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Objective: Chronic subdural hematoma (CSDH) is a neurological condition with 
high recurrence rates, primarily observed in the elderly population. Although 
several risk factors have been identified, predicting CSDH recurrence remains a 
challenge. Given the potential of machine learning (ML) to extract meaningful 
insights from complex data sets, our study aims to develop and validate ML 
models capable of accurately predicting postoperative CSDH recurrence.

Methods: Data from 447 CSDH patients treated with consecutive burr-hole 
irrigations at Wenzhou Medical University’s First Affiliated Hospital (December 
2014-April 2019) were studied. 312 patients formed the development cohort, 
while 135 comprised the test cohort. The Least Absolute Shrinkage and Selection 
Operator (LASSO) method was employed to select crucial features associated 
with recurrence. Eight machine learning algorithms were used to construct 
prediction models for hematoma recurrence, using demographic, laboratory, 
and radiological features. The Border-line Synthetic Minority Over-sampling 
Technique (SMOTE) was applied to address data imbalance, and Shapley Additive 
Explanation (SHAP) analysis was utilized to improve model visualization and 
interpretability. Model performance was assessed using metrics such as AUROC, 
sensitivity, specificity, F1 score, calibration plots, and decision curve analysis (DCA).

Results: Our optimized ML models exhibited prediction accuracies ranging from 
61.0% to 86.2% for hematoma recurrence in the validation set. Notably, the 
Random Forest (RF) model surpassed other algorithms, achieving an accuracy of 
86.2%. SHAP analysis confirmed these results, highlighting key clinical predictors 
for CSDH recurrence risk, including age, alanine aminotransferase level, fibrinogen 
level, thrombin time, and maximum hematoma diameter. The RF model yielded 
an accuracy of 92.6% with an AUC value of 0.834 in the test dataset.

Conclusion: Our findings underscore the efficacy of machine learning 
algorithms, notably the integration of the RF model with SMOTE, in forecasting 
the recurrence of postoperative chronic subdural hematoma. Leveraging the RF 
model, we devised an online calculator that may serve as a pivotal instrument in 
tailoring therapeutic strategies and implementing timely preventive interventions 
for high-risk patients.
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Introduction

Chronic subdural hematoma (CSDH) is a prevalent neurological 
disorder. Manifesting approximately 3 weeks post-injury, its symptoms 
encompass focal neurological deficits, cognitive alterations, and signs 
of elevated intracranial pressure, primarily headaches and reduced 
consciousness (1). In severe cases, CSDH can be fatal (2). The elderly 
population, particularly those above 65 years of age, faces heightened 
risk due to widespread anticoagulation treatments, natural cerebral 
atrophy, and increased susceptibility to trauma (3, 4). While previously 
believed to be  caused by slow venous bleeding from the brain’s 
bridging veins following trauma, recent research indicates that 
CSDH’s onset and recurrence are multifactorial, involving disruption 
to the cells lining the dura, inflammation, angiogenesis, coagulation 
disturbances, microbleeds, and exudation (5–7).

Burr-hole irrigation has emerged as an effective treatment for 
symptomatic CSDH. Yet, despite post-evacuation closed-system 
drainage, recurrence remains a significant clinical challenge, with rates 
hovering around 9–33% (7). This recurrence presents considerable 
clinical conundrums, especially for older patients at elevated risk of 
neurological and surgical complications (8). Several factors, such as 
age, previous bleeding episodes, cerebral atrophy, alcohol 
consumption, the presence of subdural air, radiological signs, and 
surgical techniques, have been identified as potential contributors to 
recurrence (9–11). Nevertheless, existing predictive measures have 
shown inconsistent results and have not seen widespread clinical 
adoption (12). In recent years, several models predicting the 
recurrence of CSDH after surgery have been published. To evaluate 
the performance of these existing models in predicting postoperative 
recurrence in CSDH patients, Holl et al. (13) utilized a retrospective 
database comprising data from 2,384 patients across three regions in 
the Netherlands. The study revealed that current predictive models 
perform poorly on the author’s dataset, failing to effectively forecast 
the recurrence of hematomas following CSDH treatment. This 
research highlights the challenges of predicting hematoma recurrence 
after CSDH treatment and underscores the necessity of adopting 
appropriate modeling strategies to develop high-quality models.

Machine learning (ML) has gained increasing influence in medical 
research, offering the ability to uncover hidden patterns and 
correlations from vast datasets (14). Its capability for identifying 
complex data associations, often overlooked by traditional statistical 
methods, provides invaluable insights for both clinicians and 
researchers (15). Machine learning models hold significant potential 
in neurosurgical predictive analytics and have been extensively applied 
to forecast acute hematoma expansion in cerebral hemorrhage, predict 
meningioma grade, and prognosticate outcomes for glioma patients, 
among other uses (16–18). These models empower physicians and 
patients to make more informed decisions and offer personalized 
medical services (19). SMOTE is an approach designed to tackle the 
issue of data imbalance, particularly within the fields of machine 
learning and statistics. It operates by inserting new synthetic samples 
between minority class instances, thus oversampling the dataset to 
increase the number of minority class samples. While this method 
effectively mitigates data imbalance, it may lack precision when 
dealing with samples near the decision boundary. The core concept of 
border-line SMOTE is to concentrate on those minority class samples 
that are challenging to classify, specifically those located near the 
boundary between majority and minority classes. These samples are 

deemed crucial for constructing the decision boundary. Therefore, 
generating more synthetic samples around these boundary-line 
samples can aid classifiers in better learning the characteristics of these 
complex regions, thereby enhancing the classification performance for 
minority class samples (20). Considering this, our study aims to 
develop and assess ML models, supplemented with SMOTE, for the 
accurate prediction of postoperative CSDH recurrence.

Methods

Study population

We conducted a retrospective analysis of medical records from 
patients diagnosed with CSDH who underwent surgical treatment at 
the Department of Neurosurgery, First Affiliated Hospital of Wenzhou 
Medical University, from December 2014 to January 2019. Diagnoses 
of CSDH were confirmed via head MRI and CT scans. This study 
received approval from the Committee for Ethics in Clinical Research, 
and due to its retrospective design, there was no need for informed 
patient consent. Out of 632 adults diagnosed with CSDH, 447 with 
unilateral CSDH who underwent burr-hole irrigation were included 
in the final analysis. We excluded patients with: (1) bilateral chronic 
subdural hematoma, (2) severe renal or hematological conditions, (3) 
significant surgical complications or in-hospital fatalities, (4) those 
who underwent craniotomy or bone flap replacements, and (5) cases 
with incomplete records or lost during follow-up (Figure 1).

Surgical procedures and management

Under general anesthesia, all patients underwent the standard 
burr-hole irrigation (BHI) procedure. A single burr hole was 
strategically placed at the hematoma’s thickest region, followed by 
saline irrigation. Subsequently, a silicone catheter equipped with a 
closed subdural drainage system was positioned within the hematoma 
cavity. Typically, the catheter was extracted between 24 to 72 h 
postoperatively, contingent upon drainage volume. Postoperative 
administration of atorvastatin, sustained for a minimum of 1 month, 
facilitated the absorption of residual hematoma and minimized the 
risk of recurrence (this approach is grounded on the findings of a 
randomized clinical trial conducted by Jiang et  al. (21), which 
demonstrated the safety and efficacy of atorvastatin in promoting 
hematoma absorption in Chinese patients with CSDH).

Model input features selected

We collected data from patient records, encompassing 32 unique 
clinical, radiological, and laboratory test characteristics. These 
included demographic features (age, gender) and lifestyle behaviors 
such as smoking and alcohol consumption. Pertinent comorbidities 
captured were hypertension, diabetes, and heart disease, along with 
any history of cranial trauma. Blood pressure measurements, 
including systolic (SBP) and diastolic (DBP), were documented. Initial 
CT or MRI scans, reviewed independently by two authors (LH and 
XL), revealed the hematoma’s location and maximum diameter. 
Admission laboratory metrics comprised white blood cell count 
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(WBC), neutrophil percentage and count (NEUT), lymphocyte count 
(LYM), red blood cell count (RBC), hemoglobin (HB), platelet count 
(PLT), prothrombin time (PT), international normalized ratio (INR), 
fibrinogen (FIB), activated partial thromboplastin time (APTT), 
thrombin time (TT), total bilirubin (TB), direct bilirubin (DB), 
indirect bilirubin (IB), albumin (ALB), alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), blood glucose (GLU), urea 
nitrogen (UN), and creatinine (CR). Using the least absolute shrinkage 
and selection operator (LASSO) regression technique, we identified 
10 features significantly correlated with CSDH recurrence (Figure 2).

Assessment of CSDH recurrence

Patients underwent a head CT or MRI scan within the initial 48 h 
following surgery, and again on days 6 or 7 post-operation. To ensure 
comprehensive evaluation, a subsequent CT scan or MRI was 
performed at the outpatient clinic 3 months post-surgery. The 
recurrence of CSDH was determined using specific radiological 
criteria. Regardless of any subsequent surgical interventions, any 
observed increase in subdural fluid volume and concurrent brain 
compression in either hemisphere, within 3 months post-surgery 
relative to the initial postoperative CT, was deemed a recurrence. This 
determination was collaboratively made by two seasoned 
neurosurgeons, uninformed of the study’s particulars.

Balancing data for enhanced predictive 
modeling

Data from 312 out of 447 CSDH patients were utilized for the 
construction of the model, while the remaining 135 patients’ data were 
employed to assess the model’s predictive performance. In the training 
subset (312 patients), CSDH recurrence occurred in 15.1% (47 
patients), whereas the remaining 84.9% (265 patients) experienced no 
recurrence. This significant data imbalance could compromise the 
performance of the predictive model. Balanced datasets are known to 
improve predictive accuracy. To address this issue, we employed the 
borderline-SMOTE, an advanced oversampling technique commonly 
used in machine learning. This approach improves upon the 
conventional SMOTE by targeting minority class samples located at 
the boundary between the majority and minority classes—areas where 
misclassification is prone to occur. By generating new samples around 
these crucial instances, Borderline-SMOTE enhances the classifier’s 
discriminatory ability, particularly when class overlap is present. The 
application of borderline-SMOTE increased the minority class 
representation in our training dataset from 15.1 to 50%. This resulted 
in equal representation of CSDH patient groups, each with 265 
instances of recurrence and non-recurrence (shown in Figure 3). This 
expanded dataset of 530 data points was subsequently divided into 
development (70%) and validation (30%) subsets for machine learning 
model construction.

FIGURE 1

Flowchart of the study procedure. CSDH, chronic subdural hematoma; SMOTE: synthetic minority over-sampling technique.
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Statistical analysis

Statistical analyses were performed using R statistical software 
(version 3.6.3, https://www.r-project.org/) and Python software (version 
3.7, https://www.python.org/). The Shapiro–Wilk test was employed to 
assess the distribution of continuous variables. Continuous variables with 
a Gaussian distribution were expressed as mean ± SD and subjected to an 
independent-sample t-test. Non-normally distributed variables were 
represented as median with interquartile range (IQR) and analyzed using 
the Mann–Whitney U test. Categorical variables were presented as 
frequencies and percentages and analyzed with either the chi-square test 
or Fisher’s exact test, as appropriate.

For optimal predictive performance, we  constructed eight 
models: extreme gradient boosting (XGBoost), logistic regression 
(LR), light gradient boosting machine (LGBM), random forest (RF), 
adaptive boosting (AdaBoost), multi-layer perceptron (MLP), 
support vector machine (SVM), and Gaussian Naive Bayes (GNB). 

These models were built upon features selected through LASSO 
regression. Validation sets were used to evaluate the performance 
of each classifier, measuring the area under the receiver operating 
characteristic curve (AUROC). Sensitivity, specificity, F1 score, and 
overall accuracy were also assessed for each algorithm. The model 
with the highest AUC was deemed superior. Shapley additive 
explanation (SHAP) analysis further clarified the importance of 
each feature, enhancing the visualization and interpretability of 
the model.

Results

Demographic and clinical features

We incorporated a cohort of 447 individuals into our study. 
Within 3 months post-surgery, 70 patients, representing 15.6% of 

FIGURE 2

Key feature selection using the LASSO regression.

FIGURE 3

Comparison of case counts: Original vs SMOTE Data.
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the sample, experienced a recurrence of chronic subdural 
hematoma (CSDH). Intriguingly, the mean age of patients in the 
recurrence group was 73.51 ± 10.74 years, significantly higher 
than that of the non-recurrence group at 69.60 ± 12.20 years. 
Moreover, at admission, the recurrence group had a median 
platelet count of 194 [161, 232], which was notably lower than the 
213 [170, 252] observed in the non-recurrence group. Further 
analysis indicated an increased susceptibility to hematoma 
recurrence in patients with lower fibrinogen concentrations or 
elevated urea nitrogen levels. Comprehensive clinical data is 
available in Table 1. For robust analysis, the CSDH patient cohort 
was divided into training and validation subsets, adhering to a 
7:3 ratio. Importantly, there were no significant differences in 
demographic or clinical characteristics between the training and 
test groups (Table 2).

Key variables

Figures 3A,B presents the 10 features with nonzero coefficients 
determined via LASSO regression analysis, utilizing 10-fold cross-
validation to ascertain the optimal lambda value. The following 10 
factors, significantly associated with CSDH recurrence, comprise urea 
nitrogen (UN), aspartate aminotransferase (AST), direct bilirubin 
(DB), thrombin time (TT), fibrinogen (FIB), systolic blood pressure 
(SBP), hematoma’s widest diameter (HWD), diabetes, age, and a 
history of heart diseases.

Model performance

After identifying the 10 key variables, we  utilized machine 
learning algorithms to predict CSDH recurrence. The predictive 
accuracy of these models was evaluated using essential metrics, 
including AUC, precision, recall, specificity, and F1 score. The results 
are provided in Table 3. The random forest (RF) model outperformed 
the others in the validation set, as evidenced by an AUC value of 0.928 
from the ROC curve. Figure 4 compares the ROC curves of the eight 
models and displays their calibration plots. It also shows the decision 
curve analysis of the random forest model, indicating its net clinical 
benefit compared to a universal treatment strategy.

Relative importance of variables in RF 
model

SHAP analysis enabled an unbiased interpretation of the features. 
In the random forest (RF) model, the clinically significant variables 
were ranked as follows: age, aspartate aminotransferase (AST), 
fibrinogen (FIB), thrombin time (TT), hematoma’s widest diameter 
(HWD), urea nitrogen (UN), direct bilirubin (DB), systolic blood 
pressure (SBP), and the presence of heart diseases and diabetes in 
medical history. The SHAP value of a feature directly corresponds to 
the likelihood of CSDH recurrence. High feature values are 
represented in red, average values in purple, and low values in blue 
(see Figures  5A,B). Figure  5C displays the forecasted recurrence 
probability for a high-risk CSDH patient, while Figure 5D shows the 
forecast for a low-risk CSDH patient.

Performance evaluation of RF model using 
the test set

The RF model, tested on a set of 135 samples, demonstrated an 
impressive accuracy of 92.6%, precision of 84.2%, recall of 69.6%, an 
F1 score of 76.2%, and an AUC of 83.4%. Figure 6 depicts a bar chart 
providing a comprehensive visual overview of the model’s predictive 
capabilities, including the ROC curve, confusion matrix, precision-
recall curve, and a classification report.

Web-based calculator

Utilizing the RF model, we designed an online calculator available 
at1 (Figure 7).

Discussion

Postoperative recurrence of chronic subdural hematoma (CSDH) 
is a common challenge in neurology, particularly after interventions 
like burr-hole irrigation. The high recurrence rate complicates clinical 
management due to associated neurological impairments and 
potential increased mortality risks (22, 23). However, there are few 
precise models for predicting post-surgical CSDH recurrence. To 
address this gap, we  used machine learning to predict CSDH 
recurrence postoperatively, demonstrating that the random forest 
(RF) algorithm was particularly accurate.

In this study, we utilized data from 312 patients to construct our 
model, while the remaining 135 patients’ data were employed to assess 
the model’s predictive performance. Despite the relatively limited 
sample size, we ensured the accuracy and reliability of our machine 
learning (ML) model through careful selection of the model, 
optimization of evaluation methods, and stringent overfitting control 
measures. Specifically, we chose the random forest (RF) model for its 
efficiency in handling the complexity of the dataset and its ability to 
minimize the risk of overfitting. The RF model is renowned for its 
robustness and its capacity to provide accurate predictions even in 
smaller datasets, thanks to its ensemble learning approach, which 
enhances prediction accuracy by combining multiple decision trees to 
effectively control overfitting. By implementing rigorous cross-
validation techniques and appropriate overfitting prevention 
measures, we further ensured the optimization of model performance. 
These meticulously designed steps enabled the RF model to achieve 
an accuracy rate of 92.6% and an area under the curve (AUC) value of 
0.834  in the test dataset, thereby highlighting the model’s high 
reliability and its capability to precisely predict recurrence risk.

Given the prediction of chronic subdural hematoma (CSDH) 
recurrence involves interpreting patients’ demographic, laboratory, 
and radiological characteristics, the complexity of these datasets 
necessitates the use of a variety of algorithms to capture different 
information and relationships within the data. Each model has its 
unique method of processing data and learning patterns, thereby, a 

1 https://www.xsmartanalysis.com/model/list/predict/model/html?mid=66

94&symbol=91xd69jB18oL581991bw
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multi-model strategy enhances the opportunity to capture all potential 
correlations within the data. This study adopted a comprehensive 
strategy to construct eight commonly used machine learning 
predictive models, aimed at assessing and utilizing the complex 
dataset from multiple perspectives to identify the most suitable model 
for predicting postoperative recurrence of CSDH. Through this 
approach, our research not only demonstrates the potential of 

machine learning in medical prediction but also provides a practical 
tool to help improve treatment outcomes for CSDH patients.

To enhance our machine learning model’s accuracy in identifying 
patients at high risk of CSDH recurrence, we utilized the synthetic 
minority over-sampling technique (SMOTE) to counter imbalanced 
data. In many clinical datasets, an unequal distribution of instances 
between classes can impair machine learning model performance. 

TABLE 1 Comparison variables between non-recurrence group and recurrence group.

Characteristic Total (n =  447) Non-recurrence 
(n =  377)

Recurrence (n =  70) p-value

Gender, n% 0.586

Female 67 (14.98) 58 (15.38) 9 (12.85)

Male 38 (85.01) 319 (84.61) 61 (87.14)

Age, median (Q1, Q3) 70.21 ± 12.0 69.60 ± 12.20 73.51 ± 10.74 0.008

Hypertension, n% 173 (38.70) 149 (39.52) 24 (34.28) 0.409

Diabetes, n% 53 (11.85) 45 (11.93) 8 (11.42) 0.904

Smoking, n% 173 (38.70) 151 (40.05) 22 (31.42) 0.174

Drinking, n% 163 (36.46) 136 (36.07) 27 (38.571) 0.690

SBP, mean (SD) 140.08 ± 19.96 140.59 ± 19.87 137.34 ± 20.18 0.212

DBP, mean (SD) 79.45 ± 11.35 79.89 ± 11.52 77.11 ± 10.05 0.060

Trauma history, n% 297 (66.443) 255 (67.639) 42 (60) 0.214

Heart disease, n% 30 (6.711) 28 (7.427) 2 (2.857) 0.161

Hematoma location, n% 0.732

Left 251 (56.15) 213 (56.49) 38 (54.28)

Right 196 (43.84) 164 (43.50) 32 (45.71)

HWD, median (Q1, Q3) 22 [18, 26] 22 [18, 26] 22 [18, 25] 0.931

WBC, median (Q1, Q3) 6.80 [5.73, 8.21] 6.87 [5.73, 8.43] 6.50 [5.71, 7.55] 0.086

NEUT median (Q1, Q3) 4.50 [3.59, 5.93] 4.56 [3.58, 6.06] 4.30 [3.70, 5.10] 0.177

Lymphocyte, median (Q1, Q3) 1.49 [1.14, 1.82] 1.50 [1.14, 1.83] 1.46 [1.10, 1.79] 0.852

NEUT percentage, mean (SD) 0.675 ± 0.107 0.675 ± 0.110 0.672 ± 0.091 0.808

RBC, median (Q1, Q3) 4.28 [3.92, 4.64] 4.28 [3.91, 4.67] 4.23 [3.99, 4.50] 0.528

HB, median (Q1, Q3) 133 [121, 143] 133 [121, 144] 132 [122, 139] 0.290

PLT, median (Q1, Q3) 207 [169, 249] 213 [170, 252] 194 [161, 232] 0.034

PT, median (Q1, Q3) 13.4 [12.8, 13.9] 13.4 [12.9, 13.9] 13.3 [12.8, 14.0] 0.799

INR, median (Q1, Q3) 1.03 [0.97, 1.08] 1.030 [0.98, 1.08] 1.02 [0.97, 1.09] 0.775

Fibrinogen, median (Q1, Q3) 3.61 [3.10, 4.24] 3.63 [3.15, 4.27] 3.44 [2.90, 3.98] 0.049

APTT ratio, median (Q1, Q3) 1.00 [0.92, 1.08] 1.00 [0.92, 1.09] 0.99 [0.92, 1.06] 0.419

TT, median (Q1, Q3) 16.0 [15.5, 16.8] 16.0 [15.4, 16.8] 16.1 [15.5, 16.9] 0.379

GLU, median (Q1, Q3) 5.5 [4.7, 6.5] 5.4 [4.7, 6.5] 5.6 [5.0, 6.6] 0.406

UN, median (Q1, Q3) 4.9 [4.0, 6.3] 4.8 [3.9, 6.1] 5.7 [4.3, 6.9] 0.006

CR, median (Q1, Q3) 67 [58, 77] 67 [58, 77] 67 [60, 78] 0.290

ALT, median (Q1, Q3) 16 [11, 23] 16 [11, 23] 16 [11, 22] 0.657

AST, median (Q1, Q3) 21 [17, 26] 21 [17, 26] 20 [18, 25] 0.897

TB, median (Q1, Q3) 10 [8, 14] 10 [8, 14] 12 [9, 15] 0.188

DB, median (Q1, Q3) 4 [3, 6] 4 [3, 5] 5 [3, 6] 0.203

IB, median (Q1, Q3) 6 [5, 9] 6 [4, 9] 6 [5, 9] 0.397

SBP, systolic blood pressure; DBP, diastolic blood pressure; HWD, hematoma widest diameter; WBC, white blood cell; NEUT, neutrophil; RBC, red blood cell; HB, hemoglobin; PLT, platelets; 
PT, prothrombin time; INR, international normalized ratio; APTT, activated partial thromboplastin time; TT, thrombin time; GLU, blood glucose; UN, urea nitrogen; CR, creatinine; ALT, 
alanine aminotransferase; AST, aspartate aminotransferase; TB, total bilirubin; DB, direct bilirubin; IB, indirect bilirubin.
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Often, the model may disproportionately favor the majority class, 
potentially resulting in suboptimal performance for the minority class 
(24). The border-line SMOTE method tackles this by generating 
synthetic samples for the underrepresented class, balancing the dataset 
(25). Our study suggests that machine learning algorithms, specifically 
the RF algorithm, can accurately predict and assist healthcare 
professionals in identifying patients at a high risk of CSDH recurrence.

For feature selection, we employed LASSO regression, suitable for 
datasets with a high feature-to-observation ratio. LASSO penalizes the 
absolute values of coefficients, causing some of the less relevant feature 
coefficients to shrink to zero and effectively removing them from the 
model (26). This allows the model to focus on genuinely significant 
predictive factors, improving both the comprehensibility and accuracy 
of predictions. Given its exceptional performance in our study, 

TABLE 2 Clinical characteristics of patients.

Characteristic Total (n =  447) Training set (n =  312) Test set (n =  135) p-value

Gender, n% 0.425

Female 67 (14.98) 44 (14.10) 23 (17.03)

Male 380 (85.01) 268 (85.89) 112 (82.96)

Age, median (Q1, Q3) 71 [63, 79] 72 [64, 80] 69 [63, 79] 0.076

Hypertension, n% 173 (38.70) 120 (38.46) 53 (39.25) 0.874

Diabetes, n% 53 (11.85) 36 (11.53) 17 (12.59) 0.752

Smoking, n% 173 (38.70) 116 (37.17) 57 (42.22) 0.315

Drinking, n% 163 (36.465) 117 (37.500) 46 (34.074) 0.490

SBP, mean (SD) 140.08 ± 19.96 140.40 ± 19.94 139.34 ± 19.98 0.610

DBP, mean (SD) 79.45 ± 11.35 79.44 ± 11.46 79.48 ± 11.07 0.978

Trauma history, n% 297 (66.44) 208 (66.66) 89 (65.92) 0.879

Heart disease, n% 30 (6.71) 17 (5.44) 13 (9.63) 0.105

Hematoma location, n% 0.804

Left 251 (56.15) 174 (55.76) 77 (57.03)

Right 196 (43.84) 138 (44.23) 58 (42.96)

HWD, median (Q1, Q3) 22 [18, 26] 22 [18, 26] 23 [18, 25] 0.910

WBC, median (Q1, Q3) 6.80 [5.73, 8.21] 7.00 [5.74, 8.42] 6.55 [5.71, 7.69] 0.102

Neutrophil, median (Q1, Q3) 4.50 [3.59, 5.93] 4.73 [3.60, 6.06] 4.30 [3.58, 5.23] 0.059

Lymphocyte, median (Q1, Q3) 1.49 [1.14, 1.82] 1.48 [1.10, 1.83] 1.51 [1.20, 1.80] 0.588

Neutrophil percentage, mean (SD) 0.675 ± 0.107 0.679 ± 0.107 0.664 ± 0.107 0.155

RBC, median (Q1, Q3) 4.28 [3.92, 4.64] 4.28 [3.90, 4.63] 4.28 [3.99, 4.64] 0.687

HB, median (Q1, Q3) 133 [121, 143] 133 [120, 144] 132 [123, 142] 0.804

PLT, median (Q1, Q3) 207 [169, 249] 210 [169, 250] 203 [168, 245] 0.827

PT, median (Q1, Q3) 13.4 [12.8, 13.9] 13.3 [12.8, 13.9] 13.4 [12.9, 13.9] 0.643

INR, median (Q1, Q3) 1.03 [0.97, 1.08] 1.02 [0.98, 1.08] 1.04 [0.97, 1.08] 0.858

Fibrinogen, median (Q1, Q3) 3.61 [3.10, 4.24] 3.59 [3.10, 4.15] 3.63 [3.08, 4.29] 0.864

APTT ratio, median (Q1, Q3) 1 [0.92, 1.08] 1.010 [0.92, 1.08] 0.990 [0.92, 1.09] 0.766

TT, median (Q1, Q3) 16.0 [15.5, 16.8] 16.0 [15.4, 16.7] 16.1 [15.6, 16.9] 0.067

GLU, median (Q1, Q3) 5.5 [4.7, 6.5] 5.4 [4.7, 6.5] 5.5 [4.7, 6.6] 0.861

UN, median (Q1, Q3) 4.9 [4.0, 6.3] 4.9 [4.0, 6.3] 4.8 [4.1, 5.9] 0.345

CR, median (Q1, Q3) 67 [58, 77] 67 [58, 78] 67 [58, 76] 0.854

ALT, median (Q1, Q3) 16 [11, 23] 16 [11, 22] 17 [12, 23] 0.397

AST, median (Q1, Q3) 21 [17, 26] 20 [17, 26] 21 [18, 24] 0.857

Total bilirubin, median (Q1, Q3) 10 [8, 14] 11 [8, 14] 10 [8, 14] 0.713

Direct bilirubin, median (Q1, Q3) 4 [3, 6] 4 [3, 5.8] 4 [3, 6] 0.814

Indirect bilirubin, median (Q1, Q3) 6 [5, 9] 6 [4, 8.6] 6 [5, 9] 0.631

SBP, systolic blood pressure; DBP, diastolic blood pressure; HWD, hematoma widest diameter; WBC, white blood cell; RBC, red blood cell; HB, hemoglobin; PLT, platelets; PT, prothrombin 
time; INR, international normalized ratio; APTT, activated partial thromboplastin time; TT, thrombin time; GLU, blood glucose; UN, urea nitrogen; CR, creatinine; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase.
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we selected the random forest model. During training, random forest 
builds multiple decision trees and generates classification patterns. 
The diverse decision trees, derived from various subsets of data and 

features, enhance the RF model’s ability to prevent overfitting and 
capture complex feature interactions, offering a more detailed insight 
into the factors contributing to CSDH recurrence.

TABLE 3 Performance of models in the validation set.

Model AUC Accuracy Sensitivity Specificity F1 score

XGBoost 0.896 0.824 0.899 0.800 0.892

LR 0.707 0.698 0.731 0.667 0.704

LightGBM 0.746 0.686 0.830 0.606 0.778

RandomForest 0.928 0.862 0.884 0.856 0.873

AdaBoost 0.771 0.723 0.815 0.667 0.748

GNB 0.742 0.698 0.800 0.633 0.734

MLP 0.721 0.692 0.880 0.536 0.731

SVM 0.661 0.610 0.474 0.815 0.526

AUC, area under the receiver operating characteristic; XGBoost, extreme gradient boosting; LR, logistic regression; LightGBM, light gradient boosting machine; RF, random forest; AdaBoost, 
adaptive boosting; GNB, Gaussian NB; MLP, multilayer perceptron; SVM, support vector machine.

FIGURE 4

Performance assessment of the models. (A) Receiver operating characteristic curve (ROC) of eight machine learning models in training set. (B) ROC of 
models in validation set. (C) Calibration plots of models in the validation set. (D) Decision curve analysis (DCA) for RF model in the validation set.
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We incorporated SHAP analysis into our predictive model, 
enhancing its interpretability. Transparency is vital in the medical field 
for understanding the reasoning behind predictions, gaining clinicians’ 
trust, and encouraging practical application (27). SHAP values provide 
this transparency by illuminating the individual contributions of each 
predictive factor. SHAP values elucidate the extent to which each 
feature influences the model’s prediction outcomes. Positive SHAP 
values indicate that the presence or increase of a feature tends to elevate 
the value of the model’s target variable (e.g., the likelihood of CSDH 
recurrence), signifying it as a risk factor. Conversely, negative SHAP 
values suggest that the presence or increase of a feature tends to 
decrease the model’s target variable value, marking it as a protective 
factor. In Figure  5A, we  observed that older age, prolonged 
prothrombin time, thicker maximum hematoma width, elevated urea 
nitrogen (UN) levels, and higher direct bilirubin were identified as risk 
factors. On the other hand, heart disease, diabetes, elevated levels of 
aspartate aminotransferase, higher fibrinogen, and increased systolic 
blood pressure (SBP) were associated with protective factors. However, 
it is important to note that in the univariate analysis between the 
recurrence and non-recurrence groups, only differences in age, 
fibrinogen, and urea nitrogen were statistically significant (Table 1). 
Therefore, for assessing the risk of hematoma recurrence in patients 
with chronic subdural hematoma, we recommend inputting all factors 
into our model for evaluation, rather than relying on any single factor 
to determine the risk of recurrence.

In our RF model’s SHAP analysis, age emerged as the most 
significant predictive factor for CSDH recurrence, consistent with 
prior research indicating higher recurrence rates in older patients (28). 

Several factors may contribute to this pattern. First, brain atrophy 
could expand the subdural space, facilitating hematoma formation. 
Second, older patients are more likely to use anticoagulant 
medications, potentially increasing bleeding tendencies (23). Finally, 
an increased susceptibility to injury may result in more frequent 
subdural hematomas. Apart from age, our model highlighted other 
factors associated with CSDH recurrence, emphasizing the condition’s 
multifactorial nature (29). AST levels may indicate liver or muscle 
damage, suggesting systemic inflammation or coagulation disorders 
that increase hematoma formation and recurrence risk (30). 
Fibrinogen, a key clotting factor, may be linked to clotting disorders 
or hypercoagulability affecting CSDH recurrence (31). Abnormal TT 
could signal coagulation disorders, predisposing individuals to 
recurrent bleeding (32). HWD directly reflects hematoma size and 
influences recurrence. Larger hematomas might require more 
extensive surgical intervention, creating a larger post-drainage 
hematoma cavity and raising recurrence risk (33). Elevated UN levels 
may indicate kidney dysfunction or dehydration, potentially affecting 
blood viscosity, coagulation, and CSDH recurrence (34). High DB 
levels might correlate with liver disease, affecting clotting factors and 
increasing recurrence risk (34). Hypertension is known to increase the 
risk of rebleeding (35). However, in our SHAP analysis, higher systolic 
blood pressure (SBP) exhibited protective tendencies, albeit without 
statistical significance. We hypothesize that in patients with chronic 
subdural hematoma (CSDH), elevated blood pressure might help 
maintain intracranial pressure, preventing the reaccumulation of 
blood. Alternatively, the CSDH patient population with higher SBP 
might exhibit differences in characteristics not thoroughly examined, 

FIGURE 5

SHAP interprets the RF model. (A) SHAP analysis was conducted on the RF model, and the graph depicts each variable as a row with the horizontal axis 
representing its SHAP value, which indicates the impact of the variable on the risk of CSDH recurrence. Each point corresponds to a patient, with red 
denoting a higher value and blue a lower value. (B) The significance of each variable in the RF model is evaluated by computing the average of the 
absolute SHAP values associated with that variable. (C, D) The contributing variables are presented in a horizontal sequence, arranged according to the 
absolute magnitude of their impact. The output value denotes the predicted risk of CSDH recurrence. (C) showcases a patient predicted to have a high 
risk of hematoma recurrence, whereas (D) depicts a patient with a predicted low risk of recurrence.
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which could be related to the risk of recurrence. Nonetheless, it is 
important to underscore that these interpretations require validation 
through further research. The role of blood pressure management in 
CSDH is complex; high SBP may interact with various factors, 
influencing the risk of CSDH recurrence. Furthermore, hypertension 
itself is a significant risk factor for several cardiovascular diseases, and 
maintaining high SBP is not recommended in the long term. 
Therefore, caution should be exercised in interpreting this association, 
to avoid viewing high SBP as a protective factor while neglecting 
proper management of hypertension.

In our study, patients with heart disease and diabetes exhibited a 
tendency towards lower recurrence rates of chronic subdural 
hematoma (CSDH), although the difference was not statistically 
significant. This observation contradicts our prior understanding (23, 
36). We speculate that one possible explanation for this phenomenon 
could be  the long-term medication regimen these patients often 
require, which includes antihypertensives, glycemic control 
medications, and anticoagulant or antiplatelet drugs. It is conceivable 
that the initial CSDH in these patients may be associated with their 
medication use. Post-surgical treatment might then receive more 
personalized and cautious management, potentially reducing the 
likelihood of CSDH recurrence. Alternatively, the observed 
phenomenon in the study could be partially attributed to selection 

bias, suggesting that patients with heart disease and diabetes might 
receive more aggressive management and treatment for reasons not 
fully identified, which could indirectly lower their risk of 
CSDH recurrence.

Prior research has indicated that patients who take oral 
anticoagulants face a heightened risk of recurrent subdural hematoma 
(SDH) bleeding and exhibit larger hematoma volumes. Additionally, 
the use of these medications is associated with the chronic progression 
of SDH and an increased mortality rate (37). On the other hand, a 
study found that antiplatelet drug use is related to a higher risk of 
postoperative rebleeding, whereas anticoagulant use does not show a 
similar correlation (38). There is also evidence suggesting that early 
surgical intervention and the immediate resumption of antiplatelet 
medication after surgery can decrease the risk of thromboembolic 
complications without increasing the risk of chronic subdural 
hematoma recurrence. Moreover, extending the period of medication 
cessation before surgery does not offer significant benefits for patients 
already on antiplatelet therapy. However, patients who concurrently 
use antiplatelet and anticoagulant therapies may be at a higher risk for 
chronic subdural hematoma recurrence (39). Conversely, studies have 
shown that ICU patients who underwent antiplatelet therapy before 
surgery might achieve better outcomes, possibly because platelet 
therapy is linked to better initial conditions (40).

FIGURE 6

Evaluation of RF model using the test set. (A) Confusion Matrix showing the number of true positives, true negatives, false positives, and false negatives. 
(B) ROC Curve depicting the true positive rate against the false positive rate. (C) Precision-Recall Curve showing the relationship between precision 
and recall for different thresholds. (D) Bar chart representing the precision, recall, and F1 score for both positive and negative classes.
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These systemic or localized factors underscore the complexity of 
CSDH recurrence. Interactions between diverse physiological and 
pathological conditions necessitate a comprehensive patient 
management approach. A deeper understanding of these contributing 
factors and their interactions is vital for effective prediction and 
prevention of CSDH recurrence.

However, certain limitations must be  acknowledged. The 
retrospective design of our study and the reliance on data from a 
single medical institution might introduce bias and constrain 
generalizability. These factors could hinder the applicability of our 
results to wider populations or distinct healthcare settings, where 
differences in clinical practices, patient demographics, and 
institutional policies could influence CSDH recurrence patterns. 
Future research should prioritize multicenter prospective studies to 
validate our findings.

Conclusion

Our investigation underscores the capacity of machine 
learning, especially the random forest (RF) model enhanced with 
the border-line synthetic minority over-sampling technique 
(SMOTE), for predicting postoperative chronic subdural 
hematoma (CSDH) recurrence with remarkable accuracy. Age is 
the most potent predictor of recurrence, consistent with previous 
studies. Other significant contributors include elevated levels of 
AST, abnormal TT, larger HWD, UN, DB, SBP, and history of heart 
diseases and diabetes. The combined application of LASSO 

regression, SMOTE, and SHAP analysis enhances the RF model’s 
precision and interpretability, offering valuable insights for 
optimizing therapeutic strategies and implementing preventive 
interventions for high-risk patients. However, our study has 
limitations, including its retrospective design and reliance on data 
from a single medical institution. Multicenter prospective studies 
with diverse populations and different medical contexts are needed 
to validate our findings.

Transparency, rigor, and 
reproducibility summary

Our study utilized data from 447 CSDH patients treated with 
consecutive burr-hole irrigations at the First Affiliated Hospital of 
Wenzhou Medical University between December 2014 and April 2019. 
The Ethics Committee of this institution granted the research ethical 
approval. Due to the study’s retrospective design, informed consent 
from participants was considered unnecessary. Upon a valid inquiry, the 
corresponding author will make available the data used or examined in 
this research. Of the patients, 312 were designated as the development 
cohort and 135 as the test cohort. The models incorporated 
demographic, laboratory, and radiological parameters. The border-line 
synthetic minority over-sampling technique (SMOTE) addressed data 
imbalance, while the LASSO regression method identified salient 
features associated with CSDH recurrence. We employed eight machine 
learning algorithms to predict hematoma recurrence. Model 
construction was executed via the XSmartAnalysis website (https://

FIGURE 7

An online calculator constructed with the RF (Random Forest) model.
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www.xsmartanalysis.com/) using R statistical 3.6.3 and Python 3.7. 
Evaluation metrics included AUROC, sensitivity, specificity, F1 score, 
calibration plots, and decision curve analysis (DCA). The RF model 
displayed exceptional accuracy. Shapley additive explanation (SHAP) 
analysis enhanced model visualization and interpretability, verifying 
results and highlighting critical clinical predictors. The rigorous 
methodology, complemented by diverse machine learning techniques, 
supports the replicability of our models in comparable clinical contexts. 
The RF model, with its exemplary performance, stands as a robust tool 
for predicting postoperative CSDH recurrence, offering valuable 
insights for therapeutic decision-making and preventive strategies for 
high-risk patients.
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