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Introduction: Understanding the residual recovery potential in stroke patients 
is crucial for tailoring effective neurorehabilitation programs. We propose using 
EEG and plasmatic Neurofilament light chain (NfL) levels as a model to depict 
longitudinal patterns of stroke recovery.

Methods: We enrolled 13 patients (4 female, mean age 74.7 ± 8.8) who underwent 
stroke in the previous month and were hospitalized for 2-months rehabilitation. 
Patients underwent blood withdrawal, clinical evaluation and high-definition 
EEG at T1 (first week of rehabilitation) and at T2 (53 ± 10 days after). We assessed 
the levels of NfL and we analyzed the EEG signal extracting Spectral Exponent 
(SE) values. We compared our variables between the two timepoint and between 
cortical and non-cortical strokes.

Results: We found a significant difference in the symmetry of SE values between 
cortical and non-cortical stroke at both T1 (p = 0.005) and T2 (p = 0.01). SE in the 
affected hemisphere showed significantly steeper values at T1 when compared with 
T2 (p = 0.001). EEG measures were consistently related to clinical scores, while NfL at 
T1 was related to the volume of ischemic lesions (r = 0.75; p = 0.003). Additionally, the 
combined use of NfL and SE indicated varying trends in longitudinal clinical recovery.

Conclusion: We present proof of concept of a promising approach for the 
characterization of different recovery patterns in stroke patients.
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Introduction

The management of acute stroke has advanced considerably over the 
last decade. Treatments such as systemic thrombolysis or mechanical 
thrombectomy are becoming a standard of care, and prompt reperfusion 
is now available for many patients. Likewise, as the population ages and 
acute treatments improve, the prevalence of stroke-related disabilities is 
on the rise (1).

.Rehabilitation stands as the primary means to minimize disability 
and facilitate the return of stroke patients to their optimal functioning 
within their home environment (2). However, evidence on stroke 
rehabilitation shows considerable inter-individual variability in 
functional recovery (3). Most patients seem to follow a proportional 
model of recovery. Nevertheless, there are several cases in which this 
model does not apply (4).

One of the main issues in describing recovery after a stroke is our 
predominant reliance on clinical scales that gauge residual functionality 
(5). This approach could potentially be biased, as clinical scales alone may 
fail to capture crucial underlying processes like plasticity, functional 
reserve, or hemispheric interactions (6). When two patients, matched for 
age and comorbidities, exhibit identical clinical scores shortly after 
experiencing a stroke, significant variations in their paths to recovery tend 
to emerge as they transition into the chronic phase. These differences are 
believed to be associated with essential factors that go beyond clinical 
assessments and rely on the brain’s functional and structural resilience.

Furthermore, according to the bimodal balance recovery model 
proposed by Di Pino et  al. (7, 8), ischemic lesions alter the balance 
between hemispheres creating two possible scenarios. The first is where 
residual activity in the affected hemisphere is found and plasticity from 
the unaffected hemisphere could hinder recovery. The latter is where there 
is no residual activity in the affected hemisphere thus necessitating the 
unaffected hemisphere to assume a pivotal role in compensating for the 
loss of function.

The bimodal recovery model could partly explain the inhomogeneous 
rehabilitative outcomes that we observe post-stroke. Eventually, different 
scenarios could need different interventions. Hence, we need instruments 
that allow us to better characterize patients.

Our objective is to identify comprehensive measures that 
characterize longitudinal recovery patterns in stroke patients. To 
facilitate their implementation across a broad patient population, 
these measures are supposed to be both user-friendly and easily 
scalable. Reliable biomarkers of stroke recovery could help us 
identify patients with greater rehabilitative potential and develop 
tailored approaches in neurorehabilitation.

Neurophysiology offers a wide array of tools that can inform 
prognosis in stroke patients (9). EEG, in particular, has been 
studied thoroughly in both acute and chronic stroke (10).

We recently evidenced how the Spectral Exponent (SE) of the EEG is 
a powerful neurophysiological fingerprint of stroke (11). The EEG SE 
describes the 1/f-like structure of the Power Spectral Sensity (PSD) (12) 
and is consistently steeper in the Affected Hemisphere (AH), a finding 
also confirmed in animal models (13).

We use EEG measures to assess recovery in stroke patients 
because these markers reflect the functional state of brain 
macroscale activity with high temporal definition. However, 
quantitative EEG metrics do not provide direct structural damage 
entity information. For instance, even relatively small lesions can 
cause widespread EEG slowing (14). This can happen due to the 

impact of the lesion on intact but functionally connected areas 
(15), a phenomenon also known as diaschisis (16).

To overcome the bias of using “mono-dimensional” measures, 
an approach based on the combination of different biomarkers 
has been proposed (17).

We hypothesize that the simultaneous use of EEG measures 
and markers of brain structural damage could offer distinctive 
insights into the post-stroke recovery pattern, transcending the 
limitations of each method by itself.

Single Molecule Array (SiMoA) assays enable the measurement of 
neurological biomarkers related to brain injury (18). This novel tool 
opened an interesting debate on the role of biomarkers and how they 
relate to the process of recovery (19, 20). Among these, neurofilaments 
have gained increasing attention since they are structural proteins 
exclusively expressed in neurons that are released because of axonal 
damage, not only in cerebrospinal fluid, but also in peripheral blood in 
many neuropathological conditions (21). Thus, we  identified 
neurofilament light chain (NfL), as a biomarker that could complement 
EEG in the longitudinal assessment of stroke recovery.

In this paper, we propose a new simple model of longitudinal 
characterization of patients recovering from a stroke, leveraging 
neurophysiological measures (EEG) and biological markers of 
neural damage (NfL). These two instruments can be  easily 
employed, are cost and time effective, and thus are suited to 
be employed in clinical longitudinal follow-up.

We present this work as a proof-of concept. In the future, an 
up-scale model could let us describe clusters of longitudinal 
recovery in stroke and develop tailored approaches to 
rehabilitation for different clusters of patients.

Methods

Patient enrollment

Thirteen patients affected by ischemic stroke were consecutively 
enrolled at ICS Maugeri institute of Milan. Enrolment period was 
between March 2022 and March 2023. Patients, suffering from acute 
stroke, were admitted at our center to undergo 60 days post-stroke 
intensive rehabilitation cycle provided by the Italian National 
Health System.

We used the following inclusion and exclusion criteria:

Inclusion criteria
(I) Mono hemispheric ischemic stroke within the last month, (II) 

supra-tentorial lesion, (III) Ability to undergo clinical assessment and 
EEG recording.

Exclusion criteria
(I) Previous large stroke, (II) Other previous or concomitant 

disorders with central nervous system involvement (Parkinson’s 
disease, Alzheimer, brain tumor, chronic subdural hemorrhage), (III) 
Multifocal lesions, (IV) Large hemorrhagic lesions, (V) longitudinal 
recording and blood withdrawal outside of the declared time limits. 
(VI) failure to obtain good EEG and biological data.

The local ethical committee of IRCCS Fondazione Maugeri 
approved the experimental protocol and each patient gave written 
informed consent to participate in this study. Data was pseudonymized 
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and analyzed in accordance with the current General Data Protection 
Regulation (GDPR) guidelines.

Rehabilitation protocol

Patients enrolled followed a rehabilitation protocol consisting of 
1 h a day, 6 days a week of physical therapy (1 on 1 work with the 
physiotherapist) and an additional 1 h divided between logotherapy 
and occupational therapy. This protocol follows the standards of what 
is provided by our public health care system in cases of stroke.

Clinical assessment

We collected demographic and clinical data regarding acute stroke 
and clinical interventions (I.e., thrombolysis), as summarized in Table 1. 
Patients were evaluated by experienced clinicians using the National 
Health Institute Stroke Scale (NIHSS) (22) and the Functional 
Independence Measure (FIM) (23), which are among the most frequently 
used outcomes measures in stroke rehabilitation, allowing to assess 
neurological improvement (NIHSS) and residual disability (FIM). 
Clinical evaluation was performed at T1 (within the first week from 
admission), and at T2 (after about 2 months of). Clinical scores were 
obtained during the same day of blood withdrawal and EEG recording. 
Additionally, we  derived the Effective Recovery rate (ER) as the 
percentage improvement in NIHSS (NIHSST1-NIHSST2/NIHSST1), 
frequently used as a measure of longitudinal evolution.

Imaging

Patients underwent a standard CT head scan at T1 to estimate 
lesion volume, location and define cortical involvement (cortical and 
non-cortical), scans were reviewed by an experienced neurologist and 
lesion volumes were manually marked for each slice using MRIcron 

software (24). Then, the 3D region of interest was visually checked 
(representative images of lesion localization for each patient are 
presented in Supplementary Figure S1).

Plasma sample collection

Blood samples from each patient were collected at T1 and at T2 in 
tubes containing ethylenediaminetetraacetic acid (EDTA) as 
anticoagulant and centrifuged at 2,000 × g for 15 min at room 
temperature. Plasma was aliquoted and stored at −80°C until use.

Analysis of plasma neurofilament light 
chain levels

Quantitative analysis of NfL in plasma samples of patients was 
performed by single molecule array (SiMoA) technology on the SR-X 
analyzer from Quanterix (Billerica, MA, United States). NfL levels 
were determined using the commercially available Simoa NFLIGHT 
v2 Advantage kit (Item 104,073, Quanterix), according to the 
manufacturer’s instructions. Briefly, samples, calibrators and two 
quality controls of known concentrations (high-concentration and 
low-concentration quality control) were run in duplicate. Samples 
were run with a 4-fold dilution and results were compensated for this 
dilution. The mean value of the two NfL measurements (pg/ml) was 
used for statistical analysis. The limit of quantification was 2.56 pg/mL, 
and the limit of detection was 0.141 pg/mL. A single batch of reagents 
was used for all samples; and the intra-assay coefficient of variation 
was below 14%.

EEG recordings

Patients underwent resting eyes-closed EEG recording at T1 
(within the first week of admission), and at T2 (during the last week 

TABLE 1 Clinical and demographic data.

ID SIDE VOLUME CORT NIHSS_T1 NIHSS_T2 ER FIM_T1 FIM_T2 NF-L_T1 NF-L_T2

1 L 3.32 1 4 2 50.0 64 77 407.70 197.98

2 R 24.88 1 9 4 55.6 56 62 1426.75 216.01

3 L 4.35 0 8 5 37.5 57 83 221.72 155.09

4 L 0.43 0 9 5 44.4 21 57 148.85 66.76

5 R 3.84 0 8 4 50.0 57 112 262.24 149.94

6 L 14.77 1 16 11 31.3 23 52 612.19 247.29

7 R 1.54 0 5 1 80.0 107 122 190.88 188.94

8 R 79.25 1 9 7 22.2 79 98 1698.85 675.30

9 R 0.41 0 7 4 42.9 90 117 216.98 27.09

10 R 12.24 1 5 1 80.0 99 116 1027.57 354.13

11 L 101.36 1 20 18 10.0 37 41 1156.34 616.96

12 L 0.55 0 3 1 66.7 101 103 637.90 190.48

13 L 4.16 1 7 3 57.1 73 83 144.52 77.57

NIHSS (National Institute of Health Stroke Scale), ER (Effective recovery Rate), FIM (Functional Independence Measure), NfL (Neuro Filament Light chain); CORT (cortical, yes = 1); L = left; 
R = right, T1 (First timepoint), T2 (Second timepoint).
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of rehabilitation). EEG recordings were performed by means of a 
60-channel amplifier (Nexstim Ltd.) with associated pre-wired head-
cap. Raw signals from each of the 60 recording channels were sampled 
at 1450 Hz, referenced to the forehead and filtered (hardware filters 
were set at 0.1 Hz and 350 Hz). EEGs were recorded in a quiet room 
with dim lights, with the patient sitting in a comfortable armchair. 
After ensuring that all channels had an impedance below 5KΩ, 5 min 
of EEG were recorded. EEG recording started after the patient was 
calm and adapted to the seat and recording condition to minimize 
artifacts. The vigilance and wake state of the patients was continuously 
monitored by EEG inspection to exclude sleepiness or drowsiness. 
Data was exported in digital format for further analysis.

EEG signal analysis

EEG recordings were analyzed using MATLAB© native code and 
using code from the EEGlab toolbox (25). EEG analysis focused on 
eliminating non-brain artefactual activity as done in previous studies 
(11, 26). The time-series were detrended with respect to long-range 
linear trends and filtered with an IIR high-pass (5th order Butterworth 
filter with a 0.5 Hz cut-off) and a notch filter centered at 50 Hz. Bad 
channels and timepoints were manually selected, with the aid of a 
custom informative system that displays and quantifies large 
fluctuations over time-points and channels. Bad channels were 
interpolated (spline interpolation). Channels were then re-referenced 
to average reference. Independent Component Analysis (ICA) was 
performed, and non-brain components were manually rejected with 
the aid of a custom informative system, that displays and quantifies 
relevant properties of the components, based on temporal, spectral 
and spatial features, tailored to characterize muscular, ocular, and 
cardiac artifacts.

The Power Spectral Density (PSD) was estimated using Welch’s 
method (2 s window, 50% overlap). The Spectral Exponent (SE) of the 
1–20 Hz range was estimated for each pre-processed EEG channel. 
The code to calculate the SE is openly available online1 and the specific 
methods thoroughly described explained in (26). Briefly, the spectral 
exponent reflects the decay rate of the PSD over increasing frequencies, 
and is thus a measure of slowing, measured over a broad frequency 
range. We then computed, for the SE values, the mean among the 
channels of the Affected Hemisphere (AH) and of the Unaffected 
Hemisphere (UH), and the ratio between the average value of AH 
channels divided by the average value of the UH channels (AH/UH 
ratio), since metrics of signal asymmetry are typically used in 
quantitative EEG analysis, especially in stroke research (27, 28).

Statistical analysis

Data was imported in R studio; descriptive statistics are presented 
for clinical and demographic variables. We used Wilcoxon-signed-
rank test to assess longitudinal changes (T1 vs. T2) in NfL, clinical, 
and EEG variables. We calculated the (Spearmam) correlation among 
variables of interest, and used a heatmap correlogram, ordered 

1 https://github.com/milecombo/spectralExponent

according to hierarchical clustering, to visually depict the correlations 
in our data set. Mann–Whitney test was used to assess the difference 
between the cortical and non-cortical lesion groups. For all statistical 
comparisons, the alpha level of significance was set at 0.05. Results are 
presented as adjusted p values after multiple comparison correction 
False Discovery Rate (FDR), across all pairs of markers and correlation 
analysis. The full study protocol is depicted in Supplementary Figure S2.

Results

Demographic

Thirteen patients (74.7 ± 8.8 years old, 4 females) completed the 
experimental protocol. The average time from acute stroke was 
20.2 ± 6 days, the average distance between T1 and T2 was 53 ± 10 days. 
Eight patients were classified as Anterior Circulation Stroke (ACS), 
four as Lacunar Cerebral Infarction (LACI). Seven patients were 
classified as patients with cortical involvement according to CT scans 
and/or MRI acquired in the acute setting. Two patients underwent 
systemic thrombolysis, none was treated with mechanical 
thrombectomy. Only one patient presented minimal hematic spotting 
at CT scan.

Clinical scores

There was a significant (Z = –3.14, p = 0.001) improvement in 
NIHSS scores from T1 (median 8, IQR 5|9) to T2 (median 4, IQR 2|5). 
Likewise, FIM scale both the motor sub score (FIM_M, T1: median 
45, IQR 22|55, T2: median 56, IQR 54|72, Z = –3.66, p < 0,001) and 
global score (FIM; T1: median 64, IQR 56|90, T2: median 83, IQR 
62|112, Z = –3.68, p < 0,001) showed significant longitudinal 
improvement. The percentage of measured clinical improvement was 
48.2 ± 18% for NIHSS. No substantial differences in FIM and NIHSS 
were observed between patients with and without cortical lesions at 
either of the two time points.

Correlation analysis

In Figure 1 we show the correlation map of our main variables 
organized according to hierarchical clustering. We found significant 
longitudinal and cross correlations among clinical variables (i.e., FIM 
and NIHSS at T1 and T2). This was expected since clinical scores all 
depend on the same latent construct, the same can be said for different 
EEG metrics. Interestingly, we found a significant correlation between 
EEG metrics and NIHSS. Namely between NIHSS_T2 and T2_AH/
UH_SE (r = 0.57; p = 0.04), NIHSS_T1 and T2_AH/UH_SE (r = 0.55; 
p = 0.05); ER and T2_AH/UH_SE (r = 0.67; p = 0.001); ER and T2_SE_
AH (r = −0.67; p = 0.001); FIM_T1 and T2_SE_AH (r = 0.56; p = 0.05); 
FIM_T2 and T2_SE_AH (r = 0.66; p = 0.04). These correlations show 
that asymmetrical EEG activity with a steeper slope in the AH relates 
to a lower percentage of recovery (ER) and higher NIHSS at 
both timepoints.

Lesion volume strongly correlated to NfL levels at T1 (r = 0.75; 
p==0.003). Finally only NfL at T2 showed correlation with NIHSS 
scores at T2 (r = 0.57; p==0.03).
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Group comparisons

T1 Vs. T2 differences in EEG metrics and NfL
We observed a strong significant (Z = -3.67, p < 0.001) decrease in 

NfL plasmatic level from T1 (median = 407.7, IQR 216|1,027 pg./mL) 
to T2 (median = 190.5, IQR 145|247 pg./mL). The longitudinal 
difference between SE was significant for the AH (Z = -2.47, p = 0.001; 
T1 median − 1.154 IQR –1.01|-1.35; T2 median − 1.009 IQR –0.85|-
1.23), but not for the UH. However, AH/UH ratio of SE showed a 
trend toward significance comparing T1 and T2 (Z = -1.824, p = 0.07).

AH-UH differences

As previously reported (11), we confirmed differences between 
AH (Median SE = -1.154 IQR –1.01|-1.35) and UH SE (Median 
SE = -1.012, IQR –0.88|-1.11) at T1 (Z = -2.47; p = 0.015). On the other 
hand, no interhemispheric differences were found at T2.

Differences between cortical and 
non-cortical lesions

We tested differences in outcome measures between the cortical 
and non-cortical groups. We observed a significant difference in T1 
NfL (cortical: median 1,027, IQR 509|1,291 pg./mL, non-cortical: 
median 219, IQR 197|252 pg./mL, Z = -1.86 p = 0.05) and T2 NfL 
(cortical: median 247, IQR 206|485 pg./mL, non-cortical: median 152, 
IQR 87|180 pg./mL, Z = 2.51; p = 0.02). Furthermore, we observed a 
significant difference in T1_AH/UH_SE (cortical: median 1.19, IQR 
1.15|1.57, non-cortical: median 1.006, IQR 0.97|1.03 pg./mL, Z = -2.82; 

p = 0.005) but not in T2_AH/UH_SE. There were no significant 
differences in SE AH (T1 or T2) values between cortical and 
non-cortical strokes. Finally, there were also significant differences in 
lesion volume (cortical: median 14.77, IQR 8|72 cc, non-cortical: 
median 1.04, IQR 0.46|3.26 cc, Z = -2.46; p = 0.01).

Discussion

In our study we show fundamental differences between cortical 
and non-cortical strokes, both in NfL and in EEG markers 
(Figures  2, 3). This highlights the capability of our approach to 
distinguish between two important categories of stroke. Stroke with 
cortical involvement is known to present marked EEG slowing (29), 
while small subcortical lesions not involving large white matter areas, 
such as lacunar stroke, do not seem to have a deep impact on 
EEG rhythms.

In alignment with our prior findings (11), we have reaffirmed the 
functional significance of EEG measures and their correlation with 
clinical scores, as depicted in Figure 1. As previously elucidated, this 
clinical correlation becomes particularly conspicuous at the T2 time-
point, in the chronic phase. This finding is likely attributed to residual 
lesional hemorrhage, edema and inflammation at T1. Such transient 
phenomena could contribute to overestimating NfL and EEG 
parameters in the acute to sub-acute phases. In contrast, lesion volume 
does not exhibit correlation with clinical scales, while NfL showed 
only marginal correlation at T2. As we know from clinical experience, 
larger brain lesions do not necessarily translate to more significant 
clinical impairment.

Our results on NfL show a clear and univocal reduction over time, 
supporting the evidence that NfL can be a marker of lesion evolution 
during the post-acute stroke phase. This was already proposed but-to 
the best of our knowledge-previous literature lacked paired longitudinal 
controls or did not find a clear and univocal NfL reduction over time 
(18, 30–32). Additionally, we  further confirmed the relationship 
between lesion volume and plasmatic NfL levels, already suggested by 
other authors (18, 33). We also found that NfL levels were higher in 
cortical lesions, which are typically larger in volume. Thus, NfL is 
confirmed to be a reliable plasmatic biomarker of structural damage in 
stroke, mostly related to lesion volume and decay over time.

Regarding quantitative EEG measures, we  confirmed our 
previous findings (34), showing significant hemispheric SE 
asymmetry at T1 and a reduction of AH SE values from T1 to T2. 
Likewise, SE showed a marginally significant reduction in 
hemispheric asymmetry of from T1 to T2. Our results are mainly 
guided by the steep values of SE found in the AH of cortical 
strokes, thus we also derived SE asymmetry indexes (AH/UH) to 
normalize data between cortical and non-cortical stroke and 
explore deeper the potential clinical correlation.

In conclusion, SE and NfL reflect different and additive features of 
the recovery process; the first grounded in macro-scale 
neurophysiological activity, the latter related to lesion volume and 
time from stroke. The combination of these biomarkers could allow 
an in-depth depiction of longitudinal recovery. To support this proof 
of concept, in Figure 3 we summarized the relation between NIHSS, 
EEG and NfL. It can be seen how cortical stroke and non-cortical 
stroke can be  clearly distinguished. Even if they have similar 
improvement in NIHSS scores, cortical stroke shows more marked 

FIGURE 1

Correlation between outcome variables and EEG and plasmatic 
biomarkers. Here we show the correlation matrix highlighting 
significant correlations in our dataset. Pairs are grouped according to 
hierarchical clustering, so that variables that show similar patterns 
are clustered together. NIH (National Institute of Health Stroke Scale), 
ER (Effective recovery Rate), FIM (Functional Independence Measure), 
NfL (Neurofilament Light chain); AH/UH (ratio between Affected [AH] 
and unaffected hemisphere [UH] metrics); SE (Spectral Exponent), T1 
(First timepoint), T2 (Second timepoint).
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changes over time in NfL and SE. We  also notice that within the 
cortical group there is more heterogeneity.

Our approach is modular and can be improved in many ways, 
while keeping its simple setup. A wide variety of molecular biomarkers 
could be  studied as clinical predictors of stroke recovery, such as 
biomarkers associated with inflammation, tissue remodeling, 
regeneration and neuronal plasticity (35, 36). At the same time, EEG 
connectivity could add an interesting dimension to this depiction of 
stroke recovery, especially for non-cortical stroke (34).

This model proposes the use of combined EEG and plasmatic 
biomarkers to differentiate patients that otherwise could appear 
similar. As suggested by the bimodal balance recovery model 
different patients could benefit from tailored protocols of 
non-invasive brain stimulation (37). In our model, we merge the 
neurophysiological information gained from EEG with information 
linked to the volume of lesioned brain tissue. In clinical neurology, 

it is crucial to be able to link these factors as often large lesions 
create small functional impairment, and vice-versa small lesions can 
be bothersome.

The following are some use cases of our proposal, that highlight 
how the combination of functional (EEG) and structural (NfL) 
information can be useful.

A patient with a thalamic lesion could present low NfL levels 
but lateralized alteration of EEG alteration, suggesting that he is a 
good candidate for neuromodulation via inhibition of the 
unaffected hemisphere or stimulation of the affected hemisphere 
to foster residual potential. In another scenario, a patient with 
cortical stroke could present sever EEG asymmetry and high NfL 
levels, suggesting that the damage is too extensive to try to develop 
plasticity in the affected hemisphere, and the patient could benefit 
from excitatory stimulation of the unaffected hemisphere to 
develop plasticity.

FIGURE 2

NfL and SE change over time and according to cortical involvement. Here we evidence changes across the two timepoints (T1 and T2) in NfL and SE 
AH/UH ratio, consecutive recordings from the same patient are linked. Cortical (red) and non-cortical groups (green). Below we show the group 
differences between patients with and without cortical involvement for NfL and SE at both timepoints. NfL (Neuro Filament Light chain); AH/UH (ratio 
between Affected and non-affected hemisphere metrics); SE (Spectral Exponent).
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In the future, multidimensional assessment could show that 
some patients with important neurophysiological alterations might 
therefore benefit from non-invasive neurostimulation. On the 
other hand, patients with high levels of NfL or neuroinflammation 
could benefit from targeted therapy such as neuroprotective 
drugs (38).

We presented this paper as proof of concept, hoping to grow 
our model in complexity and numbers soon.

Limitations

A significant constraint of our study pertains to the relatively 
small sample size, which is attributable to the longitudinal nature of 
our research and the extended duration of observation. 
We acknowledge that a larger sample size is needed to draw definitive 
conclusions, however our preliminary results are promising and novel. 
Furthermore, we measured lesion volume via CT, this approach gives 
an approximate estimate of volumes, but is likely to underestimate 
lesions’ volume. Finally, a denser sampling with more time points 
could better definition of each patient’s longitudinal trajectory and 
inform us on the reliability of our biomarkers.

Conclusion

In this paper we  show proof of concept that a multimodal 
approach, considering both molecular and neurophysiological 
parameters, is feasible and informative, giving insight into the 
longitudinal trajectories of patients recovering from stroke. In the 
future this model could be used to guide tailored rehabilitation.
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