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Cerebral oedema following acute ischemic infarction has been correlated with 
poor functional outcomes and is the driving mechanism of malignant infarction. 
Measurements of midline shift and qualitative assessment for herniation 
are currently the main CT indicators for cerebral oedema but have limited 
sensitivity for small cortical infarcts and are typically a delayed sign. In contrast, 
diffusion-weighted (DWI) or T2-weighted magnetic resonance imaging (MRI) 
are highly sensitive but are significantly less accessible. Due to the need for 
early quantification of cerebral oedema, several novel imaging biomarkers have 
been proposed. Based on neuroanatomical shift secondary to space-occupying 
oedema, measures such as relative hemispheric volume and cerebrospinal fluid 
displacement are correlated with poor outcomes. In contrast, other imaging 
biometrics, such as net water uptake, T2 relaxometry and blood brain barrier 
permeability, reflect intrinsic tissue changes from the influx of fluid into the 
ischemic region. This review aims to discuss quantification of cerebral oedema 
using current and developing advanced imaging techniques, and their role in 
predicting clinical outcomes.
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Introduction

Malignant infarction is a significant driver of mortality from ischemic stroke. Supported 
by the Stroke Treatment Academic Industry Roundtable (STAIR) X recommendations, there 
has been a growing interest in biomarkers to measure cerebral oedema to predict clinical 
outcome and assess cytoprotective treatment effect (1).

Within minutes of arterial occlusion, ion transporter function is impaired and osmotically 
active molecules move from the interstitium to the intracellular compartment. Consequently, 
cytotoxic oedema results in cellular swelling (Figure 1). With new gradients of sodium ions 
across the blood brain barrier, ionic oedema progresses and further promotes the influx of 
water into the ischemic area. Maintained hypoxia results in irreversible cellular damage 
secondary to the breakdown of cellular membranes, leading to the impairment of endothelial 
junctions and vasogenic oedema (2).

Radiological appearance of cerebral oedema in ischemic stroke may be assessed via two 
main methods: macroscopic neuroanatomical distortion and intrinsic cerebral tissue changes. 
In current clinical practices, anatomical shift or measuring the observable mass effect is the 
conventional approach to assess cerebral oedema. Quantitative measurement of midline shift 
is typically used as a reference standard, while qualitative measures such as the presence of 
ventricular distortion and herniation are important secondary signs of cerebral oedema that 
can be readily evaluated by clinicians for clinical decision making. In contrast, approaches to 
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assess intrinsic tissue changes seek to assess the primary pathological 
processes at a tissue level. These are predominantly measures applied 
in stroke research and includes measuring hypoattenuation on CT 
imaging and T2 changes on magnetic resonance imaging (Table 1).

Early identification and quantification of cerebral oedema is critical 
in assessing candidates for decompressive surgery due to risk of malignant 
infarction (25, 26). In this review, we aim to discuss quantification of 
cerebral oedema using current and developing advanced imaging 
techniques, and their role in predicting clinical outcome.

Neuroanatomical shift

Midline shift

Midline shift is typically defined as the deviation of the septum 
pellucidum from a line drawn between the anterior and posterior 

attachments of the falx cerebri. Reflective of space-occupying cerebral 
oedema in anterior circulation hemispheric stroke, rapid increase of 
midline shift is suggestive of malignant infarction and is correlated 
with mortality (7, 8, 27). Midline shift is the established reference 
standard for cerebral oedema both in research and clinical practice 
and in stroke, and is widely applicable to all other cerebral pathology 
in the cerebral hemisphere (28, 29). This has been further supported 
by a recent prospective multicenter study by Wu et  al. (26) that 
demonstrated the association of midline shift with malignant 
infarction in a large cohort of 2,123 patients. The main advantage of 
midline shift is that it can be easily and rapidly applied without the 
need for dedicated analysis software or prior training. However, it is 
typically a delayed sign with limited sensitivity for small cortical 
infarcts that is anatomical remote for midline structures.

Relative hemispheric volume

Relative hemispheric volume (rHV) quantifies the three-
dimensional volumetric expansion of the ischemic hemisphere 
compared to the contralateral hemisphere. It involves segmentation of 
the ipsilateral and contralateral cerebral hemispheres, with exclusion 
of the major sulci, cisterns and ventricles. In animal models, relative 
hemispheric volume has been correlated with absolute water volume 
(9, 30). However this has not been validated in humans. A recent 

FIGURE 1

Pathological processes of ischemic infarction and associated imaging techniques. ATP, adenosine triphosphate. Imaging techniques demonstrated in 
orange text (2–6).

Abbreviations: ASPECTS, Alberta Stroke Program Early CT Score; CSF, Cerebrospinal 

fluid; DECT, Dual energy computer tomography; DWI, Diffusion weighted imaging; 

EVT, Endovascular thrombectomy; FLAIR, Fluid attenuation inversion recovery; 

MCA, Middle cerebral artery; MRI, Magnetic resonance imaging; mRS, Modified 

Rankin Score; NWU, Net water uptake; rHV, Relative hemispheric volume; ROI, 

Region of interest.
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analysis of RHAPSODY patients (n = 65) by Schleicher et al. (31), 
demonstrated a strong correlation between measurements of rHV, 
midline shift and change in cerebrospinal fluid volume on CT imaging 
at day 2. In contrast, there is a lack of correlation between these 

anatomical markers of cerebral oedema with NWU (10, 31). Relative 
hemispheric volume is an effective measure of tissue volume and is 
shown to be superior to midline shift in predicting clinical outcome 
(10, 32–34). Currently, rHV has limited clinical application due to the 

TABLE 1 Imaging metrics for cerebral oedema.

Measurement Pathology Imaging analysis Clinical 
applicability

Key studies

Neuroanatomical 

shift

Midline shift Space-occupying cerebral 

oedema within a fixed 

volume results in 

displacement of 

structures

Deviation of the septum 

pellucidum between a line drawn 

between the anterior and posterior 

attachment of falx cerebri

Reference standard for 

cerebral oedema

Ropper (7)

Hofmeijer et al. (8)

Relative hemispheric 

volume

Increased tissue volume 

due to water influx

Ratio of slice-by-slice segmentation 

of the ischemic hemisphere to 

contralateral side, excluding major 

sulci, cisterns and ventricles

Strong correlation with 

midline shift. In animal 

models, it has been 

correlated with absolute 

water volume

Gerriets et al. (9)

Ng et al. (10)

Cerebrospinal fluid 

displacement

Displacement of CSF as a 

compensatory 

mechanism to counteract 

oedema-related brain 

expansion

Slice-by-slice CT segmentation of 

CSF spaces. Used as a ratio with 

contralateral hemisphere or 

intracranial size

May allow for early 

identification of cerebral 

oedema without need for 

identification of infarct or 

hypodensity on baseline 

imaging

Minnerup et al. (11)

Kauw et al. (12)

Dhar et al. (13)

Tissue-based 

properties

Net water uptake Cytotoxic and vasogenic 

oedema result in water 

uptake within the 

ischemic lesion, reflected 

by hypoattenuation of the 

infarcted area

Infarct lesion is outlined using CT 

perfusion imaging or ASPECTS 

region

HU of infarct area compared to 

contralateral parenchyma (1-ROI 

HU/contralateral ROI HU) × 100

Identify patients presenting 

within 4.5 h

Used to predict poor 

outcomes

Investigated as a tool to 

assess post-treatment 

follow up imaging, 

however this is not yet 

validated

Minnerup et al. (4)

Broocks et al. (14)

Nawabi et al. (15)

Broocks et al. (16)

Ng et al. (10)

T2 relaxometry Water influx results in 

increase of T2-weighted 

hyperintensity

Quantification of lesion voxel 

change with T2-weighted imaging

May aid to predict stroke 

onset in patients with poor 

cerebral blood flow

Lack of data of serial 

assessment and correlation 

to clinical outcomes

Wouters et al. (17)

Wang et al. (18)

Blood brain barrier 

permeability

Cellular damage due 

ischemia results in 

increased permeability

Analysis of contrast movement 

from intravascular to extravascular 

compartment on CT perfusion via 

microvascular permeability metrics 

or MRI using Gd-DTPA

Correlation with 

hemorrhagic 

transformation and poor 

outcomes

Lack of agreement of 

approach for measurement 

and assumption of 

unidirectional flow

Horsch et al. (19)

Dankbaar et al. (20)

Bektas et al. (21)

Ng et al. (22)

Other surrogate 

markers

Venous outflow profile Increased interstitial 

pressure and resistance of 

downstream arterioles, 

resulting in increased 

venous pressure

Assessment of the patency of 

cortical veins on CT imaging. Use 

of scoring systems such as COVES 

and PRECISE

Favorable profiles 

associated with reduced 

oedema progression rate 

and functional outcome

Limited by anatomical 

variability and non-

standardized imaging 

protocols

Van Horn et al. (23)

Parthasarathy et al. 

(24)
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time consuming nature of its measurement. With the development of 
automated algorithms, analogous to that in cerebrospinal fluid (CSF) 
displacement measurements, efficiency of rHV may improve (35).

Cerebrospinal fluid displacement

Displacement of CSF is one of the earliest compensatory 
mechanisms to counteract oedema-related brain expansion (3). CSF 
displacement as a quantitative metric has been shown to correlate with 
other measures of cerebral oedema such as midline shift and has been 
demonstrated to be  an independent predictor malignant middle 
cerebral artery (MCA) infarction (36, 37).

In an early cohort study, Minnerup et al. (11) assessed the ratio of 
infarct volume to CSF volume on admission multimodal CT imaging 
for 52 patients, using semiautomated slice-by-slice segmentation, and 
divided this by intracranial volume to account for cranial size 
variability. Larger infarct volume to CSF ratio was found to 
be associated with malignant MCA infarction. These findings were 
supported by multiple subsequent studies, which demonstrated that 
CSF volume is an independent predictor of malignant infarction (12, 
36, 37).

In 2018, Dhar et  al. (35) developed an automated algorithm 
using machine learning to segment CSF spaces on non-contrast CT 
brain studies. They subsequently analyzed the change in CSF volume 
at baseline and within 12 h of presentation in 474 patients, of which 
only 74 patients demonstrated midline shift. They found that odds 
of midline shift development doubled for every 10% reduction in 
CSF in the first 24 h. Furthermore, this change in CSF volume was 
associated with functional outcomes (mRS) independent of 
stroke severity.

Similar to previous studies that used CSF volume ratios to mitigate 
anatomical variability (11, 37), Dhar et al. (13) turned to analysis of 
hemispheric CSF ratio, that is the CSF volume of the affected 
hemisphere compared to the non-affected hemisphere. In this study, 
they analyzed 924 CT studies performed within 96 h of stroke onset 
and used follow-up imaging (n = 737) to assess cerebral oedema 
development. In multivariable analysis, they found that lower CSF 
ratio at 24 h was associated with higher NIHSS, lower ASPECTS and 
lower baseline CSF volume. Moreover, they noted that a hemispheric 
CSF ratio below 0.50 had a 90% sensitivity and 82% specificity to 
identify patients who developed malignant infarction.

There are several strengths of using CSF volumes as a metric of 
cerebral oedema. Via semiautomated processes or machine learning 
algorithms, quantitative analysis of CSF volumes or ratios may allow 
for early identification of cerebral oedema without need for 
identification of infarct or hypodensity on baseline imaging, unlike 
midline shift, ASPECT scores and NWU. In particular, use of CSF 
ratios on admission imaging reduces confounding anatomical 
variability and need for serial imaging (13).

While there are clear strengths in this method, including its 
accessibility, correlation with current measures of oedema and 
prediction of clinical outcome, there are cohorts for which CSF 
volumetric imaging has limited value. These include patients with 
old infarcts and encephalomalacia resulting in baseline 
asymmetrical CSF volume; images with significant artifact; or in 
patients with baseline midline shift, for which shifted ventricles may 
be misregistered (13).

Tissue-based properties

Net water uptake

Pathological cellular uptake of extracellular fluid into the ischemic 
tissue results in lesion hypodensity on CT imaging (14). Net water 
uptake is a Hounsfield-unit (HU) based metric, which leverages the 
lower attenuation coefficient of the oedematous infarct tissue and is 
calculated by comparing HU of the infarct area to that of the 
contralateral parenchyma [(1-ROI HU/contralateral ROI HU) × 100] 
(4, 38). Infarct area is typically outlined using CT perfusion imaging, 
although an alternative using affected Alberta Stroke Program Early 
CT Score (ASPECTS) region has been proposed by Minnerup et al. 
(4), Cheng et al. (39), and Broocks et al. (40).

Early oedema on baseline imaging
Quantification of cerebral oedema may assist in guiding acute 

reperfusion management of patients with unknown time of onset, 
who represent approximately 25% of all ischemic strokes (40). Due to 
the progressive nature of cerebral oedema following large vessel 
occlusion, multiple groups have used CT perfusion or ASPECTS-
derived NWU calculation to generate cut off values that would enable 
identification of patients presenting within 4.5 h to guide active 
treatment (4, 39). This concept of using pre-treatment hypodensity as 
a surrogate of tissue oedema was first proposed in a multicenter study 
of 147 patients by Minnerup et al. (4) identified a NWU cut off value 
of 11.5% with 100% specificity and 98.6% sensitivity. Broocks et al. 
(40) then compared this cut off value of 11.5% to diffusion weighted 
imaging/fluid attenuation inversion recovery (DWI/FLAIR) mismatch 
and showed that both methods are comparable. Although limited by 
sample size of 50 patients, they demonstrated that quantitative NWU 
may be a reliable indicator for lesion age in the first few hours of 
symptom onset. However, they note that beyond this time there is 
patient variability, supporting findings of Nawabi et  al. (15) who 
proposed the idea of a “tissue clock.”

Nawabi et al. (15) proposed the idea that early elevated levels of 
NWU, that is cerebral oedema, is predictive of poor outcomes despite 
presenting within the traditionally accepted “time clock.” This 
discrepancy between “tissue clock” and “time clock” is supported by 
several studies who have used NWU as a quantitative tool to predict 
clinical outcome. Through analysis of admission imaging, several 
groups have demonstrated that NWU values greater than 10% or 
12.7% is suggestive of poor functional outcomes following MCA 
infarcts (14, 15).

Post-stroke malignant oedema assessment and 
prediction

Unsurprisingly, NWU on admission CT has also been shown to 
be associated with the development of post-stroke malignant oedema. 
In their analysis, Broocks et  al. (14) found that the probability of 
malignant infarct was significantly associated with early infarct 
volume and NWU, with 1% increase in NWU being associated with 
1.27 increased risk of malignant infarction. In a separate study, this 
group also found that NWU also predicted malignant oedema in the 
posterior circulation (41). The strength of NWU as a biomarker of 
cerebral oedema on pretreatment imaging is likewise shown when 
using ASPECTS-derived NWU, with ASPECTS-NWU being an 
independent predictor of neurologic outcome at 90 days, even in 
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subgroup analysis of patients with ASPECTS less than 5 (42–44). This 
presents the notion that patients with low ASPECTS, traditionally 
thought to have a poor outcome, may still benefit from endovascular 
thrombectomy if NWU remains relatively normal or is only mildly 
deranged (45, 46).

Post-treatment follow-up imaging
NWU has been increasingly applied to post-treatment follow-up 

imaging to study the treatment effect of endovascular thrombectomy 
on infarct evolution and cerebral oedema. Through analysis of early 
follow up non-contrast CT imaging post endovascular thrombectomy 
for anterior circulation infarcts, Broocks et al. (47, 48) found that 
NWU was double in persistent large vessel occlusion (16%) compared 
to patients with vessel recanalization (8%), and thus concluded that 
successful recanalization was associated with reduced progression of 
ischemic oedema. In another study, 2% of 184 patients demonstrated 
reversal of vasogenic oedema 24–48 h post-thrombectomy (16). 
Konduri et  al. (49) extended analysis of oedema progression in 
ischemic lesions following intervention into the subacute time period. 
They demonstrated that cerebral oedema and infarct volume 
continued to increase, which was believed to be secondary to ischemic 
and reperfusion injury to the blood brain barrier. At 1 week, patients 
who had greater increase in NWU post-thrombectomy were 
associated with futile recanalization. Recently, in a multicenter 
observational study of patients from a prospective registry, Broocks 
et  al. (50) proposed the use of NWU to stratify risk of futile 
recanalization for patients with low ASPECTS. These findings suggest 
that NWU may improve prognostication post-thrombectomy 
compared to using infarct volume or ASPECTS as the sole prognostic 
marker (51, 52).

However, in a pooled patient analysis (n = 144), Ng et al. (10), 
demonstrated that NWU on non-contrast CT post-thrombectomy 
poorly correlated to midline shift and relative hemispheric volume. 
These volumetric measures of cerebral oedema were demonstrated 
to be superior to NWU as prognostic markers. Importantly, they 
found that NWU did not correlate with functional outcome at 
90 days in the presence of hemorrhagic transformation or 
thrombectomy. These findings may be partially due to angiographic 
iodine retention, which may confound NWU measures which is 
dependent on Hounsfield-unit of the infarct tissue (32). Iodine 
extravasation may account for 27–84 percent of hyperdense lesions 
on CT post-thrombectomy at 24-h (53, 54). To investigate the 
impact of iodine retention, Steffen et  al. (55) conducted a pilot 
retrospective single center case series of 10 patients following MCA 
infarcts using CT and dual energy CT (DECT) imaging. While no 
statistically significant difference were demonstrated in this small 
and likely underpowered cohort, notably 2 of 10 patients 
demonstrating more than 20% differences in NWU values between 
conventional CT and DECT, implying that the effect of iodine may 
affect NWU measures in a substantial proportion of patients. A 
subsequent larger multicenter study (n = 125) aimed to provide a 
more definitive analysis of the confounding effects of post-
thrombectomy iodine on follow-up CT demonstrated that contrast-
adjusted NWU values were significantly higher than non-adjusted 
values, and correlated with measures of cerebral oedema, such as 
midline shift and rHV (32). They demonstrated that even without 
visible hyperdense lesions on follow up imaging at 24 h, angiographic 
iodine contrast is retained in brain parenchyma.

In addition to these limitations, NWU measurement is technically 
challenging and may be confounded by hemorrhagic transformation 
which is highly common on post-treatment CT, potentially limiting 
the utility of NWU as a useful metric in follow-up scans and as a 
surrogate radiological outcome. Identification of infarcted tissue is 
required for precise density measurement, which may be subtle in the 
very early stages of stroke changes on non-contrast CT imaging. A 
majority of earlier studies on NWU were dependent on CT perfusion 
to delineate the ischemic lesion at baseline, which negates the primary 
advantage of NWU to assess for tissue injury at baseline without the 
need for contrast-enhanced imaging. Further investigation into these 
factors and consideration of contrast retention when evaluating NWU 
on post-treatment imaging needs to occur prior to application in the 
clinical setting.

T2 relaxometry

In addition to ischemic stroke, quantitative hyperintensity on 
T2-weighted imaging due to intrinsic properties of water has been 
used to assess other neurological diseases such as peritumoral oedema, 
epilepsy and multiple sclerosis (56, 57). T2-weighted or FLAIR 
imaging has been used to estimate lesion age, with DWI/FLAIR 
mismatch being suggestive of onset within 4.5 h (58). With synthetic 
MRI imaging, quantification of lesion voxel change is possible with 
the added benefit of reduced T1 effect (59). In animal models, T2 
relaxation time has been shown to linearly increase in ischemic tissue 
in the acute setting (60). This has provided the basis of quantitative 
evaluation of T2-weighted imaging.

T2 relaxation time has been demonstrated to be  affected by 
cerebral blood flow and collateral status (17, 18). Wang et al. (18) 
demonstrated that in patients with poor cerebral blood flow, T2 
relaxometry correlated with stroke onset time, with no significant 
correlation in the group with good cerebral blood flow. However, as 
T2 relaxometry is highly specific to tissue composition, there are 
limitations to this technique due to variability with anatomical 
location (59). For this reason, alternative methods to measure 
T2-weighted signal have been sought to minimize confounding 
variables, such as the spherical reference method and the mirror 
method (60–62). Although it is known that DWI lesions may grow 
with time, few studies have assessed serial T2 relaxometry imaging 
and its relationship with outcome.

Blood brain barrier permeability

In the setting of ischemic stroke, tissue blood brain barrier 
permeability is elevated in hypoperfused areas secondary to cellular 
damage, which consequently leads to inappropriate influx of blood 
and extracellular fluid into ischemic tissue and cerebral oedema (5). 
Although collateral arterial supply may reduce blood brain barrier 
permeability, loss of integrity has been demonstrated to occur in the 
first few hours of ischemia, as fast as 20 min in rodent animal models 
(19–21, 63–66).

On CT imaging, blood brain barrier permeability is measured 
using CT perfusion studies via analysis of movement of contrast 
from the intravascular to extravascular compartment within the 
hypoperfused area. It involves using the Patlek method to calculate 
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microvascular permeability metrics, transendothelial transfer 
constant (kPS) or permeability surface area product (PS, ml/
min/100 g), based on time-density curves for each pixel (19, 21). 
The use of relative permeability-surface area product (rPS = PS/
CBF × 100) is of interest due to the correction for the potential 
influence of cerebral blood flow (19, 20, 67). In normal 
parenchyma, the permeability product is null for large molecules, 
such as iodine contrast.

Several studies have measured blood brain barrier permeability 
on MRI imaging using gadolinium-diethylene triamine pentaacetic 
acid (Gd-DTPA), which does not cross the blood brain barrier (66, 
68). Extravasation of contrast into CSF reduces the T1 relaxation of 
CSF, resulting in hyperintensity of the CSF space on T1-or 
T2*-weighted imaging (66, 68). As such, T1-weighted dynamic 
contrast-enhanced, FLAIR and T2*-weighted dynamic susceptibility 
contrast sequences have been used for perfusion-weighted imaging 
(68–70). As in CT perfusion imaging, change of pixel intensity can 
be measured following contrast injection and used as a measurement 
of permeability (22, 59, 61, 66, 71).

Blood brain barrier permeability has been correlated with 
hemorrhagic transformation (66, 72–75). In small retrospective 
studies, Lin et al. (72) and Hom et al. (73) found that in patients 
with high PS within the infarct area, who then received tissue 
plasminogen activator had an increased risk of hemorrhagic 
transformation. In their receiver operating characteristic curve 
analysis of 32 patients, Hom et al. (73) demonstrated that blood 
brain barrier permeability measurements above the threshold of 
7 mL/100 g/min predicted symptomatic hemorrhagic 
transformation and malignant oedema with 100% sensitivity and 
79% specificity. They postulated that tissue plasminogen activator 
upregulates matrix metalloproteinases, which damages blood brain 
barrier integrity. Similarly, early blood brain barrier disruption 
measured with MRI imaging has been associated with hemorrhagic 
transformation and poor outcomes (66, 75). In a recent study 
analyzing MRI permeability and circulating inflammatory markers, 
Bani-Sadr et al. (70) found that in patients with onset of symptoms 
within 6 h of imaging (n = 72), blood brain barrier permeability 
was independently associated with increased matrix 
metalloproteinase-9 levels and larger ischemic core.

Interestingly, some studies suggest that blood brain barrier 
integrity may recover following reperfusion, thereby limiting cerebral 
oedema (68). Using dynamic susceptibility contrast MRI perfusion, 
reversible blood brain barrier permeability was found to correlate with 
increased reperfusion (22, 68). This supports the bi-phasic 
permeability hypothesis, in which there is an early reversible phase 
and a later irreversible phase (76).

There are several challenges in using blood brain barrier 
permeability as a measure of cerebral oedema. Foremost is the lack 
of agreement on an approach for measurement. There is debate as 
to whether first-pass contrast or delayed acquisition CT perfusion 
data is more accurate, with suggestion of first-pass data leading to 
overestimation of permeability (73, 77). On the other hand, 
delayed perfusion CT acquisitions involves greater radiation dose 
and risk of motion artifact. Moreover, critical assumption 
pertaining to this model is that of unidirectional flow across the 
blood brain barrier (19, 20). These limitations are echoed in MRI 
measurements with non-linear behavior of contrast and lack of fast 
imaging techniques.

Other surrogate markers

Venous outflow

With progressive cytotoxic oedema and water uptake in infarcted 
tissue, interstitial pressure and increased resistance of downstream or 
collateral arterioles may result. Resultant increase in venous pressure 
promotes fluid leakage into the infarcted tissue (6). Several studies 
have analyzed venous flow of deep and superficial veins to assess 
transition of blood through the ischemic territory. Unlike CT 
angiography of collateral arterial vessels, venous outflow imaging 
reflects both the microvascular inflow and outflow circuits (23, 78). 
Scoring systems have been developed to quantify venous drainage 
abnormality on CT angiography. The “Prognostic evaluation based on 
cortical vein score difference in stroke” (PRECISE) score compares the 
patency of both superficial and deep veins (the superficial cerebral 
vein, vein of Labbé, vein of Trolard, basal vein of Rosenthal, 
thalamostriate vein and internal cerebral veins) to the contralateral 
hemisphere (24, 79). In contrast, the cortical vein opacification score 
(COVES) quantifies opacification of the vein of Labbe, sphenoparietal 
sinus and superficial middle cerebral vein, with a score of zero being 
indicative of no filling (78).

Both scoring systems correlated with to NWU and may be used as 
a predictive factor for functional outcome (23, 24, 78–80). Patency of 
venous outflow vessels associated with the infarct region, deemed as 
favorable venous profiles, are associated with good function outcome, 
independent of other clinical factors including arterial collaterals, 
ASPECTS and NIHSS (23, 81, 82). In their multicenter retrospective 
study involving 728 patients, van Horn et al. (23) found that favorable 
venous profiles (COVES) on imaging prior to endovascular 
thrombectomy, NIHSS and time from onset to admission imaging were 
independently associated with reduced oedema progression rate. 
Conversely, unfavorable venous profiles have been linked with elevated 
NWU and may impact the risk benefit discussion of EVT, with studies 
suggesting that patients without venous opacification (COVES 0) did 
not benefit from treatment (78, 82).

However, there are limitations of using venous outflow profile 
scoring as an indirect measure of cerebral oedema. Predominantly, 
this lies in the anatomical variation of cortical venous structures 
between individuals. However, differences in imaging protocols also 
contribute to limited reliability of results, particularly in single phase 
CT angiography, whereby early timing of intravenous contrast bolus 
may lead to underestimation of venous opacification (24, 80). Several 
of the aforementioned studies excluded patients with inadequate 
timing, which may further contribute to bias of results (23, 78, 81, 82).

Conclusion

Cerebral oedema following acute ischemic infarction is the 
driving mechanism of malignant infarction. Aiming to quantify 
cerebral oedema within the early stages of ischemic infarction, many 
novel imaging biomarkers are fundamentally based on 
pathophysiology of oedema at the cellular level. It is therefore 
unsurprising that correlations have been made between these imaging 
metrics to risk of malignant infarction and functional outcomes. 
However, there are many challenges that must be  met prior to 
application to clinical practice, including the lack of consensus for 
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measurement and anatomical variability. Despite this, these 
biomarkers have the potential to challenge current paradigms and 
ultimately evolve clinical management of ischemic stroke.
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