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Objective: The objective of this study is to develop a model to predicts the 
postoperative Hunt-Hess grade in patients with intracranial aneurysms by 
integrating radiomics and deep learning technologies, using preoperative CTA 
imaging data. Thereby assisting clinical decision-making and improving the 
assessment and prognosis of postoperative neurological function.

Methods: This retrospective study encompassed 101 patients who underwent 
aneurysm embolization surgery. 851 radiomic features were extracted from CTA 
images. 512 deep learning features are extracted from last layer of ResNet50 deep 
convolutional neural network model. The feature screening process pipeline 
encompassed intraclass correlation coefficient analysis, principal component 
analysis, U test, spearman correlation analysis, minimum redundancy maximum 
relevance algorithm and Lasso regression, to identify features most correlated 
with postoperative Hunt-Hess grading. In the model construction phase, three 
distinct models were constructed: radiomics feature-based model (RSM), deep 
learning feature-based model (DLM), and deep learning-radiomics feature 
fusion model (DLRSCM). The study also calculated the radiomics score and 
combined it with clinical data to construct a Nomogram for predictive modeling. 
DLM, RSM and DLRSCM model was constructed by 9 base algorithms and 1 
ensemble learning algorithm – Stacking ensemble model. Model performance 
was evaluated based on the area under the Receiver Operating Characteristic 
(ROC) curve (AUC), Matthews Correlation Coefficient (MCC), calibration curves, 
and decision curves analysis.

Results: 5 significant radiomic feature and 4 significant deep learning features 
were obtained through the feature selection process. These features were 
utilized for model construction. Bootstrap resampling method was used for 
internal validation of the models. In terms of model evaluation, the DLM model, 
the stacking ensemble algorithm results achieved an AUC of 0.959 and MCC of 
0.815. In the RSM model, the stacking ensemble model AUC was 0.935 and MCC 
was 0.793. The stacking ensemble model in DLRSCM outperformed others, with 
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an AUC of 0.968 and MCC of 0.820. Results indicated that the ANN performed 
optimally among all base models, while the stacked ensemble learning model 
exhibited the highest predictive performance.

Conclusion: This study demonstrates that the combination of radiomics and 
deep learning is an effective approach to predict the postoperative Hunt-
Hess grade in patients with intracranial aneurysms. This holds significant value 
in the early identification of postoperative neurological complications and in 
enhancing clinical decision-making.
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radiomics, deep learning, machine learning, prediction model, artificial intelligence

1 Introduction

Intracranial aneurysm (IA) is a prevalent and dangerous 
cerebrovascular disease characterized by the local dilation of 
cerebral arteries, which may lead to subarachnoid hemorrhage and 
other severe neurological complications, posing significant risks to 
patients (1, 2). Endovascular embolization of IAs is a widely used 
treatment method, involving the use of micro guidewires and 
catheters to deliver coils and other adjunct materials into the 
aneurysm sac, effectively occluding the aneurysm and preventing 
rebleeding (3, 4). However, the postoperative assessment of 
patients’ clinical neurological status and prognosis prediction 
remains challenging.

The Hunt–Hess grading system, which is widely employed for 
patients with IAs, allows for the description of clinical manifestations 
and the extent of neurological impairment, guiding treatment 
decisions and forecasting patient outcomes (5, 6). Hunt-Hess starting 
at grade 3 indicates that slightly focal neurologic deficits. Grade 5 is 
the most severe (Table 1). Clinicians want to predict before surgery 
whether a patient’s neurologic function will change from below grade 
3 to grade 3 and above after surgery (7).

However, relevant predictive factors for postoperative Hunt–Hess 
grading in patients are lacking before the IA intervention. Currently, 
the assessment heavily relies on the clinical experience of healthcare 
provider to determine the extent of neurological impairment in 
patients following the procedure (8). However, the accuracy and 
objectivity of these assessments may be  influenced by subjective 
factors, limiting the precision of patient prognosis evaluation. 
Therefore, seeking additional and more reliable objective predictive 

factors and methods for forecasting the prognosis of patients after IA 
endovascular embolization has become increasingly important.

In recent years, remarkable advancements have been witnessed in 
the field of medical imaging due to emerging technologies such as 
radiomics, machine learning, and artificial intelligence (9). Radiomics is 
a quantitative approach that extracts a large number of features from 
medical images, providing an objective reflection of various 
characteristics of pathological changes, including shape, size, texture, and 
so forth. This method offers a new perspective for disease diagnosis and 
prognosis (10). On the contrary, machine learning and artificial 
intelligence techniques can process and analyze vast amounts of medical 
imaging data, enabling the construction of sophisticated prediction 
models that can automate the prognostic assessment of patients and 
ultimately assist clinicians in making clinical decisions (11, 12).

In this study, we extracted radiological and clinical features based 
on patients’ preoperative CT angiography (CTA) images and clinical 
data using machine learning and deep learning methods. Next, 
we constructed 32 prediction models using various machine learning 
and deep learning methods. The study aimed to construct three distinct 
models to investigate their predictive abilities for the research objective. 
These models included Radiomics feature-based model (RSM), Deep 
learning feature-based model (DLM), and Deep learning-radiomics 
feature fusion model (DLRSCM). The RSM primarily relied on the 
radiomics features extracted from medical imaging data. Radiomics 
features provided quantitative information about the imaging 
characteristics of the tumor. The model employed various machine 
learning algorithms or statistical techniques to predict the postoperative 
Hunt–Hess classification. The DLM focused on using deep learning 
techniques to directly analyze the extracted features from medical 
imaging data. Deep learning algorithms, such as convolutional neural 
networks (CNNs), were used to learn and identify intricate patterns and 
features from the imaging data, which could further enhance the 
predictive performance of the model (13, 14). DLRSCM was a novel 
approach that aimed to integrate the strengths of radiomics and deep 
learning (15). By combining the radiomics features with deep learning, 
this model sought to leverage the complementary information from 
both sources, potentially leading to a more robust and accurate 
predictive model. By constructing and evaluating these three types of 
models, we  intended to provide comprehensive insights into their 
respective advantages and limitations in predicting the postoperative 
Hunt–Hess classification for patients with IAs. The flowchart of this 
study is shown in Figure 1.

TABLE 1 Hunt-Hess grade scale (7).

Grade Symptom

Grade I Asymptomatic or mild headache and mild neck stiffness.

Grade II
Moderate to severe headache. Nuchal rigidity, no neurological 

deficit except for cranial nerve palsy.

Grade III Drowsiness, confusion, or mild focal neurologic deficits.

Grade IV
Stupor, moderate to severe hemiparesis, possibly early decerebrate 

rigidity and vegetative disturbances.

Grade V Deep coma, deregulation, near-death state
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2 Materials and methods

2.1 Patients

This retrospective study included 101 patients with IA who were 
surgically treated at the Affiliated Hospital of Southwest Medical 
University from January 2019 to January 2022. The inclusion criteria 
were as follows: (1) patients with IA confirmed by Digital subtraction 
angiography (DSA); (2) patients with complete preoperative medical 
records and imaging data; and (3) patients who received standard 
treatment, that is, patients treated by surgical embolization. The 
exclusion criteria were as follows: (1) patients who had only a CT 
examination without DSA to confirm the diagnosis; (2) patients without 
a complete medical history; (3) patients with incomplete image data and 
image artifacts; and (4) patients who were not treated surgically. This 
study was conducted in strict accordance with the Declaration of 
Helsinki and approved by the Medical Ethics Committee of the 
Affiliated Hospital of Southwest Medical University (No. KY2023041). 
The requirement for obtaining informed consent from the patients was 
waived due to the retrospective nature of this study.

2.2 CT image acquisition and 
preprocessing

All images were obtained using Philips IQon spectral CT (Philips, 
Netherlands). The scanning mode was as follows: spiral scanning, with 
scanning direction from the side of the foot to the side of the head. 
The scanning parameters were as follows: 100–120 kVp, automatic 
milliampere-second technique, x-ray tube rotation time 0.33 s/round, 
pitch 1.046, Field of view (FOV) (200–250) mm × (200–250) mm, 

window width 600 HU, window level 300 HU, layer thickness 
0.90 mm, interval 0.90 mm, and detector width 8 cm. The automatic 
contrast tracking trigger used a scanning technique, monitoring the 
level of the aortic arch, trigger threshold 80–120 HU, and standard 
reconstruction algorithm Standard/B30. All captured images were 
saved in digital imaging and communication in medicine 
(DICOM) format.

2.3 Region of interest segment and 
radiomics feature extraction

All images were taken from a DICOM-format picture archiving and 
communication system and transferred to 3D Slicer (version 4.21). 3 
neuroimaging physicians with ≥10 years of clinical experience in 
radiology used the 3D Slicer software to manually segment regions of 
interest (ROIs) on the CT images and perform radiomics feature 
extraction on the outlined ROIs. Radiomics allows for the conversion 
of medical images into high-dimensional, quantifiable data. This process 
involves extracting a large number of features from ROIs, which include 
aspects like shape, texture, intensity, and volume (16). These features 
provide a detailed and quantifiable description of the IA area.

2.4 Deep learning feature extraction using 
ResNet50

The ResNet50, known for its deep convolutional neural network 
(CNN) architecture, offers several advantages for medical image 
analysis. Its design addresses common challenges associated with deep 
learning models, such as the vanishing gradient problem, making it 

FIGURE 1

Flowchart of this study.
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suitable for extracting nuanced features from complex image data (17). 
ResNet50 comprises 50 layers, including convolutional layers, pooling 
layers, and fully connected layers (Figure 2) (18). This depth allows it to 
learn complex patterns in image data and its adaptability to various 
types of image analysis tasks make it an ideal choice for our study.

2.4.1 Pre-training and fine-tuning
This study approach leverages a ResNet50 model pre-trained on 

ImageNet, a comprehensive visual database. This pre-training imparts 
the model with a foundational understanding of a wide range of visual 
features, which is crucial for initial feature recognition. The fine-
tuning process, tailored to our study’s requirements, adapts this model 
to the unique characteristics of CTA images specific to intracranial 
aneurysms (Figure  3). This step is critical as it aligns the model’s 
learning focus with the specific textures, shapes, and patterns relevant 
to aneurysms, enhancing the model’s accuracy and specificity in 
identifying relevant features in our dataset.

2.4.2 Feature extraction from network
The primary role of the ResNet50 model is the extraction of deep 

learning features from last layer of the network. This approach is 
chosen for its ability to capture high-level, abstract representations of 
the data, which are crucial in medical imaging analysis, especially for 
identifying complex patterns within cerebral vascular structures (19). 
The last layer in ResNet50 consolidates the information processed 
through all preceding layers, providing a comprehensive and detailed 
set of features. These high-level features are vital for accurately 
characterizing intracranial aneurysms, as they encompass the most 
informative and discriminative aspects of the CTA images, refined 
through the model’s depth and complexity. Additionally, by extracting 
features from the final layer, we ensure that the learned representations 
are specific to the medical imaging domain, having been fine-tuned 
on our dataset. This specificity is key to achieving high accuracy in 
identifying and assessing cerebral aneurysms, making it a strategic 
choice for our study’s objectives in neuroimaging analysis.

2.5 Deep learning feature and radiomics 
feature screening

Due to the large number of radiomics features and deep learning 
features extracted, we developed a pipeline to filter the important 
features step by step, the steps of feature filtering are shown in Figure 4.

2.5.1 Intraclass correlation coefficient
The Intraclass Correlation Coefficient (ICC) played a pivotal role 

in the screening of deep learning and radiomics features in our study, 
serving as a key statistical tool to assess the reliability and consistency 
of measurements across different observers (20). In our context, ICC 
was utilized to evaluate how consistently neuroimaging physicians 
extracted features from the CT images, which is critical to ensure the 
integrity of our data analysis. The ICC is calculated using the formula:

 
ICC MS MS

MS k MS
B w

B w
=

−
+ −( )1

Where MSB is the mean square between neuroimaging physicians 
extracted features from the CT images, MSw is the mean square within 
neuroimaging physicians extracted features from the CT images, and 
k  is the number of neuroimaging physicians.

A high ICC value, typically above 0.75, indicates a strong agreement 
among the observers, signifying that the features extracted are consistent 
and reliable, irrespective of the observer (21). This threshold was chosen 
to ensure the high quality and reproducibility of our feature dataset. 
Features failing to meet this threshold were considered unreliable and 
were excluded from further analysis. This step was crucial for 
maintaining the reproducibility, particularly important in studies 
involving multiple observers. By employing ICC in the initial phase of 
feature screening, we established a robust foundation for the subsequent, 
more complex phases of our analysis.

2.5.2 Principal component analysis
Principal Component Analysis (PCA) was employed primarily to 

reduce the number of features derived from both deep learning and 
radiomics extraction methods. Given the large volume of features 
generated. The dimensionality of the data posed significant challenges 
in terms of computational efficiency and potential overfitting in 
subsequent analyses. PCA served as a crucial statistical technique to 
address these challenges. Its primary purpose was to condense the 
high-dimensional feature space into a lower-dimensional space that 
retains most of the original data variance (22).

The core process of PCA involves the computation of the 
covariance matrix of the data and its eigenvalue decomposition:

 
=

−
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X X X X
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FIGURE 2

Schematic diagram of ResNet50 structure. ResNet50 consisted of 50 layers and 5 stages.
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Where X  represents the data matrix, and X  is the mean vector. 
The covariance matrix Σ captures the variance and covariance between 
different features.

The subsequent eigenvalue decomposition is expressed as:

 Σ× = ×V Vλ

This step involves finding the eigenvectors V  and eigenvalues of 
the covariance matrix. The eigenvectors define the new feature space, 
and the eigenvalues indicate the variance captured by each eigenvector.

By transforming the data using these principal components, 
allowed us to maintain the integrity and informational value of the 
original features while significantly reducing their number. By doing 
so, we enhanced the manageability of our data.

2.5.3 U test and spearman analysis
We utilized the Mann–Whitney U Test and Spearman’s rank 

correlation analysis to refine our selection of features derived from 

deep learning and radiomics techniques. The U Test, a non-parametric 
statistical method, was employed to determine the significance of each 
feature by comparing their distributions between different groups 
within our study cohort (23). This helped in identifying features that 
were statistically significant in distinguishing between the groups, 
such as patients with varying outcomes or characteristics. The U 
statistic is calculated as:

 
U n n

n n
R= +

+( )
−1 2

1 1

1

1

2

Where n1 and n2 are the sample sizes, and R1 is the sum of the 
ranks in the first sample. The U statistic assesses whether one sample 
tends to have higher values than the other.

Concurrently, we used Spearman’s rank correlation analysis to 
assess the relationships between features. This analysis was crucial in 
identifying highly correlated features, indicating redundancy. Features 
that were strongly correlated with others were considered for removal 

FIGURE 3

Schematic diagram of the CNN procession of this study. The CNN was pre-trained using ImageNet and fine-tuned using the CTA image data of IA.

FIGURE 4

Schematic of feature screening pipeline.

https://doi.org/10.3389/fneur.2024.1321923
https://www.frontiersin.org


Peng et al. 10.3389/fneur.2024.1321923

Frontiers in Neurology 06 frontiersin.org

since they provided similar information, thereby simplifying our 
feature set (24). Spearman’s correlation (ρ) assesses the relationship 
between two ranked features and is calculated as:

 

ρ = −
×∑

−( )
1

6

1

2

2

d
n n

i

Here, di is the difference between the ranks of corresponding 
values of the two features, and n is the number of observations. This 
coefficient indicates the degree of correlation between the ranks of 
the features.

The integration of these two statistical methods – the U Test for 
determining feature significance and Spearman’s analysis for 
identifying feature redundancy – was instrumental in ensuring that 
the final set of features was both relevant and concise, enhancing the 
effectiveness and efficiency of our subsequent predictive modeling.

2.5.4 Minimum redundancy maximum relevance 
and Lasso regression

The integration of the Minimum Redundancy Maximum 
Relevance (mRMR) algorithm and Lasso regression played a crucial 
role in our feature selection process. Initially, the mRMR algorithm 
was used to filter out features, ensuring that those selected were highly 
relevant to our predictive models while minimizing redundancy (25). 
This step was vital in balancing the inclusion of essential information 
and avoiding overlap among features. Following this, Lasso regression 
was applied to further refine the feature set. A key attribute of Lasso 
regression is its ability to perform feature selection and regularization 
simultaneously. This is particularly effective in high-dimensional data 
sets like ours. Lasso achieves this by imposing a penalty on the 
absolute size of the coefficients, which leads to some coefficients being 
exactly zero. Thus, features with non-zero coefficients are selected, 
while others are effectively excluded from the model. This process not 
only reduces the number of features but also assigns a non-zero 
coefficient to each selected feature (26). The Lasso regression can 
be expressed as:

 
argm n

n
y Xi β β λ β= − +

1

2 2

2

1

Where y X− β 2
2 is the least squares term, λ is a tuning parameter 

that controls the strength of the penalty, β  represents the coefficients, 
and β 1 is the L1 norm of the coefficients. The L1 penalty encourages 
sparsity in the coefficients, leading to some coefficients being shrunk 
to zero, thus effectively selecting a subset of features.

By combining mRMR for initial feature reduction and Lasso 
regression for determining the final set of significant features with 
their corresponding non-zero coefficients, we were able to create an 
optimally concise and informative feature set.

2.6 Construction of prediction models

2.6.1 Phase I-basic model construction
The remaining deep learning features and radiomics features after 

screening will be used to construct radiomics feature-based model 
(RSM), deep learning feature-based model (DLM), and deep 

learning-radiomics feature fusion model (DLRSCM). The 
construction of each type of base model we performed by 9 supervised 
learning algorithms which include random forest (RF) algorithm, 
support vector machine (SVM) algorithm, gradient boosting machine 
(GBM) algorithm, CatBooost, artificial neural network (ANN) 
algorithm, XGBoost, LightGBM, decision tree (DT), and K-nearest 
neighbor (KNN). These nine algorithms are classical supervised 
learning algorithms that have been applied in many studies of medical 
predictive modeling (27). Each base model is trained independently, 
and their predictions are recorded. We denote the predictions from 
the k -th model for the i-th sample as pik.

2.6.2 Phase II-stacking ensemble model 
construction

The second phase of the construction involved the development 
of a meta-model, also known as the secondary learner. This meta-
model was learned from the predictions made by the basic models in 
the first phase. A new dataset is created for training the meta-model, 
where the features are the predictions from the base models. If there 
are N  samples and K  base models, the new dataset D for the meta-
model will be:

 D p p p k Kk k Nk= ……( ) = …{ }1 2 1 2, , , |. , , ,

The meta-model is then trained on this new dataset. The output 
of the meta-model is the final prediction, which can be denoted as:

 ( )1 2ˆ , , ., Ky f p p p= ……

Where ŷ  is the predicted output, pK are the predictions from the 
k -th base model, and f  represents the learning function of the 
meta-model.

The meta-model effectively synthesized the insights gained from 
all the basic models. We selected the best-performing model from the 
first phase as the basis for our meta-model, ensuring that the most 
accurate and reliable predictive patterns were carried forward into the 
final ensemble model. The final Stacking Ensemble Model represented 
an integration of the diverse predictive capabilities of the individual 
basic models, channeled through the refined lens of the meta-model 
(28). The primary advantage of this stacking approach lies in its ability 
to synthesize the strengths and compensate for the weaknesses of 
individual models, leading to a more accurate and robust predictive 
tool. This method effectively integrates diverse predictive insights 
from various models, ensuring a comprehensive analysis (29). The 
best-performing model from the basic models was chosen as the 
secondary learner, ensuring that the final ensemble model capitalizes 
on the most effective predictive patterns.

2.7 Construction and evaluation of 
radiomics nomogram

Non-zero coefficients for radiomics features screened by Lasso 
regression were used for constructing the radiomics score (Rad-Score). 
The general formula for calculating the Rad-Score can be expressed 
as follows:
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Radiomics Score X

i

n
i i = ×( )

=
∑

1

β

Where n represents the number of radiomics features selected by 
Lasso regression. βi  is the non-zero coefficient assigned to the i-th 
radiomics feature by Lasso regression. Xi is the value of the i-th 
radiomics feature for a given patient.

A nomogram was constructed using the Rad-Score in 
combination with previously analyzed statistically significant clinical 
data. The nomogram was designed to visually represent the 
contribution of each feature towards the predicted outcome. Each 
feature was assigned a score on the nomogram, with the total score 
correlating to a probability of a postoperative Hunt–Hess grading.

3 Experiments

3.1 Data and implementation details

3.1.1 Baseline information analysis
A total of 104 patients with intracranial aneurysms data were 

included in this study. The continuous variables were analyzed using 
the mean standard deviation (Mean ± Standard Deviation) and Mann–
Whitney U Test. Chi-square test, Yates correction, and Fisher’s exact 
probability were used to analyze in categorical variables. Typically, 
two-sided p values <0.05 indicated statistically significant differences.

3.1.2 Radiomics feature extraction
In our study, radiomics feature extraction was carried out 

using the pyradiomics package, encompassing comprehensive 
image preprocessing and subsequent extraction of a wide array of 
radiomics features. The preprocessing phase involved normalizing 
the gray values of images, resampling voxel sizes to a standardized 
volume of 1 mm × 1 mm × 1 mm, and discretizing image gray values 
with a bin width of 25. Various image types were included in the 
analysis, such as original images, Gaussian-filtered images applying 
Laplacian of Gaussian functions with five different sigma values 
(1.0, 1.5, 2.0, 2.5, 3.0), and wavelet-filtered images. The feature 
extraction process covered an extensive range of radiomics 
features, including morphological, first-order, Gray Level 
Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix 
(GLRLM), Gray Level Size Zone Matrix (GLSZM), and Gray Level 
Dependence Matrix (GLDM) features. In total, 851 radiomics 
features were extracted and all underwent z-score standardization 
for normalization.

3.1.3 Deep learning feature extraction
The input CTA image size was 224 × 224 pixels of the aneurysm 

region segmented by a neuroimaging physician. Also, we  used a 
pre-trained ResNet50 model on ImageNet. The model was fine-tuned 
using our CTA image data to extract deep learning features specific to 
vascular structures. For this study’s binary classification task, 
adjustments were made by modifying the size of the fully connected 
layer from 1,000 to 2. The image flip rotation was used to increase the 
size of the dataset. We  applied the adaptive moment estimation 
optimizer with a learning rate of 10−4, weight decay 10−5 for 1,000 
epochs using a batch size of 16. We fed the preprocessed CTA images 

into the ResNet50 model and extracted deep learning feature from the 
last layer.

3.1.4 Feature screening
All features were normalized to ensure a standardized baseline for 

comparison. The Intraclass Correlation Coefficients (ICCs) were then 
used as confidence coefficients to assess interobserver and test–retest 
reliability. We  set a threshold of ICC > 0.75 as the benchmark for 
favorable reliability and validity, a standard practice in studies where 
reproducibility is paramount (30). To further refine the feature set, the 
Mann–Whitney U test was applied to each feature to identify and 
eliminate redundancies. p value threshold of 0.05 was set for this 
purpose, based on conventional statistical standards that balance the 
need for sensitivity in detecting meaningful differences while 
controlling for false positives (31). This threshold was chosen to 
effectively identify features with strong discriminative ability, essential 
for the predictive accuracy of our models. Spearman correlation 
analysis also conducted to address the dependency between features. 
In cases where the correlation coefficient between two features 
exceeded 0.9, indicating high redundancy, one of the features was 
excluded. This threshold of 0.9 was selected to ensure a significant 
level of correlation that could imply redundancy, hence optimizing the 
feature set for diversity and informativeness (32). For further 
refinement, the Minimum Redundancy Maximum Relevance 
(mRMR) algorithm was utilized, providing an additional layer of 
filtering to enhance the relevance and minimize redundancy among 
the features. Finally, the Least Absolute Shrinkage and Selection 
Operator (Lasso) regression model was employed for dimensionality 
reduction. We optimized the penalty parameters using 7-fold cross-
validation, specifically selecting the lambda. Min that corresponded 
to the lowest error. This approach ensured that the dimensionality 
reduction did not compromise the capability of the Lasso regression 
model (33).

3.1.5 Training of prediction model
Bayesian optimization algorithm to determine the hyperparameter 

settings for all base models, ensuring optimal model performance. The 
parameters for Bayesian optimization were configured as follows: The 
initial number of random search steps was set to 5, providing a diverse 
starting point for the algorithm. This was followed by 50 iterations of 
Bayesian optimization to precisely adjust and optimize the 
hyperparameters. This approach effectively balanced exploration and 
exploitation, ensuring a comprehensive and efficient search of the 
hyperparameter space. The hyperparameter settings for each model 
determined by the Bayesian optimization algorithm are detailed in 
Supplementary material S1. Given the relatively small sample size of 
our study, traditional data splitting and cross-validation methods 
might not provide robust validation results (34). Therefore, we chose 
the Bootstrap resampling method as the internal validation approach 
for both the base models and the Stacking ensemble model. 
Specifically, we conducted 1,000 Bootstrap resampling, a parameter 
setting aimed at ensuring the sufficiency and robustness of model 
validation. This resampling method allowed us to more accurately 
assess the performance of the models while considering potential 
sample variability, thus ensuring the reliability and effectiveness of the 
models. This method is particularly suitable for situations with a small 
sample size, as it provides in-depth insights into the stability and 
generalizability of the models.
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3.2 Evaluation measure

The performance of basic and stacking predictive models will 
be  evaluated using two key metrics: the area under the Receiver 
Operating Characteristic (ROC) Curve (AUC) and the Matthews 
Correlation Coefficient (MCC). The AUC is a crucial measure in 
binary classification tasks, quantifying a model’s ability to discriminate 
between classes (35). The MCC, on the other hand, provides a 
balanced evaluation of the classification performance, especially 
useful in datasets with imbalanced class distributions. It takes into 
account true and false positives and negatives, offering a 
comprehensive measure of the model’s accuracy (36). The MCC is 
calculated using the formula:

 
MCC

TP TN FP FN
TP FP TP FN TN FP TN FN

=
× − ×( )

+( )× +( )× +( )× +( )[

Where TP is the number of true positives, TN is the number of 
true negatives, FP is the number of false positives, and FN is the 
number of false negatives.

3.3 Experimental condition

The experimental environment is based on AMD EPYC 9754 
2.25 GHz CPU, 128 GB RAM, over CUDA 11.8 and NVIDIA RTX 
4090 24 GB GPU under a 64-bit windows system. Python’s PyTorch 
framework was used for the deep learning task of this study. The 
Scikit-learn library was used for the machine learning task of 
this study.

3.4 Experimental results

3.4.1 Patient baseline analysis
Table 2 demonstrates the baseline characteristics of all patients in 

this study. The study included 101 patients with ruptured IAs treated 
by aneurysm embolization. The number of patients with postoperative 
Hunt–Hess grading <3 (n = 71) was higher than the number of those 
with postoperative grading ≥3 (n = 30). Preoperative Hunt–Hess 
grading was significantly correlated with postoperative Hunt–Hess 
grading (p < 0.05). Additionally, no statistically significant differences 
were found between the other variables (p>0.05).

The data in parentheses are percentages. p values were obtained 
after univariate analysis between each variable and postoperative 
Hunt–Hess grading.

3.4.2 Radiomics and deep learning feature 
screening

In this study, a total of 851 radiomics features and 512 deep 
learning features were extracted. The interobserver reproducibility of 
the feature extraction process was found to be favorable. Specifically, 
the reproducibility range for radiomics features was between 0.766 
and 0.941, and for deep learning features, it was between 0.759 and 
0.953. After dimensionality reduction using PCA, we obtained 267 
radiomics features and 74 deep learning features. Redundant features 
were eliminated using the U test and Spearman correlation coefficient 

analysis, resulting in a final count of 136 radiomics features and 11 
deep learning features. Subsequently, we used the mRMR algorithm 
to further select the most significant radiomics and deep learning 
features that were relevant to the postoperative Hunt-Hess grading. 
The mRMR output 39 radiomics features and 4 deep learning features. 
Given the still considerable number of remaining radiomics features, 
these were further subjected to Lasso regression analysis. The 4 deep 
learning features obtained were used for the construction of the DLM 
and were not included in the Lasso regression due to their already 
optimized number ensuring model efficiency. From the 39 radiomics 
features, Lasso regression ultimately retained 5 significant features 
(Figure  5). The titles of the five important features and their 
corresponding non-zero coefficients are shown in Table 3.

3.4.3 Evaluation of multi-machine learning 
prediction model

Within the DLMs, the Artificial Neural Network (ANN) model 
emerged as the top performer, achieving an AUC of 0.932 and an 
MCC of 0.830 (Table  4 and Figure  6). The ANN model used to 
construct the DLM was trained with 96 epochs to reach a minimum 
error rate of 0.82385 (Figure 7). This outcome of ANN highlighted 
robust capability in analyzing complex data patterns. In contrast, 
models like the Decision Tree (DT) and LightGBM demonstrated 
lower performance, with AUCs of 0.801 and 0.807, respectively. Such 
disparities in performance among different models underscore the 
importance of careful model selection based on the specific nature of 
the data.

In the RSMs category, the ANN continued to show favorable 
performance. The AUC of the ANN model for the RSM is 0.902 and 
the MCC is 0.802, which are better than the other base models (Table 5 
and Figure 8). The ANN model used to construct the RSM was trained 
with 145 epochs to achieve a minimum error rate of 1.31736 
(Figure 9).

However, the most notable performance was observed in the 
DLRSCMs category. The Stacking ensemble model, which 
incorporated ANN as its secondary learner due to its superior 
performance among the basic models, achieved an AUC of 0.968 and 
an MCC of 0.820 (Table  6 and Figure  10). This high level of 
performance reflects the efficacy of combining various predictive 
models, particularly leveraging the strengths of the best-performing 
base model, in this case, the ANN, to enhance the overall predictive 
accuracy and reliability of the ensemble model. This approach 
underlines the potential of utilizing sophisticated model integration 
strategies, like Stacking ensemble models, in machine learning tasks 
to achieve optimal results.

3.4.4 Construction of rad-scores and nomogram 
model

We constructed a Rad-Score based on the five radiomics features 
screened after Lasso regression, which was calculated as follows:

Radiomics Score X
i

n
i i 

Feature

= ×( ) =

∗
=
∑

1

0 000922077313959615

1

β .

++
∗ +
∗ −

0 0785993197007064

2 0 701727629619912

3 8

.

.Feature

Feature ..

.

4144084384922

4 0 0361369923060118 5∗ − ∗Feature Feature
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In this study, the Rad-Score of all patients in the dataset was 
calculated and the distribution of patients was plotted according to the 
above equation (Figure  11A). The univariate regression analysis 
showed that preoperative Hunt-Hess grading was an independent 
predictor. Therefore, we combined Rad-Score and preoperative Hunt-
Hess grading to construct the Nomogram (Figure 11B). The predictive 
performance of Rad-Score and Nomogram, respectively, was 
internally validated using 1,000 resamplings using the Bootstrap 
method, and the results showed that the AUC of Rad-Score was 0.755 
(95% CI:0.603–0.847) (Figure 12A). The AUC of Nomogram was 
0.838 (95% CI:0.739–0.937) (Figure 12B). The nomogram combining 

Rad-Score and preoperative Hunt–Hess grading demonstrated 
improved predictive ability compared with a single predictor.

3.4.5 Further exploration of the model 
performance

In this study, we used both calibration curve and decision curve 
analysis (DCA) to evaluate the performance of the stacking and ANN 
models for each type of model. We  assessed the accuracy and 
reliability of the model predictions using the calibration curve, 
whereas DCA helped comprehensively evaluate the clinical application 
of the model under different patient risk thresholds. Using calibration 

TABLE 2 Clinical baseline information.

Characteristics Hunt-Hess grade<3 Hunt-Hess grade  ≥  3 p value

n 71 30

Gender, n (%) 0.463

Male 23 (22.8%) 12 (11.9%)

Female 48 (47.5%) 18 (17.8%)

Age, mean ± sd 54.662 ± 11.913 59.267 ± 12.194 0.081

Hypertension, n (%) 0.447

No 39 (38.6%) 14 (13.9%)

Yes 32 (31.7%) 16 (15.8%)

Diabetes, n (%) 0.435

No 70 (69.3%) 28 (27.7%)

Yes 1 (1%) 2 (2%)

Smoking, n (%) 0.871

No 64 (63.4%) 26 (25.7%)

Yes 7 (6.9%) 4 (4%)

Family History, n (%) 0.435

No 70 (69.3%) 28 (27.7%)

Yes 1 (1%) 2 (2%)

Stent Assist, n (%) 0.948

Yes 35 (34.7%) 15 (14.9%)

No 36 (35.6%) 15 (14.9%)

Aneurysm size, n (%) 0.571

≤5 mm 37 (36.6%) 13 (12.9%)

5 mm-15 mm 30 (29.7%) 16 (15.8%)

>15 mm 4 (4%) 1 (1%)

Aneurysm location, n (%) 0.070

ACA 24 (23.8%) 6 (5.9%)

MCA 25 (24.8%) 18 (17.8%)

PCA 22 (21.8%) 6 (5.9%)

Raymond grading, n (%) 1.000

1 68 (67.3%) 29 (28.7%)

2 3 (3%) 1 (1%)

Preoperative hunt-hess grading, n (%) 0.002

<3 62 (61.4%) 18 (17.8%)

≥3 9 (8.9%) 12 (11.9%)
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curves, we found that all ANN and stacking model predictions were 
in good agreement with the actual observations predicting the Hunt–
Hess grading (Figures 13A,B). DCA showed that DLRSCM had a 
better clinical net benefit compared with the other single-scale models 
in the ANN-constructed basic model (Figure 14A). However, DLM 
and DLRSCM had similar clinical net benefits in the stacking model 
(Figure  14B). Overall, the stacking model had better clinical net 
benefits than the ANN basic model.

4 Discussion

The three categories of Stacking ensemble models constructed 
in this study exhibited good performance in predicting 

postoperative Hunt-Hess grading. The highest model performance 
was observed when deep learning features were fused with 
radiomics features, achieving an AUC of 0.968 (95% 
CI = 0.956–0.981).

Zhang et al. (37) identified several laboratory test indicators, such 
as the C-reactive protein to lymphocyte ratio (AUC = 0.840), through 
Multivariate logistic regression analysis. They determined that 
C-reactive protein is a preoperative predictor of postoperative Hunt-
Hess grading (AUC = 0.838). In another study, Zheng et al. (38) used 
preoperative serum lactate dehydrogenase levels as an independent 
predictor for postoperative Hunt-Hess grading. They found that 
preoperative serum lactate dehydrogenase levels were a risk factor for 
postoperative neurological function (AUC = 0.702) and were 
associated with limited outcomes. Compared to these studies, our 

TABLE 3 Five radiomics features screened by Lasso regression and their corresponding nonzero coefficients.

Radiomics feature Coefficient

original.firstorder.RootMeanSquared 0.000922077313959615

original.glcm.JointAverage 0.0785993197007064

wavelet-LHL.glcm.Idm 0.701727629619912

wavelet-LLH.glszm.SmallAreaLowGrayLevelEmphasis −8.4144084384922

wavelet-HHH.glcm.ClusterShade −0.0361369923060118

TABLE 4 Predictive ability of the 10 DLMs evaluated using the AUC and MCC.

Model AUC MCC

RF 0.831 (95%CI:0.776–0.887) 0.714 (95%CI:0.685–0.736)

SVM 0.859 (95%CI:0.807–0.912) 0.722 (95%CI:0.680–0.742)

ANN 0.932 (95%CI:0.908–0.956) 0.830 (95%CI:0.798–0.864)

XGBoost 0.858 (95%CI:0.821–0.894) 0.716 (95%CI:0.686–0.727)

LightGBM 0.807 (95%CI:0.756–0.858) 0.691 (95%CI:0.621–0.740)

DT 0.801 (95%CI:0.746–0.856) 0.638 (95%CI:0.602–0.686)

CatBoost 0.842 (95%CI:0.789–0.895) 0.727 (95%CI:0.677–0.760)

GBM 0.837 (95%CI:0.777–0.896) 0.705 (95%CI:0.683–0.749)

KNN 0.864 (95%CI:0.835–0.893) 0.709 (95%CI:0.672–0.831)

Stacking 0.959 (95%CI:0.942–0.977) 0.815 (95%CI:0.794–0.843)

FIGURE 5

Lasso regression for the selection of radiomics features by 7-fold cross-validation and lambda.min selection of important features. (A) Variable 
trajectories of Lasso regression. (B) Lasso regression coefficient screening.
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fusion model, which integrates significant radiomics features and deep 
learning features and is trained through the Stacking ensemble 
algorithm, demonstrates superior predictive performance 
(AUC = 0.968). Additionally, decision curve analysis indicates that the 

fusion model has a higher clinical net benefit compared to models 
using only radiomics features or deep learning features alone in the 
current internal validation. This suggests that the fusion model may 
have potential clinical utility.

FIGURE 6

Predictive ability of the 10 DLMs evaluated using the AUC of the ROC curve.

FIGURE 7

ANN algorithms for constructing DLM visualization, consisting of 4 input layers, 3 hidden layers, and 2 output layers.
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FIGURE 8

Predictive ability of the 10 RSMs evaluated using the AUC of the ROC curve.

In previous studies, preoperative Hunt-Hess grading has been 
shown to have significant correlations with various adverse outcomes 
of subarachnoid hemorrhage (5). In our study, we  also found a 
significant correlation between preoperative and postoperative Hunt-
Hess grading (p < 0.05), corroborating previous findings that 
preoperative Hunt-Hess grading can significantly influence 
postoperative neurological function (38). A Nomogram combining 
preoperative Hunt-Hess grading with Rad-Score showed better 

predictive ability for postoperative Hunt-Hess grading (AUC = 0.838) 
compared to several individual models across three categories. 
However, the predictive performance of the Nomogram still has a gap 
to Stacking ensemble model in each category.

While the Stacking ensemble models across different categories 
outperformed the Nomogram model, the Nomogram offers simplicity 
and more direct patient outcome assessment, making it more 
interpretable. Therefore, future research on predictive models should 

TABLE 5 Predictive ability of the 10 RSMs evaluated using the AUC and MCC.

Model AUC MCC

RF 0.772 (95%CI:0.732–0.811) 0.635 (95%CI:0.601–0.694)

SVM 0.808 (95%CI:0.774–0.843) 0.694 (95%CI:0.635–0.730)

ANN 0.902 (95%CI:0.877–0.928) 0.802 (95%CI:0.770–0.838)

XGBoost 0.814 (95%CI:0.759–0.870) 0.700 (95%CI:0.671–0.766)

LightGBM 0.736 (95%CI:0.691–0.782) 0.608 (95%CI:0.552–0.649)

DT 0.742 (95%CI:0.693–0.791) 0.634 (95%CI:0.605–0.676)

CatBoost 0.767 (95%CI:0.728–0.805) 0.628 (95%CI:0.599–0.663)

GBM 0.747 (95%CI:0.703–0.790) 0.657 (95%CI:0.618–0.690)

KNN 0.790 (95%CI:0.756–0.824) 0.691 (95%CI:0.628–0.731)

Stacking 0.935 (95%CI:0.912–0.959) 0.793 (95%CI:0.760–0.832)
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focus more on the interpretability of the models. In the performance 
comparison across model categories, the Deep Learning-Radiomics 
Signature Combined Model (DLRSCM) showed better overall 
performance than the Deep Learning Model (DLM), which in turn 
outperformed the Radiomics Signature Model (RSM). This difference 
in performance might be attributed to the DLRSCM model’s fusion of 
radiomics features and deep learning features, providing a more 
comprehensive data perspective. This integrated approach can capture 
more data patterns and subtle differences that might be overlooked in 
single-source feature models, such as those using only RSM or 
DLM. The advantage of DLRSCM lies in its combination of the 
strengths of both types of data: radiomics features provide intuitive, 
interpretable medical imaging information, while deep learning 
features extract deeper and more abstract patterns from these images. 
Thus, DLRSCM is more effective in capturing complex patterns 
associated with postoperative Hunt-Hess grading.

The ANN displayed excellent prediction performance among all 
three models in the basic model. This might be  related to the 
algorithmic structure of ANN itself. The superior performance of 
ANN among the three basic models could be attributed to its ability 
to handle complex nonlinear relationships, adaptive learning 
capability, advantages in processing large-scale data, advanced feature 

extraction ability, and flexibility and generalization power (39). First, 
as a robust nonlinear model, ANN could effectively process datasets 
with intricate nonlinear features, making it advantageous in capturing 
diverse and abstract characteristics, particularly in medical imaging 
domains (40). Second, the adaptive learning capacity of ANN, 
achieved using the backpropagation algorithm, optimized model 
parameters, gradually adapting to data features and enhancing 
predictive accuracy (41). Additionally, ANN excelled in processing 
large-scale data, especially in deep learning, where its multi-layered 
network structure efficiently handled high-dimensional complex data, 
thereby bolstering model performance (42). Furthermore, the ability 
of ANN to automatically learn advanced feature representations 
enabled the mining of more comprehensive data information 
compared with traditional feature extraction methods, leading to 
improved predictive outcomes (43).

The stacking ensemble model demonstrated surprisingly 
outstanding performance in our study. Stacking is an ensemble learning 
method that combines predictions from multiple base models to train 
a meta-model for final prediction. In our study, the stacking models 
were constructed for each type of model used. We selected diverse base 
models constructed using different algorithms. We  leveraged the 
strengths of each model while compensating for their individual 

FIGURE 9

ANN algorithms for constructing RSM visualization, consisting of five input layers, three hidden layers, and two output layers.

TABLE 6 Predictive ability of the 10 DLRSCMs, evaluated using the AUC and MCC.

Model AUC MCC

RF 0.905 (95%CI:0.880–0.930) 0.785 (95%CI:0.752–0.810)

SVM 0.868 (95%CI:0.842–0.893) 0.729 (95%CI:0.698–0.756)

ANN 0.948 (95%CI:0.926–0.970) 0.804 (95%CI:0.765–0.842)

XGBoost 0.938 (95%CI:0.920–0957) 0.800 (95%CI:0.762–0.831)

LightGBM 0.815 (95%CI:0.774–0.857) 0.701 (95%CI:0.668–0.737)

DT 0.809 (95%CI:0.766–0.836) 0.682 (95%CI:0.659–0.722)

CatBoost 0.885 (95%CI:0.858–0.912) 0.707 (95%CI:0.675–0.734)

GBM 0.860 (95%CI:0.820–0.899) 0.703 (95%CI:0.681–0.739)

KNN 0.919 (95%CI:0.900–0.938) 0.795 (95%CI:0.753–0.838)

Stacking 0.968 (95%CI:0.956–0.981) 0.820 (95%CI:0.788–0.851)
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FIGURE 10

Predictive ability of 10 DLRSCMs evaluated using the AUC of ROC curves.

FIGURE 11

(A) Rad-Score distribution plot for all patients. (B) Nomogram constructed using the combination of Rad-Score and preoperative Hunt–Hess grading.

weaknesses by incorporating the predictions of these base models into 
the stacking ensemble (44). The stacking model learned the relationships 
between predictions from different base models, leading to further 
improvement in predictive performance. Its learning capability allowed 
for the weighted combination of predictions from different models, 
resulting in more accurate and robust predictions (45).

This study also has some limitations. Firstly, the small sample size 
and data collection from a single center may limit the generalizability 
of the findings. The absence of external validation is another 
significant limitation, as it is crucial for confirming the efficacy and 
robustness of our models. Finally, the dependency of radiomics and 
deep learning models on imaging quality means that variations in 
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imaging protocols and equipment could impact the models’ 
effectiveness across different clinical settings.

The state-of-the-art machine learning and deep learning 
technologies, such as Transformers, hold immense potential in clinical 
predictive modeling. Rao et  al. (46) have utilized Transformers to 
construct a predictive model for heart failure events, which not only 
demonstrates strong predictive performance but also provides insights 
for data-driven risk factor identification. Transformers offer a potential 
direction for our future research. However, large model architectures 
like Transformers rely on training with large datasets. Current studies 
based on Transformers have used over one hundred thousand samples 
for model training (46–48). Therefore, due to the small sample size in 
our study, we did not adopt this model methodology.

In our future work, we  plan to address these limitations by 
expanding the scope of our research to encompass larger and more 
diverse patient populations. This expansion will significantly enhance 
the robustness and applicability of our research findings. In conjunction 

with this expansion, we also aim to explore the integration of advanced 
machine learning technologies such as Transformers into our predictive 
modeling framework. Our goal is to develop more sophisticated and 
accurate predictive tools that can be  effectively applied in clinical 
settings, ultimately contributing to improved patient care.

5 Conclusion

This study findings might significantly affect clinical practice in 
managing IAs. The accurate prediction of postoperative Hunt–Hess 
classification plays a reference in clinical practice. It enables clinicians 
to perform risk stratification and develop personalized treatment 
plans. Early identification of patients at higher risk of 
neurological complications allows for timely interventions, potentially 
reducing the burden of postoperative complications and improving 
patient outcomes.

FIGURE 12

ROC curves of the Rad-Score model (A) and the nomogram model (B).

FIGURE 13

Calibration curves for predictive models. Calibration curves of three types of models constructed using ANN algorithms (A) and stacking (B). DLM, 
Deep learning feature-based model; DLRSCM, deep learning–radiomics fusion prediction model; RSM, radiomics model.
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FIGURE 14

Decision curve analysis for the prediction model. Decision curve analysis of three types of models constructed using ANN algorithms (A) and stacking 
(B). DLM, Deep learning feature-based model; DLRSCM, deep learning–radiomics fusion prediction model; RSM, radiomics model.
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