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Background and purpose: Postinterventional rupture of intracranial aneurysms 
(IAs) remains a severe complication after flow diverter treatment. However, 
potential hemodynamic mechanisms underlying independent predictors for 
postinterventional rupture of IAs remain unclear. In this study, we  employed 
arteriography-derived radiomic features to predict this complication.

Methods: We included 64 patients who underwent pipeline flow diversion for 
intracranial aneurysms, distinguishing between 16 patients who experienced 
postinterventional rupture and 48 who did not. We  performed propensity 
score matching based on clinical and morphological factors to match these 
patients with 48 patients with postinterventional unruptured IAs at a 1:3 ratio. 
Postinterventional digital subtraction angiography were used to create five 
arteriography-derived perfusion parameter maps and then radiomics features 
were obtained from each map. Informative features were selected through 
the least absolute shrinkage and selection operator method with five-fold 
cross-validation. Subsequently, radiomics scores were formulated to predict 
the occurrence of postinterventional IA ruptures. Prediction performance was 
evaluated with the training and test datasets using area under the curve (AUC) 
and confusion matrix-derived metrics.

Results: Overall, 1,459 radiomics features were obtained, and six were 
selected. The resulting radiomics scores had high efficacy in distinguishing 
the postinterventional rupture group. The AUC and Youden index were 0.912 
(95% confidence interval: 0.767–1.000) and 0.847 for the training dataset, 
respectively, and 0.938 (95% confidence interval, 0.806–1.000) and 0.800 for 
the testing dataset, respectively.

Conclusion: Radiomics scores generated using arteriography-derived radiomic 
features effectively predicted postinterventional IA ruptures and may aid in 
differentiating IAs at high risk of postinterventional rupture.
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1 Introduction

The pipeline embolization device (PED; ev3 Neurovascular, Irvine, 
CA, United States), a stent that diverts blood flow, has been approved 
for treating large or wide-necked proximal carotid aneurysms. 
Recently, this device has gained popularity because of its ability to 
promote complete occlusion (1). As many multicenter studies have 
shown, postinterventional hemorrhage complications, especially 
postinterventional rupture (PIR) of intracranial aneurysms (IAs) after 
flow-diverter placement, remain a concern, with a incidence of 2%–4% 
and high fatality (2, 3). Lately, a considerable amount of research has 
focused on identifying the predictors of IA PIR. Independent 
predictors, such as a history of subarachnoid hemorrhage, large 
aneurysm size, and location in the posterior circulation, have been 
identified (4–6). However, the potential hemodynamic mechanisms 
underlying these findings remain unclear. To address this gap, our 
study underscores the importance of identifying quantitative 
hemodynamic features. Such an approach is essential for developing 
an objective scoring model to accurately assess the risk of postoperative 
rupture. This methodological advancement aims to enhance predictive 
accuracy and support clinical decision-making.

Radiomics is a newly developed approach that allows feature 
extraction from various images and enables the quantitative analysis of 
image features (7, 8). Given that angiographic parametric imaging can 
generate multiple real-time flow dynamic parameters and color-
encoded maps based on contrast media flow in the vasculature (9, 10), 
we aimed to use arteriography-derived hemodynamic radiomic features 
to explore the feasibility of predicting IA PIR via a radiomics approach.

2 Methods

2.1 Patient enrollment

We retrospectively screened the records of patients treated with a 
PED from the databases of three centers (xxxx) between June 2015 
and July 2021. As the data used in this study were retrospective and 
de-identified, institutional review board approval was not required, 
and the requirement for informed consent was waived. For each 
patient in the PIR group, we enrolled three matching controls without 
PIR for the postinterventional unruptured (PIU) group. Propensity 
score matching was performed based on patient age, sex, aneurysm 
size, aneurysm location, and the number of PEDs used to balance the 
patient backgrounds between the PIR and PIU groups.

Clinical variables and outcomes were collected from medical 
records, angiographic images, and telephone questionnaires. Patients 
with delayed aneurysmal subarachnoid hemorrhage after PED 
placement were identified from computed tomography scans, and those 
with intraparenchymal hemorrhages were excluded. The inclusion 

criteria were as follows: (1) IAs with successful PED placement and (2) 
IAs with PIR within the early period (<3 months) post-implantation or 
without PIR. The exclusion criteria were as follows: (1) recurrent IAs, 
(2) ruptured IAs, (3) IAs treated with PED-assisted coiling, (4) IAs 
without angiographic imaging data, and (5) IAs without clinical and 
angiographic follow-up outcomes. The dataset was randomly divided 
into two subsets, namely the training and independent test datasets, at 
a 3:1 ratio.

Patients undergoing endovascular treatment received clopidogrel 
(75 mg/day) and aspirin (100 mg/day) orally for 7 days before the 
procedure. Thromboelastography was performed to examine platelet 
activity inhibition before surgery, with an inhibition rate of <50% 
indicating hyporesponsiveness to arachidonic acid and a rate of 
30%–90% indicating a normal adenosine diphosphate level. All 
procedures were performed under general anesthesia and 
systemic heparinization.

2.2 Arteriography image preprocessing and 
time density curve parameter calculation

Digital subtraction angiography (DSA) data were obtained from 
different stations, including Artis Station (Siemens, Munich, 
Germany), Terra Station (GE Healthcare, Chicago, IL, United States), 
AW6302 Station (GE Healthcare), and 722,038-153 Station (Philips, 
Amsterdam, The Netherlands), at the work position. An injection 
pump was utilized to administer the contrast media. Each DSA run 
was conducted during the injection of 4 mL/s Vispaque (GE 
Healthcare Ireland Limited, Carrigtohill, Munster, Ireland) via a 5-F 
angiographic catheter into the cervical segment of the internal carotid 
artery, with a total volume of 6 mL. The acquisition parameters for 
most DSA sequences were as follows: pixel spacing, 0.154 × 0.154; 
median peak tube voltage, 82.1 kV (interquartile range (IQR): 76.7–
85.9 kV); window center, 2047; window width, 4,095; cine rate, 4; 
median number of frames for each Digital Imaging and 
Communications in Medicine (DICOM) file, 32.0 (IQR: 21–41); and 
row and column size of each frame, both 1,024. Imaging data were 
acquired from the final DSA run immediately following the FD 
implantation procedure. No additional angiography was performed in 
the days following implementation. The imaging protocol utilized 
working views with rotation and magnification to optimize aneurysm 
visualization, ensuring no superimposition of vessels over the 
aneurysm. This approach was uniformly applied across all patients in 
the study to maintain consistency and reliability of the radiomic 
feature extraction.

The overall procedure of this study is illustrated in Figure 1. The 
DICOM files were compressed into a single frame for each DSA run 
to display all pixels opacified by the contrast agent on a 
two-dimensional (2D) image (Figure  1, Step I). We  then used a 
simplified gamma variate function to fit the time density curve (11) 
and codes for image preprocessing (Figure 1, Step II). The time density 
curve fitting program, developed in Python (version 3.6.1), builds 
upon computational methods previously outlined in our related 
publications (10). The time density curve was used to calculate the 
following five contrast flow-related parameters (Figure 1, Step III): 
cerebral blood flow, cerebral blood volume, mean transit time, time to 
peak, and maximum contrast media concentration (MAX). The 
definition of each parameter has been clarified previously (12).

Abbreviations: 2D, Two-dimensional; AUC, Area under the curve; DICOM, Digital 

Imaging and Communications in Medicine; DSA, Digital subtraction angiography; 

IA, Intracranial aneurysm; ICC, Intraclass correlation coefficient; IQR, Interquartile 

range; LASSO, Least absolute shrinkage and selection operator; MAX, Maximum 

contrast media concentration; PED, Pipeline embolization device; PIR, 

Postinterventional rupture; PIU, Postinterventional unruptured; ROI, Region of 

interest.
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2.3 Radiomics feature extraction

The region of interest (ROI) on the IAs was independently 
delineated by two interventional neuroradiologists who were 
blinded to group allocation. ROI delineation was meticulously 
performed by two experienced interventional neuroradiologists, 
focusing exclusively on the aneurysm using working views with 
rotation. This method was chosen to eliminate vessel overlap and 

enhance the accuracy of radiomic analysis. We used PyRadiomics 
(version 3.0), an open-source Python package, to extract 1,459 
radiomics features from each DSA run (13). Overall, 290 
radiomics features, including 18 first-order statistical features, 24 
gray-level co-occurrence matrix texture features, 16 gray-level 
run-length matrix texture features, and 232 wavelet features, were 
extracted for each parameter map. We  also extracted nine 
additional 2D shaped features from the time-to-peak map. The 

FIGURE 1

Illustration of the study process. The DICOM files were compressed into one frame, and ROIs were delineated by two neuro-interventionalists who 
were blinded to each other’s results (Step I). A pixel-wise calculation of the time density curve was performed (Step II), and five perfusion parameters 
were derived from the time density curve for each pixel. Subsequently, five perfusion maps were generated for each patient (Step III). We extracted five 
groups of perfusion-related radiomics features on each map, including first-order features, shape features, texture features, and wavelet features (Step 
IV). Informative features were selected by the LASSO, a radiomics score model was constructed to discriminate the PIR and PIU groups, and the model 
performance was further tested on an independent test dataset (Step V). 2D, two-dimensional; CBF, cerebral blood flow; CBV, cerebral blood volume; 
DICOM, Digital Imaging and Communications in Medicine; LASSO, least absolute shrinkage and selection operator; MAX, maximum contrast media 
concentration; MTT, mean transit time; PIR, postinterventional rupture; PIU, postinterventional unruptured; ROI, region of interest; TDC, time density 
curve; TTP, time to peak.
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radiomics features were named based on the parameter maps, 
image types, feature classes, and feature names; for example, 
“TTPoriginal_shape2D_MinorAxisLength” is the feature 
MinorAxisLength belonging to the shape2D class, extracted on 
an original time-to-peak map.

2.4 Dimensionality reduction and radiomics 
score construction

Radiomics feature stability was assessed by calculating the 
intraclass correlation coefficient (ICC) between two ROI 
contours; only features with ICCs ≥0.8 were considered stable 
and entered into the following classifier construction. 
Subsequently, three steps were adopted to select the features in 
the training cohort. First, all selected stable features were tested 
using the independent samples t-test or Mann–Whitney U test to 
determine potentially important features. Features that did not 
pass either of the tests were excluded. Second, the least absolute 
shrinkage and selection operator (LASSO) method was employed 
to improve the prediction accuracy and interpretability of the 
statistical model. Third, we  computed Spearman’s correlation 
coefficient for the LASSO-selected features to account for any 
significant linear dependencies. Highly correlated features (0.90–
1.00) were considered to have severe linear dependence. Finally, 
the radiomics score was calculated using the following formula:

 Radiomics score intercept , , ,= ∑ ×( ) + =( )βi iX i 0 1 2 3

where Xi represents the ith selected feature and βi is its coefficient.
The Youden index was used to determine the optimal cutoff point 

for the radiomics score, aiming to best distinguish between the PIR 
and PIU groups. The cutoff point was established as the radiomics 
score that maximized Youden’s J statistic, defined as:

 J = + −Sensitivity Specificity 1

2.5 Prediction performance evaluation and 
statistics

Prediction performance of the training dataset was evaluated 
using the area under the curve (AUC) of the receiver operating 
characteristic curve. The sensitivity, specificity, positive 
predictive value, negative predictive value, and Youden index 
were also calculated. The Shapiro–Wilk test was used to test the 
data normality. When representing continuous variables, 
differences were assessed using a t-test or Mann–Whitney U test, 
as appropriate, and the data are represented as the median and 
IQR. We adopted the chi-squared test to evaluate differences in 
categorical variables, and the results are presented in terms of the 
number of events and relative frequency (%). Statistical 
significance was defined as p ≤ 0.05. Statistical analyses were 
performed using R software (version 3.6.3, R Foundation for 
Statistical Computing, Vienna, Austria). The additional R 
packages used in this study were “glm,” “OptimalCutpoints,” and 
“ggplot2.”

3 Results

3.1 Propensity score matching and baseline 
demographics

We selected 308 patients with unruptured IAs treated with PEDs 
from the database, of whom 16 patients who experienced 
postinterventional IA rupture were included in the PIR group. After 
propensity score matching, each aneurysm in the PIR group was 
successfully matched with three aneurysms from the remaining 
patients in the database (PIU group, n = 48). The distribution of 
propensity scores showed that the PIR and PIU groups were well-
balanced (Figure 2A). The 64 patients from the PIR and PIU groups 
were randomly divided into the training and test datasets (n = 43 and 
21, respectively) at a 2:1 ratio, with two-thirds of the 16 patients with 
delayed rupture assigned to the training cohort and one-third to the 
test cohort. This strategy, combined with five-fold cross-validation, 
enhances our model’s robustness and generalizability. As shown in 
Table 1, the baseline characteristics showed no significant differences 
between the two datasets.

3.2 Informative radiomics features and 
prediction score construction

After ICC analysis, 86.6% (1,264/1,459) of the radiomics features 
were deemed stable. Figure  2B illustrates the ICC values for each 
feature across all groups. The detailed percentages of the stable features 
in each perfusion map are summarized in Supplementary Table S1. 
Based on independent samples t-tests, 179 of the 1,264 stable features 
were found to be significant (p < 0.05), with 230 exhibiting a Gaussian 
distribution with homoscedasticity. The remaining 1,034 features were 
subjected to Mann–Whitney U tests, which revealed that 1,002 features 
were significantly different (p < 0.05). Consequently, these 1,181 
features were selected for LASSO regression. Overall, 1,181 features 
passed the scrutiny of the t-test or Mann–Whitney U test. Finally, the 
LASSO algorithm selected six informative features with non-zero 
coefficients (Figures 2C,D), none of which showed high correlation.

One feature was extracted from the shape2D feature class, named 
“Original_shape2D_MinorAxisLength”; one feature was extracted from 
the cerebral blood volume angiographic parametric image, named 
“CBVwavelet.LL_glrlm_ShortRunLowGrayLevelEmphasis”; and four 
features were extracted from MAX angiographic parametric images, two 
of which were energy features, namely “MAXwavelet.LH_firstorder_
Energy” and “MAXwavelet.HH_firstorder_Energy,” while the other two 
were total energy features, namely “MAXwavelet.LH_firstorder_
TotalEnergy” and “MAXwavelet.HH_firstorder_TotalEnergy.”

The detailed coefficients for each feature are listed in 
Supplementary Table S2. The six selected features were used to 
construct the radiomics score by multiplying the value of each feature 
by its coefficient and then summing all six products with the intercept.

3.3 Model performance evaluation and 
feature ranking

In the training dataset, the radiomics score ranged from −16.347 
to 4.091, and the mean radiomics scores in the PIR and PIU groups 
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were −3.829 and 2.764, respectively. In the test dataset, the radiomics 
score ranged from −4.469 to 10.722, and the mean radiomics scores 
in the PIR and PIU groups were −3.330 and 1.695, respectively. The 
optimal cutoff point of the radiomics score for differentiating between 
the two groups was 1.143; with this cutoff point, the radiomics score 
could discriminate PIR with an AUC of 0.912 (95% confidence 
interval: 0.767–1.000) and 0.938 (95% confidence interval: 0.806–
1.000) in the training and test datasets, respectively (Figures 3A,B). 
The prediction results for each patient in the training and test datasets 
are shown in Figures  3C,D. The confusion matrix-derived score 

performance metrics and AUCs for the training and test datasets are 
presented in Supplementary Table S3.

4 Discussion

Postinterventional delayed aneurysm rupture is a serious 
complication of PED therapy. Although numerous studies have 
discussed possible contributing factors in terms of histopathology 
(14), aneurysm morphology (15), hemodynamics (6, 16, 17), and 

FIGURE 2

Propensity score matching and intraclass correlation coefficient results. (A) Distribution of propensity scores. (B) Boxplot of ICC values for the features 
extracted from the five feature groups. (C) Feature selection in the training dataset; this method minimizes the sum of the squares of residues, with the 
sum of the absolute values of the selected feature coefficients not exceeding the tuning parameter (λ). We used five-fold cross-validation to tune the 
parameter (λ) selection in the LASSO model. The AUC was plotted versus log (λ). Six features with non-zero coefficients were selected using the 
minimum criteria. (D) LASSO coefficient profiles of features in the training dataset. Each colored line represents the coefficient of each feature. AUC, 
area under the curve; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; ICC, intraclass correlation coefficient; LASSO, 
least absolute shrinkage and selection operator.
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mechanical stretching after stenting (18), the underlying mechanism 
remains controversial. Additionally, most of these studies were case 
rePIRts and qualitative analyses; the results of which are limited in 
their generalization. Hence, in this study, we used the arteriography-
derived hemodynamic radiomic features extracted from 
postprocedural DSA to quantitatively predict the risk of delayed 
rupture after PED treatment.

Previous computational fluid dynamics research has been devoted 
to establishing the hemodynamic factors associated with the PIR of 
aneurysms after flow diversion. In the earliest studies using 
computational fluid dynamics to analyze delayed rupture of IAs and 
examine the hemodynamic changes, Cebral et al. (16) used patient-
specific hemodynamic analysis of three post-treatment cases in which 
rupture occurred and four cases in which treatment was successful. As 
a result, they identified a reduction in flow velocity and wall shear 
stress within the aneurysms and assumed that flow diversion in the 
parent artery increases intra-aneurysmal pressure, which may cause 
aneurysm rupture. Chen et  al. (17) also examined hemodynamic 
parameters, such as streamline, blood flow velocity, aneurysm 
pressure, and wall shear stress, at peak systole before and after stent 
deployment. However, their data indicated that the velocity of blood 
flow entering the aneurysm did not decrease substantially. A high wall 
shear stress and an increase in pressure may also cause delayed 
aneurysm rupture.

Moreover, Li et  al. (6) compared pre-and post-treatment 
hemodynamic changes between the delayed rupture and unruptured 
groups and proposed that a stable flow pattern and higher energy loss 
after PED placement for IAs may be important hemodynamic risk 
factors for delayed aneurysm rupture. Nonetheless, several widely 
known limitations should be considered when evaluating the results 
of these computational fluid dynamics analyses; these include rigid 
wall assumptions, physiological flow-boundary conditions that are not 
patient-specific, and Newtonian blood properties (19, 20). Rigid wall 
computational fluid dynamics models tend to overestimate pressure 
gradients, resulting in greater pressure increases than are actually 
present (21). Furthermore, the precise geometry of the stent in its 
deployed state is unclear, and the accuracy of the virtual stent 
placement technique must be improved (22).

In contrast to computational fluid dynamics analysis, which 
often uses many hypothetical parameters, angiographic parametric 
imaging is a more specific method that adds time parameters by 

analyzing the contrast bolus and deriving perfusion features from a 
time density curve. In this study, five angiographic parametric 
images from each individual were generated from the actual 
perfusion parameters of the patient. Both DSA and magnetic 
resonance perfusion images can generate perfusion features. 
Although this approach has been used in clinical settings to predict 
cerebrovascular malformation rupture and embolization outcomes, 
it has only recently been applied to IAs (10, 23, 24). These analyses 
highlight the potential for angiographic parametric imaging to play 
an important role in the clinical determination of cerebrovascular 
disease. Herein, we used a radiomics approach to decode the flow 
patterns within an ROI that included the aneurysm sac as a whole 
to solve the ROI placement problem and take advantage of the 
pattern change information hidden in pixel-wise calculated 
perfusion maps.

The intra-aneurysmal pressure mechanism was also reflected in 
the current study via the radiomics score, which incorporated four 
energy-related features that were crucial in our model: MAXwavelet.
LH_firstorder_Energy, MAXwavelet.HH_firstorder_Energy, MAX 
wavelet.LH_firstorder_TotalEnergy, and MAXwavelet.HH_first 
order_TotalEnergy. These energy and total energy features are 
consistent with the intra-aneurysmal pressure increase. In the 
traditional definition of radiomics features, the energy feature is a 
measure of the magnitude of voxel values in an image, and the total 
energy is the value of the energy feature scaled by the volume of the 
voxel in cubic millimeters (25). Therefore, the energy and total energy 
features in a MAX angiographic parametric image can be interpreted 
as the degree of MAX, which, then, reflects the contrast agent 
retention in the aneurysm to some extent. As shown in Figures 4A,B, 
the MAX degree significantly differed in the MAX angiographic 
parametric images between the PIR and PIU groups. The relationship 
between contrast retention and radiomic features, particularly the 
magnitude of voxel values, suggests a possible link to the 
hemodynamic behavior within the aneurysm sac. We hypothesize 
that decelerated inflow might indeed lead to a more magnitude of 
voxel values, reflecting more intense contrast retention. While 
we postulate that some radiomic features may reflect intrasaccular 
pressure, we acknowledge that this remains an assumption not yet 
empirically validated. Further research is needed to explore the 
potential connections between these radiomic features and 
intrasaccular hemodynamics.

TABLE 1 Comparison of the baseline characteristics between the PIR and PIU groups.

Characteristic
PIR group 

(n =  16)
PIU group 

(n =  48)
p-value

Training group 
(n =  43)

Test group 
(n =  21)

p-value

Age, years, median (IQR) 53.0 (43.0–56.3) 53.0 (48.0–63.0) 0.248 54.0 (50.0–63.0) 51.0 (46.5.0–56.0) 0.066

Sex, male/female 8/8 22/26 0.772 21/22 9/12 0.653

Aneurysm size, mm 21.6 ± 8.3 17.1 ± 7.5 0.245 15.6 ± 7.4 19.5 ± 7.8 1

Morphology, saccular/non-saccular 12/4 38/10 1 34/9 16/5 1

Location — — 0.201 — — 0.105

  ICA 12 25 — 21 16 —

  MCA 2 6 — 7 1 —

  VA 2 17 — 15 4 —

PED number, single/multiple 15/1 44/4 1 3/40 2/19 1

ICA, internal carotid artery; IQR, interquartile range; MCA, middle cerebral artery; PED, pipeline embolization device; PIR, postinterventional rupture; PIU, postinterventional unruptured; 
VA, vertebral artery.
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The 2D shape feature, minor axis length, in our radiomics score is 
an indicator that can quantify the size of an aneurysm; it yields the 
second-largest axis length of the ROI-enclosing ellipsoid when 
compared to the major axis length (25). As illustrated in Figures 4A,B, 
most aneurysms are ellipsoid-shaped (i.e., the larger the minor axis 
length, the larger the major axis length and the larger the 2D area of 
the entire ellipse). Thus, larger minor axis lengths indicate larger 
aneurysm sizes. Additionally, there is evidence that larger aneurysms 
have a higher risk of PIR, although how aneurysm size influences 
intra-aneurysmal pressure has not been fully elucidated (16, 26). For 
saccular aneurysms of the internal carotid artery, a high aspect ratio 
(>1.6) is associated with aneurysm rupture (15, 27). However, we only 
included the minor axis length shape feature, which alone does not 
reflect aneurysm morphology. If we included the major axis length in 

our score, it would have reflected the aspect ratio of the aneurysm. 
Though, because of the limited sample size of this study, adding other 
morphological features did not improve the accuracy of the 
radiomics score.

Variability in DSA acquisition parameters, such as catheter 
position, injection rate, and mix ratio, can significantly influence the 
quality of imaging and subsequently affect the extraction and 
interpretation of radiomic features (28). As we described in method, 
we  standardized the acquisition parameters for most DSA runs, 
however, we  employed a multi-center approach, incorporating 
imaging data obtained from different machines and vendors. The 
scanner variability can introduce challenges in radiomics analysis. 
These parameters are critical in ensuring consistent and reliable 
imaging outcomes, which are foundational for radiomic analyses that 

FIGURE 3

(A,B) Illustration of the five-fold cross-validated ROC curve of the radiomics score model on the training and test datasets. (C,D) The bar plots for the 
training and test datasets with the prediction value for each patient. AUC, area under the curve; CI, confidence interval; PIR, postinterventional rupture; 
PIU, postinterventional unruptured; ROC, receiver operating characteristic.
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rely on quantitative imaging features for diagnostic, prognostic, and 
therapeutic purposes (29, 30). Future research should aim to develop 
standardized DSA protocols and use advanced computational 
methods to reduce variability, enhancing radiomics’ reliability in 
clinical practice.

This study has some limitations that warrant further 
discussion. First, the morphology of the aneurysm itself was an 
important factor in the resulting PIR, and the shortcoming of the 
angiographic parametric imaging strategy lied in its 2D nature. 
Even though the working position best delineated the largest 
projected area of an aneurysm, the three-dimensional shape of 
the aneurysm was more in line with the actual situation. Second, 
the mechanism of aneurysm rupture following flow diversion was 
likely multifactorial and may include factors such as antiplatelet 
regimens, thrombus formation, inflammation, and the condition 
of the aneurysm wall. Finally, despite representing the largest 
cohort to date in this research context, our study’s sample size is 
still relatively small, highlighting the need for more extensive 

future studies. These efforts will aim to enhance the robustness 
and generalizability of our findings, further enriching our 
understanding and clinical application.

5 Conclusion

In the present study, we generated a radiomics score based on 
postprocedural DSA perfusion radiomics features, which 
predicted the PIR of IAs with acceptable accuracy after placement 
of the PED. This approach not only enhances our understanding 
of the radiomic features associated with delayed rupture, enabling 
clinicians to better assess rupture risk post-FD implantation but 
also holds significant implications for patient management and 
future research. Although further validation at more institutes is 
necessary before its widespread clinical application, we advocate 
for future studies to explore and integrate radiomic analysis into 
clinical decision-making processes.

FIGURE 4

Illustrative cases of angiographic parametric imaging. (A) An illustrative case in the PIU group. The solid red lines represent the major axis length, and 
the red dotted lines represent the minor axis length. (B) An illustrative case in the PIR group. The solid red lines represent the major axis length, and the 
red dotted lines represent the minor axis length. The degree of MAX (arrows) significantly differs in the MAX angiographic parametric image between 
the PIR and PIU groups. CBF, cerebral blood flow; CBV, cerebral blood volume; DSA, digital subtraction angiography; MAX, maximum contrast media 
concentration; MTT, mean transit time; PIR, postinterventional rupture; PIU, postinterventional unruptured; TTP, time to peak.
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