ms TE = 288, TI1 = 500, TI2 = 900, 
scan time = 6 min with 1 mm isotropic resolution) sequence.

3.2 Image processing

Following data acquisition, the HF and ULF data were 
preprocessed (Figure 2B). All data were resampled to 1.7 mm isotropic 
resolution and zero-padded to uniform dimensions. In vivo data were 
skull-stripped to remove non-brain tissue using FSL’s (FMRIB 
Software Library) BET tool for the HF images (10) and SynthStrip for 
the ULF images (9). ULF images were nonlinearly registered to the 
down sampled HF images, using the Advanced Normalization Tools 
(ANTS) multivariate template construction tool (12) (Figure 2C). The 
obtained transformation matrices were then applied to the non-brain 
extracted images. All image transformations were interpolated using 
nearest-neighbor interpolation and then normalized to the 98th 
percentile to preserve original voxel intensities while mitigating the 
impact of extreme intensity outliers. These preprocessed ULF images 
acquired in the coronal and axial plane will be referred to as the ULF 
coronal and ULF axial, and their average will be referred to as the 
“ULF average.”

MRI SR methods leverage the high-frequency details inherent in 
multiple low-resolution images to construct a single higher-resolution 
image. In the FouSR approach, the missing high-frequency 
components in the under-sampled direction of the ULF coronal were 
replaced with those from the ULF axial. The fast Fourier transform 
was applied to the preprocessed ULF coronal and ULF axial scans 

(Figure 2D), and in frequency space, the inner 64 points of the ULF 
coronal were replaced with those of the ULF axial. To determine the 
amount of information that needs to be  recovered in the under-
sampled direction, the ratio of the through-slice thickness (5 mm) to 
the in-plane resolution (1.7 mm) was used. This calculation results in 
a 2.94-fold increase in resolution compared to the original through-
plane resolution. The factor of 2.94 was used to determine the number 
of frequency space lines to be replaced along the axial direction, which 
was determined to be 54 of 160. However, after conducting stepwise 
replacements ranging from 50 to 70 lines, it was found that replacing 
64 lines yielded the optimal results, likely due to the higher noise 
components associated with outer regions of the frequency-space. The 
new frequencies were then inversely fast Fourier transformed to create 
the image.

FouSR images were also compared to another SR approximation 
described by Niaz et  al. (11), which follows a similar iterative 
registration and resampling process of multiple acquisitions but also 
incorporates iterative Laplacian sharpening before image combination 
(ANTs-SR). To generate ANTs-SR images, in-vivo data without skull-
stripping were first resampled to 0.7 mm isotropic and then processed 
using the antsmultivariatetemplateconstruction.sh tool, with the HF 
FLAIR image serving as the reference volume for registration. 
Laplacian filtering was applied at each iteration while all remaining 
settings were maintained at their default values. Finally, images were 
normalized to their 98th percentile.

3.3 Quantitative analysis

Regions of interest (ROI) were manually annotated in the high 
signal and background (avoiding any regions with artifacts) areas in 
ULF coronal, ULF axial, ULF average, and FouSR images from the 
phantom. On in vivo data, brain masks were obtained from the 

FIGURE 1

Examples of how sampling frequency influences the quality of MRI images. A coronal slice of a standard hyperfine phantom, scanned at 3T and 
downsampled to 1.6x1.6x1.6mm voxel sizes, was Fast Fourier transformed (FFT) to obtain frequency space data. The inverse FFT (IFFT) of (A) only the 
central portion of the frequency space produces a blurred image that is rich in contrast as seen in the phantom; (B) the periphery of the frequency 
space produces images with clear edges of the phantom but lacking in contrast between fluid and background; and (C) the full frequency space 
produces the highest quality images.
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FIGURE 2

Overview of workflow to create FouSR images. (A) Same-day FLAIR scans were acquired at ULF (64  mT) and HF (3  T). ULF FLAIR images were acquired 
in 2 planes, coronal and axial, but are shown here in triplanar reformation. (B) All FLAIR images were interpolated to 1.7  mm isotropic. ULF images were 
brain extracted using SynthStrip (9). HF images were cropped to remove neck and BRAIN extracted using FSL’s tools (RobustFOV, BET2) (10). (C) ULF 

(Continued)
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down-sampled HF FLAIR (Figure 2B) and multiplied by the ULF 
coronal, ULF axial, ULF average, FouSR, and ANTs-SR images. Manual 
WML masks were annotated on the down-sampled HF FLAIR images 
and used to calculate the total WML volume. The total WML mask was 
spatially split into individual clusters for individual lesion analysis. 
White matter masks were created from HF T1-weighted images using 
FSL’s FAST tool (13) and then linearly registered to the down-sampled 
HF FLAIR. Total WML masks were subtracted from the white matter 
masks to create normal-appearing white matter (NAWM) ROI. An 
ROI was manually drawn for each participant on ITKsnap version 3.8.0 
(14) to measure background noise.

3.4 Data analysis and statistics

In phantom data SNR and intensity plots across three planes for 
ULF coronal, ULF axial, ULF average, and FouSR were compared. For 
quantitative evaluation of in-vivo data, the SNR, CNR, and variance of 
the Laplacian (3) were compared. The SNR calculation was measured 
as the ratio of the mean total lesion signal to the standard deviation of 
noise. CNR was calculated as the ratio of the absolute difference 
between mean total lesion and mean NAWM signals relative to the 
standard deviation of background noise. Lesion conspicuity was 
calculated as the ratio of the difference between mean lesion and mean 
NAWM intensity and their sum (3). SNR, CNR and lesion conspicuity 
are related image quality measures useful for evaluating the visibility of 
MS lesions and have been used in a previous ULF study (3). Higher 
SNR indicates a stronger and clearer signal from lesions while higher 
CNR and lesion conspicuity indicate enhanced separation of lesions 
from normal brain tissue. SNR and CNR but not lesion conspicuity are 
measured in relation to background noise.

Image sharpness was quantified using the variance of the 
Laplacian, computed by applying a 3D Laplace filter from the scipy 
library in Python (15) and then extracting the standard deviation as a 
measure of variance (3). The Laplacian operator is a mathematical 
filter that enhances signal variations in an image, such as the 
boundaries of different tissues or structures. Higher Laplacian 
variance signifies increased image intensity variations, characteristic 
of sharper borders within images. Conversely, in the presence of 
blurring or reduced sharpness, image edges exhibit less abrupt 
intensity changes resulting in a lower Laplacian variance. Image 
sharpness was calculated for skull-stripped data and lesion boundary 
sharpness was assessed by dilating individual lesion masks and 
calculating Laplacian variance for these ROI (lesion image sharpness).

To gauge clinical impact, three neurologists with experience in 
MS and neuroimaging conducted qualitative evaluations of the 
images blinded to the image generation method. Each image was 
rated according to defined scales presented in Table 1 for the visibility 
of WML and the sulcal-gyral delineation accuracy of four specific 
anatomical landmarks, namely the central sulcus, parieto-occipital 

sulcus, calcarine sulcus, and Sylvian fissure. To ensure the validity of 
anatomical landmarks and lesion identification, the down-sampled 
3 T FLAIR images were made accessible during the qualitative 
assessment process.

Statistical analyses were conducted using the GraphPad Prism 
version 9.3.1, GraphPad software, and R version 3.6.3. Before analysis, 
adherence to the normality assumption was tested using the Shapiro–
Wilk test. Repeated-measure ANOVA was used to discern significant 
alterations in mean measures across images. In cases of non-normally 
distributed data, post hoc multiple comparisons were performed with 
Dunn’s method, and the q ratio was reported. For normally 
distributed data, Tukey’s post hoc multiple comparison test was 
employed, and Z statistic was reported. An established significance 
threshold of a corrected p-value of 0.05 or lower was used to identify 
statistically significant outcomes. We  used linear mixed-effects 
models nested for participants to compare image sharpness for 
individual lesions across different images (LME4 package in R). 
Pairwise comparisons were computed using R’s Emmeans package. 
Unless stated otherwise, all reported data are presented as 
mean ± standard deviation.

4 Results

4.1 Participant demographics

The participant cohort consisted of 10 adults (mean ± SD 
44.1 ± 4.1 years old, 6 women) who had been clinically diagnosed with 
MS, clinically isolated syndrome (CIS), or suspected MS. (16) Within 
this cohort, 7 individuals presented with relapsing-remitting MS, 1 
with suspected MS, and 2 participants exhibited clinically isolated 
syndrome (CIS). Participants had varying amounts of total lesion 
burden (4,313 mm3 ± 10,026).

FLAIR scans were nonlinearly registered to the down-sampled HF FLAIR using the ANTs multivariate template construction tool (11). The transformation 
matrix was applied to the non-brain extracted but up-sampled ULF images using nearest neighbor interpolation. (D) The ULF images were Fast Fourier 
transformed and the missing high-frequency components in the under-sampled direction of the ULF axial FLAIR was replaced with that from the ULF 
coronal FLAIR. The new frequencies were inversely Fast Fourier transformed to image space.

FIGURE 2 (Continued)

TABLE 1 Description of qualitative ratings of WML and sulci and gyri 
performed by MS neurologists in 10 participants.

Rating WML: lesion 
level

Sulci and gyri: 
anatomical 
landmarksa

1—Poor WML not visible Delineation not possible

2—Acceptable
WML visible but hard 

to identify

Delineation possible in some 

regions

3—Good
WML visible and easy 

to identify

Delineation good in general, 

with hyperintense artifacts in 

gyri

4—Superior

WML-to-normal 

appearing WM 

contrast similar to 3 T

Sulci-Gyri contrast sharp 

with delineation similar to 

3 T

aCentral sulci, Sylvian fissures, parieto-occipital sulci, calcarine sulci.
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4.2 Phantom scan

Intensity profile plots from ULF coronal, ULF axial, ULF average, 
and FouSR images of a standard Hyperfine phantom were compared. 
FouSR recovered information from the ULF axial, leading to sharper 
shape boundaries (Figure 3A) which are visible as sharper slopes in 
intensity plots (Figure 4A) while effectively preserving the signal intensity 
of the ULF coronal (Figures 3B, 4B). Both ULF average and FouSR 
images exhibited comparable signal intensity in areas of high signal to 
the in-plane ULF scan (Figure 3B). In the sagittal plane, FouSR images 
not only better delineated edges in the phantom scan (Figure 3C) but also 
demonstrated higher signal intensity than in the ULF axial, ULF coronal 
and ULF average images (Figure  4C). Calculated using manually 
annotated ROI, FouSR had lower SNR (377) compared to ULF average 
(614), ULF coronal (389), and ULF axial (494). Overall, the SR algorithm 
combined the information from both ULF in-plane scans, thereby 
retaining crucial details without losing sharp delineations that could 
otherwise be blurred by averaging the two slices.

4.3 In-vivo

Figure 5 presents an example of a participant with a high lesion 
burden. Notably, FouSR in Figure  5, column 3, shows enhanced 
resolution across all three axes, surpassing the through-plane resolution 
of the ULF coronal and ULF axial scans, suggesting the recovery of 
information from the in-plane voxels of the ULF coronal (Figure 5, 
column 1) and ULF axial images (Figure  5A, column 2). FouSR 
demonstrated improved image quality relative to the ULF coronal and 
ULF axial images in the slice direction. ULF average and ANTs 
displayed more pronounced blurring along lesion edges and sulci than 

the FouSR approach. Importantly, certain artifacts visible in the ULF 
coronal and axial images (Figure 5C, arrows) were consistently retained 
in the FouSR and ANTs-SR images, although they exhibited reduced 
visibility in the ULF average. Additionally, ringing artifacts were 
introduced in FouSR (Figure  5C, box), which were not visible in 
other scans.

4.4 In-vivo quantitative

Quantitative comparisons were made between FouSR, ULF 
coronal, ULF axial, ULF average, and ANTs SR methods by 
comparing the SNR, CNR, image sharpness, and lesion sharpness. 
ULF coronal exhibited the lowest SNR at 36.7 ± 12.2, a value 
significantly lower than ULF axial (54.9 ± 6.0), ULF average 
(53.2 ± 16.5) and FouSR (48.0 ± 12.6) (Figure 6A; Table 2). ULF axial 
also had significantly higher SNR compared to FouSR. ULF average 
had the highest mean CNR (12.5 ± 9.2) but was only significantly 
higher than ULF coronal (9.2 ± 6.0) (Figure 6B). Lesion conspicuity 
was higher in FouSR compared to ULF axial (0.11 ± 0.06) but not 
significantly different than other methods. ULF coronal (0.13 ± 0.07) 
had significantly higher lesion conspicuity compared to ULF axial, 
ULF average (−1.4 ± 0.4) but not compared to ANTs SR (−1.52 ± 0.5) 
(Table 2).

FouSR exhibited superior sharpness compared to all other image 
types (Figure 6C). FouSR displayed an 18 and 23% enhancement in 
image sharpness compared to ULF average and ANTs SR, respectively. 
FouSR also displayed a less dramatic but still significantly higher 
image sharpness than ULF coronal and ULF axial (Figure 6C; Table 2). 
Lesion sharpness was analyzed using a linear mixed model nested for 
participants with individual lesions. To adhere to normality 

FIGURE 3

In a standard Hyperfine phantom, FouSR shows improved edge sharpness and image quality compared to ULF FLAIR scans. Representative (A) axial, 
(B) coronal, and (C) sagittal slices (either directly acquired or reformatted) are shown for ULF coronal FLAIR, ULF axial FLAIR, FouSR, ULF average, and 
3  T FLAIR (left to right). Red arrows highlight an example area across each plane where FouSR demonstrates improved resolution and image sharpness 
compared to other methods.
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assumptions, the lesion sharpness values were log-transformed. FouSR 
demonstrated notably higher log lesion sharpness (−0.971 ± 0.3) 
compared to ULF average (−1.37 ± 0.4, t(543) = −10.2, p = <0.0001). 
Furthermore, ULF average exhibited lower lesion sharpness in 
comparison to both ULF axial (−1.14 ± 0.4, t(543) = −7.51, p < 0.0001) 
and ULF coronal images (−1.05 ± 0.35, t(543) = −8.83, p < 0.0001) 
likely due to boundary-blurring effects from averaging (Figure 6D).

4.5 In-vivo qualitative

ANTs SR had the highest mean WML ratings (2.68 ± 0.78) 
followed by FouSR (2.67 ± 0.81) and ULF axial (2.2 ± 0.40) (Figure 7A). 
Only ANTs SR showed a significant difference from ULF coronal 
(2.3 ± 0.76). ANTs SR (2.43 ± 0.50), ULF average (2.2 ± 0.33) and ULF 
axial (2.2 ± 0.40) had significantly higher sulci and gyri ratings 
compared to ULF coronal (1.65 ± 0.27) (Figure 7B). FouSR (2.1 ± 0.32) 
had a comparable mean sulci and gyri rating and was not significantly 
different from other methods. While FouSR exhibited superior 
sharpness, ULF average and ANTs SR maintained more uniform 

intensities within tissue categories, particularly in the WM. This 
uniformity in intensity is crucial for the visual identification of 
anatomical landmarks and lesions. It is worth noting that while 
ANTs-SR may not be easily implementable on the scanner, it does 
offer a visually appealing smoothing effect.

5 Discussion

In this study, we  present FouSR, an SR algorithm designed to 
enhance the resolution of an ULF MRI scan by leveraging high-
frequency information in an additional orthogonal scan direction. The 
images reconstructed using FouSR had superior boundary sharpness 
compared to single-plane acquisitions and an average of two full scans 
in orthogonal directions while maintaining comparable quantitative 
image metrics such as SNR and CNR in patient scans. While the SR 
algorithm is described here as a post-acquisition image process, it can 
be implemented on the scanner during acquisition. If implementing this 
technique on the scanner, the additional orthogonal scan only needs to 
sample the high-frequency components, potentially yielding ~3× 

FIGURE 4

FouSR improves image quality across all three planes. Qualitative visualization of (A) axial, (B) coronal, and (C) sagittal slices in an MS case with high 
lesion burden in ULF FLAIR images, the average of ULF FLAIR images, after FouSR algorithm and after ANTs SR algorithm is shown. Arrows point to 
artifacts from partial voluming along the slice direction that is seen in the coronal and axial ULF (orange arrows) but reduced in FouSR and average 
images (yellow arrows) and absent in ANTs-SR images (green arrows).
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improvement in slice resolution with a proposed ~60% increase in scan 
time relative to single plane-acquisition (20% less scan time than 2 full 
orthogonal scans). Additionally, the overall data size would only increase 
40% compared to a current single acquisition and decrease by 33% 
compared to two full acquisitions. Such high-resolution techniques can 
lead to better visualization of small focal abnormalities, leading to 
diagnosis without the need for a high-field scan.

Previous studies have explored deep learning (DL) approaches to 
enhance ULF image resolution and quality (17–20). Learning-based 
SR leverages convolutional neural networks (CNNs) to capture 
intricate patterns and relationships within data, thereby generating 
high-resolution images from low-resolution inputs. Learning-based 
SR can offer more than just improved spatial resolution for ULF 
images; DL models can also learn to mitigate noise and Gibbs ringing 
artifacts (19) and mimic HF contrast (18). However, these approaches 
encounter several significant challenges. Notably, the scarcity of large, 
paired datasets comprising HF and ULF images compels studies to 
rely on HF data for training (17–20). Despite attempts to simulate ULF 
conditions through down-sampling and noise addition, such models 
may fail to capture the unique noise, contrast, and spatial distortions 
inherent to ULF MRI. Furthermore, while some deep learning SR 
methods have shown success in aging or specific diseases, adapting 
these models to new disease types necessitates substantial, disease-
specific dataset acquisition, limiting their generalizability and clinical 
implementation. In contrast, FouSR does not rely on deep learning or 
synthetic data generation. Instead, it derives all information directly 
from existing ULF acquisitions, thus enhancing its potential for 
generalizability across various ULF MRI contrasts and diseases. 
Modifications in the SR algorithm should be limited to the frequency 

space sampling scheme and may be needed only when acquisition 
resolution is modified.

Accurate coregistration of the orthogonal ULF images is 
paramount for the success of FouSR, and failures can impede the 
visualization of anatomical details. Specific decisions were made to 
optimize the registration process, including registration to HF 
references, the choice of registration tools, and skull-stripping before 
registration. Registering to paired, same-day HF provided an unbiased 
reference space, enabling direct comparison of anatomical structures 
without additional processing. It’s essential to note that the 3 T scan is 
not a mandatory component for the algorithm; the ULF data could 
have been registered to each other or to a halfway space, and the 
algorithm would still function. Indeed, our goal was to improve the 
resolution of the ULF scans and compare FouSR to a clinical routine 
scan at 3 T, which serves as a standard sequence for detecting white 
matter pathology. This choice allows us to evaluate our algorithm 
within the context of what is conventionally available and widely 
employed in clinical practice, offering valuable insights into its 
performance relative to established standards.

The ANTs multivariate template construction method was used 
to achieve optimal registration herein (12). It was selected for its 
superior performance in aligning ULF images to HF references in our 
experience and its previous use in ULF SR studies (5). Skull-stripping 
was achieved using SynthStrip on ULF scans (9). However, this 
approach has prolonged processing times and substantial 
computational demands, with non-parallel execution potentially 
exceeding 40 min, which may not align with clinical implementation 
requirements. Alternative faster registration and skull-stripping 
techniques were also explored, but they failed to match the quality 

FIGURE 5

FouSR improves image quality across all three planes. Qualitative visualization of (A) axial, (B) coronal, and (C) sagittal slices in an MS case with high 
lesion burden in ULF FLAIR images, the average of ULF FLAIR images, after FouSR algorithm and after ANTs SR algorithm is shown. Arrows point to 
artifacts from partial voluming along the slice direction that is seen in the coronal and axial ULF (orange arrows) but reduced in FouSR and average 
images (yellow arrows) and absent in ANTs-SR images (green arrows).
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achieved with ANTs and SynthStrip for data reported. These 
challenges align with previous reports on the inherent difficulties of 
processing ULF MRI scans, partly due to the predominant 
optimization of open-source MRI software tools for more conventional 
1.5 T or 3 T MRI systems (5, 18).

FouSR, the ULF average, and ANTs SR all use the ANTs 
multivariate template construction tool to varying degrees (12). 
Specifically, FouSR and the ULF average employ this tool solely for 
obtaining an optimized registration matrix. ANTs SR is the tool’s 
default output, which involves the inversion of the average 
diffeomorphism and the blurring induced by intensity averaging, a 
technique referred to as “soft sharpening.” As visually demonstrated, 
ANTs SR yields more uniform intensity values within tissue types, a 
characteristic reminiscent of the ULF average, and bears a closer 
resemblance to HF scans, where the clear demarcation of homogenous 
intensity values between white matter and lesions provides a distinct 
advantage in lesion detection. ANTs SR’s incorporation of a sharpening 

filter enhances the delineation of lesion edges, a feature lost in the ULF 
average. ANTs SR’s interpolation and blurring effects play a pivotal 
role in mitigating artifacts present in the original ULF scans. This 
contrasts with FouSR, where artifacts and the utilization of nearest 
neighbor interpolation can bolster signal-to-noise ratio and sharpness 
but may inadvertently introduce intensity heterogeneity in WM 
regions, posing a challenge in distinguishing noise from subtle 
anatomical features such as small lesions.

FouSR has limitations. FouSR displayed higher occurrence of 
artifacts compared to other images: predominantly within-tissue 
granularity and Gibbs ringing (Figure 5). Importantly, at the level of 
acquisition the direction of the phase and slice encoding directions 
were different in the ULF coronal and ULF axial, resulting in 
discrepancies in off-resonance components, distortions and B0 field 
inhomogeneities between the two images. Given the naïve 
combination of ULF coronal and axial images, FouSR is highly 
sensitive to spatial and intensity inconsistencies between the two 

FIGURE 6

In-vivo quantitative assessments of (A) SNR, (B) CNR, (C) image sharpness, and (D) lesion sharpness between individual images, average image, FouSR 
and ANTs-SR in 10 adults with MS show that FouSR produces the sharpest images. (*p  <  0.05 in pairwise mean difference).
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images, with any mismatches potentially resulting in 
undesired artifacts.

Given the algorithm’s reliance on registration quality, 
distortion and motion artifacts may compromise the overall 
output. In-vivo ULF acquisitions displayed noticeably more 
distortions, mainly in the occipital area, compared to high-field 
scans. Importantly, the distortions seen in the coronal and axial 
acquisitions were dissimilar, largely due to the swapping of the 
phase and slice encode directions. ULF phantom acquisitions 
portrayed minimal distortion artifacts, mostly attributed to their 
smaller size compared to a typical human head, and placement at 
the center of the DSV away from field inhomogeneities. However, 
distortions in in-vivo scans sometimes degraded the quality of 
nonlinear registrations. Any residual mismatches between the 
orthogonal scans used in FouSR caused ringing artifacts in SR 
outputs. Furthermore, these artifacts were less conspicuous in the 
ULF average, likely due to the smoothing effect of averaging at the 
expense of boundary sharpness.

Additionally, the process of image combination in FouSR was 
performed in the frequency space after zero-padding, interpolation to 
isotropic resolution and registration to a paired HF scan. However, 
spatially transforming an image matrix before Fourier transformation 
can diminish image quality as interpolation modifies the spatial 
distribution of voxels, altering the frequency content. Methods like 
zero-padding and nearest-neighbor interpolation may introduce 

abrupt transitions between voxels, leading to unwanted artifacts 
within the Fourier domain. This manifested in the FouSR outputs as 
pronounced Gibbs ringing and noticeable granularity.

B0-maps and navigator-based motion correction could improve 
the SR outputs, especially in the proposed on-scanner reconstruction 
(21). While B0-maps can be  acquired to correct distortions post-
acquisition, acquiring and reconstructing FouSR images on the scanner 
during data acquisition by manipulating the k-space trajectory, and 
using navigator scans for on-the-fly motion corrections would better 
address many of FouSR’s current limitations. Implementation of the 
FouSR algorithm on the Hyperfine System could be achieved through 
modification of the k-space trajectory. Due to the proprietary nature of 
the scanner interface used, this currently must be achieved through 
collaboration with the manufacturer. Online implementation will 
be explored in future work.

Integrating FouSR during data acquisition would not only 
address the post-processing interpolation-related limitations, but 
also enable the integration of navigator-based corrections of k-space 
data before image reconstruction and SR combination. Navigators, 
short sequence elements incorporated into the image sequence 
within the echo time, offer real-time measurements of motion and 
distortion during scanning (21–25). This real-time data processing 
allows for immediate adjustments to the imaging system and 
sequence, reducing the occurrence of artifacts caused by dynamic 
perturbations, thereby enhancing overall image quality (21, 26). 

TABLE 2 Mean and standard deviations of quantitative and qualitative measures for each image.

Metric ULF coronal ULF axial FouSR ULF average ANTs SR

Qualitative WML ratings 2.3±0 76. 2.6±0 66. 2.67±0 81. 2 5. ±0.61 2.68±0.75

Qualitative sulci and gyri 

ratings
1.67±0.27 2.2±0.40 2 1. ±0.32 2 2. ±0.33 2.43±0.50

SNR 36 7. ±12.2 54.9±15.19 47.96±12.56 53.18±16.54 45.3±16.8

CNR 9.2±6.0 11 5. ±8.6 10.58±7.43 12.47±8.86 9.6±9.2

Whole brain image 

sharpness
0.028 ±0.0056 0.027 ±0.0052 0.029 ±0.0058 0.024±0.0052 0.023±0.0062

Lesion sharpness (log) −1.045 ±0.35 −1.14 ±0.35 −0.97±0.31 −1.37±0.37 −1.52±0.46

Lesion conspicuity 0.13±0.07 0.11±0.06 0.12 ±0.056 0.12±0.062 0.11±0.07

FIGURE 7

Qualitative ratings for white matter lesions (WML) are highest in ULF average, followed by FouSR and ANTs SR. ANTs SR has higher qualitative ratings of 
sulci and gyri than ULF coronal. For each method, per participant qualitative rating of (A) WML (B) sulci and gyri. (*p  <  0.05, pairwise mean difference).
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Future research aims to investigate the application of navigators in 
the ULF SR.

FouSR uses a 3D-Fourier transformation to combine two images 
acquired orthogonally. In the case of the ULF scanner, standard 3D 
sequences are acquired with anisotropic voxels to provide the optimal 
image quality for standard radiological reading with limited available 
SNR. This provides an opportunity to acquire an orthogonal image, 
the high in-plane resolution of which would compensate for the low 
resolution along the slice direction of the other. While alternative 
sampling schemes after registration were not investigated here, the 
amount sampled seemed within an optimal range for many 
quantitative measures (data not shown). However, there is a need for 
further exploration with a larger participant cohort.

Keyhole-imaging technique is another sampling method that, 
similarly to FouSR, combines frequency data from two acquisitions. The 
Keyhole technique was originally proposed to accelerate the acquisition 
of dynamic contrast enhanced (DCE) images while maintaining a 
reasonable level of resolution (8). In this approach, the central region of 
k-space, termed the “keyhole, “is sampled more frequently and combined 
with the outer regions of a fully sampled reference image, facilitating say, 
rapid imaging of bolus passage, leading to better characterization of 
perfusion parameters. Indeed, such methods have been combined with 
accelerated imaging methods such as propeller for even faster time-
resolution (8, 27–33). The key difference between keyhole and FouSR is 
that the second scan of FouSR is in an orthogonal plane to capture high-
frequency components missing in the original image to improve its 
spatial resolution. Other examples of frequency domain combinations 
would include acceleration techniques such as GRAPPA, in this case 
from various elements of an array coil.

This study has limitations. The small sample size, specifically 
chosen for assessing small WML visualization, hinders the 
generalizability of the findings. Using downsampled images and 
potential registration inaccuracies may compromise the precision of 
key metrics like SNR, CNR, and lesion conspicuity, especially for 
smaller lesions. In addition, the equations for calculating CNR and 
SNR necessitate the standard deviation of the noise, which was derived 
from an ROI drawn on the background of scans, as is the standard 
practice. Variability in the noise measure can arise, especially in the 
in-vivo scans, from artifacts in the phase and slice directions, which are 
different in different images. Furthermore, the compress-SENSE 
acquisition scheme on the scanner gives rise to regions in the image 
background that are devoid of noise. ROIs were carefully placed to 
avoid such regions. Additionally, potential morphological changes 
introduced by nonlinear registration procedures pose challenges to the 
generalizability of the study’s outcomes.

In conclusion, our study presents preliminary findings that show the 
potential of our FouSR algorithm in enhancing the resolution of ULF 
scans. Although our results are based on a phantom scan and a limited 
cohort of MS cases, FouSR showed enhanced delineation of MS lesions 
and other significant anatomical features compared to single scans. Such 
enhancements in lesion delineation could improve the ability of ULF 
MRI to detect and monitor the subtle lesional changes characteristic of 
MS, crucial for both diagnosis and longitudinal monitoring. We highlight 
the feasibility and benefits of implementing the SR algorithm directly on 
the MRI scanner. Overall, our SR algorithm holds substantial promise in 
augmenting the clinical utility of ULF scans.
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