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Introduction: Insomnia causes serious adverse health e�ects and is estimated to

a�ect 10–30% of the worldwide population. This study leverages personalized

fine-tuned machine learning algorithms to detect insomnia risk based on

questionnaire and longitudinal objective sleep data collected by a smart bed

platform.

Methods: Users of the Sleep Number smart bed were invited to participate in

an IRB approved study which required them to respond to four questionnaires

(which included the Insomnia Severity Index; ISI) administered 6 weeks apart

from each other in the period from November 2021 to March 2022. For 1,489

participants who completed at least 3 questionnaires, objective data (which

includes sleep/wake and cardio-respiratory metrics) collected by the platform

were queried for analysis. An incremental, passive-aggressive machine learning

model was used to detect insomnia risk which was defined by the ISI exceeding

a given threshold. Three ISI thresholds (8, 10, and 15) were considered. The

incremental model is advantageous because it allows personalized fine-tuning

by adding individual training data to a generic model.

Results: The generic model, without personalizing, resulted in an area under

the receiving-operating curve (AUC) of about 0.5 for each ISI threshold. The

personalized fine-tuning with the data of just five sleep sessions from the

individual for whom the model is being personalized resulted in AUCs exceeding

0.8 for all ISI thresholds. Interestingly, no further AUC enhancements resulted by

adding personalized data exceeding ten sessions.

Discussion: These are encouraging results motivating further investigation into

the application of personalized fine tuning machine learning to detect insomnia

risk based on longitudinal sleep data and the extension of this paradigm to

sleep medicine.

KEYWORDS

insomnia risk, personalizedmachine learning, incremental learning, fine tuning, passive-

aggressive learning

1 Introduction

Insomnia is a highly prevalent sleep disorder, affecting 10–30% of the general

population (1), which is characterized by difficulty with sleep initiation, weakened

sleep maintenance, and/or waking-up too early (1). Insomnia can cause significant

distress for those who experience symptoms and has been bidirectionally associated with
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adverse health consequences such as heart disease, elevated blood

pressure, neurological conditions, chronic pain, gastrointestinal

problems (2), depression, and anxiety (2). Insomnia can be

intermittent, i.e., it is interspersed with occasional good rebound

nights. This can give the patient a false sense of remission which

may cause low reporting of insomnia to the healthcare system.

Despite its high prevalence, insomnia is underrecognized,

underdiagnosed, and undertreated (3). Latest progress in machine

learning and the use of consumer sleep technologies may be

TABLE 1 State-of-the-art of machine learning algorithms applied to insomnia.

Study Data source Insomnia
source

ML technique Performance metric Prediction task

Park et al. (8) Actigraphy from

wearable, demographic

data

ISI questionnaire Neural Net Based

Unsupervised

Clustering

Found 5 new

insomnia-activity clusters

achieving average silhouette

score ≥ 0.4 to prove

significance

Clustering for

Activity-Insomnia endotypes

Rodríguez-Morilla

et al. (9)

Skin temperature, motor

activity, and body

position from several

devices

Primary insomnia

diagnosis

Decision tree Acc. = 0.884, Se. = 0.885,

Sp. = 0.714, AUC = 0.897,

F1 = 0.921

Binary Classification of

Primary Insomnia Diagnosis

Spiegelhalder et al.

(10)

MRI Primary insomnia

diagnosis

Support vector

machine

Altered brain function related

to insomnia appears to not

have a substantial effect on

brain morphometry on a

macroscopic level

Classification of primary

insomnia diagnosis (PI used

for grouping brain structures)

Li et al. (11) MRI Primary insomnia

diagnosis

Support vector

machine

Acc. = 0.815, Se. = 0.849,

Sp. = 0.791, AUC = 0.83

Classification of PI diagnosis

(Binary)

Andrillon et al. (12) PSG Diagnosed with CI

according to the

ICSD3 criteria

Classification and

regression training

(CaRET)

Cohen′s κ = 0.87 Predicting good sleepers

compares to CI sleepers

Shahin et al. (13) EEG Primary insomnia

diagnosis

Support vector

machine

F1 = 0.88, Se. = 0.84,

Sp. = 0.91

Classification of primary

insomnia diagnosis (Binary)

TABLE 2 Features and description.

Feature Description

Age Age in years of each participant

Bed exits Number of times a participant entered and exited the bed during the sleep session. Exits and enters

are considered part of the same sleep session if they occur within a 2-h threshold

Breathing rate The average respiration rate during the sleep session

Gender Encoded the gender of each participant as a binary variable

Heart rate The average heart rate during the sleep session

Heart rate variability Standard deviation of the inter-beat interval across the entire sleep session

Percent motion during sleep session Percentage of time spent moving during the recorded sleep session

Restful sleep duration Amount of time in bed considered restful (where motion level is below a pre-established threshold)

Session duration Total time spent in bed during the recorded session

Sleep debt Participant sleep goal minus sleep duration

Sleep duration Time spent in asleep during the recorded session

Sleep IQ score A proprietary metric used by Sleep Number to measure the quality of sleep for an individual

Sleep regularity index (SRI) The probability of a person being asleep or awake at any given two points 24 h apart (20)

Time to fall asleep Amount of time it takes for an individual to fall asleep once they have entered the bed

helpful to alleviate underdiagnosis of multiple sleep disorders

including insomnia.

Previous categorization of insomnia into primary and

secondary (or comorbid) insomnia has been abandoned (4).

Instead, the phenotypes of sleep onset insomnia (difficulty falling

asleep), sleep maintenance insomnia (difficulty staying asleep),

early morning awakening insomnia, and a combination of those

are considered. Another categorization considers the duration of

insomnia symptoms and identifies three categories acute (shorter
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FIGURE 1

Data inclusion procedure.

than a month), subacute (1 to 3 months), and chronic insomnia

(longer than 3 months) (5).

The Insomnia Severity Index (ISI) is the only instrument

currently in use that allows for severity classification depending

on a numerical score (6). The ISI has not yet been validated

to identify a specific insomnia phenotype, but the identification

of insomnia risk can be defined as the ISI exceeding a

threshold (7).

Table 1 summarizes some of the approaches in the state-of-

the-art to detect insomnia. Park et al. (8) used actigraphy and

demographic data with neural-net based clustering techniques

to identify five clusters associated with distinct Insomnia
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FIGURE 2

Example of respondent ISI score assignment to sleep sessions.

FIGURE 3

Overview of data collection and model development. BCG, Ballistocardiography; BR, Breathing rate; HR, Heart rate; HRV, Heart rate variability; SRI,

Sleep regularity index; TTFA, Time to fall asleep; PAC, Passive agressive classifier; LOOCV, Leave-one-out cross-validation.

endotypes. Rodríguez-Morilla et al. (9) used physiological and

body position data along with environmental light exposure to

predict primary insomnia using a decision tree model. MRI data

were used by Spiegelhalder et al. (10) and Li et al. (11), with a

Support Vector Machine classifier. Andrillon et al. (12) leveraged

Polysomnography (PSG) to detect chronic insomnia, achieving a

high Cohen’s κ score of 0.87 using a CaRET (Classification and

Regression Training) model. Shahin et al. (13) used EEG data

and Support Vector Machines, achieving a high F1 score (0.88) in

predicting primary insomnia.

Among the various consumer sleep technologies, it is

reasonable to assume that “nearables” which do not require the
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FIGURE 4

Personalization interval illustration.

TABLE 3 Respondent statistics & ISI scores.

Respondents 1,489

Male/Female/Other 669/811/9

Age 51.72± 12.77

ISI survey 1 9.65± 5.23

ISI survey 2 9.29± 5.36

ISI survey 3 9.06± 5.27

ISI survey 4 8.88± 5.29

sleeper to wear any monitor (14) have the potential to reflect

real-life longitudinal sleep trends enabling the detection of sleep

disturbances and early interventions. This study leveraged the

capabilities of a smart bed platform to unobtrusively collect

longitudinal objective sleep data and questionnaire responses from

a large cohort of individuals to build personalizedmachine learning

models to detect insomnia risk.

2 Materials and methods

2.1 Questionnaire procedure

Individuals enrolled in the study are owners of a Sleep Number

smart bed who consented to participate in an IRB approved study

which consisted in responding to four electronically delivered

questionnaires and allowing the use of objective sleep data

collected by the smart bed platform. The four questionnaires

were presented to the enrolled participants on November 22,

2021, January 3, 2022, February 14, 2022, and March 28, 2022

respectively. Each questionnaire was active for two weeks. The

objective sleep data were collected between October 21, 2021 and

March 31, 2022.

Demographic information including age and gender were

collected in the first questionnaire. Each questionnaire was

composed of five validated instruments, insomnia severity index

(6), Epworth sleepiness scale (ESS) (15), reduced morningness-

eveningness questionnaire (16), general anxiety disorder GAD-7

(17), and the patient health questionnaire PHQ-8 (18). The ISI and

ESS were administered under a utilization license provided byMapi

Research Trust.

To quantify insomnia risk, we focused on the ISI which is a

seven-question instrument designed to assess the severity of both

daytime and nighttime components of insomnia. The responses to

the 7 ISI questions in a scale from 0 to 4, are added up to obtain

a total score which indicates, no clinical significant insomnia if the

score is lower than 8, subthreshold insomnia if the score is between

8 and 14, clinical insomnia if the score is between 15 and 21, and

severe clinical insomnia if the score is between 22 and 28 (6). For

convenience, the total ISI score is simply referred to as ISI in the

rest of the paper.
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TABLE 4 Results for each ISI threshold and personalization interval duration.

ISI thres. Personalization Accuracy Precision Recall F1 AUC

8

0 0.516± 0.376 0.491± 0.435 0.468± 0.461 0.596 0.510

1 0.798± 0.244 0.560± 0.430 0.612± 0.458 0.831 0.805

5 0.817± 0.249 0.541± 0.440 0.626± 0.473 0.848 0.817

10 0.818± 0.260 0.536± 0.444 0.629± 0.477 0.849 0.814

20 0.809± 0.282 0.522± 0.449 0.629± 0.480 0.840 0.804

30 0.797± 0.304 0.514± 0.453 0.621± 0.483 0.830 0.795

40 0.799± 0.306 0.512± 0.455 0.591± 0.489 0.830 0.820

50 0.801± 0.309 0.504± 0.458 0.577± 0.490 0.829 0.832

60 0.798± 0.317 0.506± 0.460 0.576± 0.489 0.829 0.836

10

0 0.509± 0.377 0.309± 0.405 0.282± 0.412 0.438 0.503

1 0.786± 0.246 0.405± 0.429 0.455± 0.465 0.761 0.814

5 0.816± 0.251 0.390± 0.433 0.476± 0.488 0.798 0.828

10 0.816± 0.262 0.383± 0.434 0.480± 0.493 0.797 0.828

20 0.807± 0.285 0.370± 0.435 0.482± 0.497 0.787 0.811

30 0.795± 0.306 0.358± 0.435 0.468± 0.497 0.773 0.808

40 0.799± 0.306 0.358± 0.437 0.440± 0.493 0.774 0.836

50 0.801± 0.307 0.356± 0.438 0.427± 0.490 0.773 0.846

60 0.798± 0.316 0.360± 0.442 0.431± 0.489 0.767 0.844

15

0 0.727± 0.353 0.060± 0.197 0.053± 0.197 0.162 0.508

1 0.858± 0.226 0.126± 0.278 0.174± 0.354 0.587 0.800

5 0.868± 0.235 0.124± 0.276 0.193± 0.386 0.629 0.809

10 0.867± 0.243 0.118± 0.273 0.195± 0.392 0.626 0.808

20 0.860± 0.264 0.109± 0.267 0.197± 0.397 0.603 0.790

30 0.850± 0.284 0.104± 0.265 0.184± 0.387 0.570 0.776

40 0.851± 0.287 0.105± 0.268 0.156± 0.360 0.656 0.815

50 0.860± 0.276 0.107± 0.270 0.153± 0.355 0.579 0.830

60 0.858± 0.285 0.108± 0.274 0.150± 0.349 0.570 0.825

2.2 Sleep session data

Sleep session data are collected on a daily basis by the smart

bed using the technology and algorithms described in Siyahjani

et al. (19). The smart bed, validated against polysomnography

(19), uses a pressure sensor to capture high-resolution full body

ballistocardiography to accurately measure breathing rate, heart

rate and movements to derive session data. The smart bed uses a

pressure sensor for each sleeper on the bed.

Sleep session data include (see Table 2) the session duration

which corresponds to time in bed, the number of bed exits, sleep

duration, duration of restful sleep (which was detected based on

the level of motion), time to fall asleep (TTFA) once the participant

entered the bed, the percentage of time with high (above a given

threshold) level motion, sleep quality score, sleep debt which is

the difference (if positive) between and individual’s sleep duration

goal minus their actual sleep duration, sleep regularity which

characterizes the probability of an individual of being awake or

asleep at any given two points in time separated 24 h apart [using

an adaptation of the procedure presented in Lunsford-Avery et al.

(20)], and mean cardiorespiratory metrics such as respiratory rate,

heart rate, and heart rate variability. The feature vector used to train

the machine learning model has 14 components listed in Table 2

(see also Figure 3).

2.3 Data inclusion procedure

On a daily basis, the smart bed consolidated sleep sessions

whose end and begin times were not separated by more than

two hours. Sleep sessions separated by more than two hours were

considered as individual sessions. For each day, only the longest

sleep session was kept for analysis.

Starting from 5,444 enrolled participants, the number of

respondents to questionnaires 1 to 4 were 3,729, 3,743, 3,596, and

3,273 respectively. The number of participants that responded to at
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FIGURE 5

Area under the receiving-operator curves (AUC) vs. personalization interval for each ISI threshold.

least three surveys was 2,986. The final dataset for analysis consisted

of the data from 1,489 participants [mean age 51.72 (SD: 12.77)

years-old; 669 Men and 811 Women] who had at least 120 sessions

in the period fromOctober 21, 2021 toMarch 31, 2022. This process

is illustrated in Figure 1.

2.4 Insomnia risk quantification and
labeling of each sleep session

To detect insomnia risk, three thresholds on the ISI (8, 10, and

15) were considered. As mentioned in Section 2.1, the thresholds 8

and 15 distinguish no insomnia vs. any level of insomnia and non-

severe insomnia vs. severe insomnia respectively. The ISI threshold

of 10 was used by Oh et al. (7) to quantify insomnia risk.

Each sleep session had an ISI value assigned according

to the following criteria (see also Figure 2). For each session

before the second questionnaire, the ISI is that of the first

questionnaire. If the response to the first questionnaire is

missing, then all sessions before the second session have

the ISI value of the second questionnaire. For each sleep

session after the last questionnaire answered by the participant,

the score is the ISI of the last questionnaire. In-between,

the sleep sessions between the n-th questionnaire and the
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TABLE 5 Incremental AUC.

Personalization 8 10 15

0 0.000 0.000 0.000

1 0.295 0.323 0.292

5 0.007 0.015 0.0151

10 0.001 –0.007 –0.004

20 –0.011 –0.013 –0.031

30 –0.009 0.003 0.006

40 0.032 0.021 0.022

50 0.015 0.003 0.014

60 0.002 0.002 0.006

(n+1)-th questionnaire have the ISI corresponding to that of the

n-th questionnaire.

2.5 Personalized fine tuning

In machine learning, the idea of improving a model by

transferring information from a related domain is referred to as

transfer learning (21). A related concept is that of fine tuning where

a generic model is incrementally trained to optimally perform in

specific scenarios. The incremental training uses a small amount of

training data from the targeted specific scenario.

We leveraged the transfer learning idea along with the leave-

one-subject-out cross-validation (LOOCV) technique where the

data from all but one subject are used to train a model which

is tested on the data from the left-out subject. For each of the

1480 subjects in our dataset, we trained a generic passive-aggressive

model (see Section 2.6) using the data from all other subjects, and

we personalized the model using sleep session data from 1, 5, 10,

20, 30, 40, 50, and 60 days of the left-out subject (see also Figure 3).

This is illustrated in Figure 4. The rest of the data from the left-out

subject was used to evaluate the model performance.

2.6 Passive-aggressive learning

This is a binary online learning algorithm that makes

predictions based on the error function’s gradient, allowing it to

adjust its predictions as new data are introduced (22). The passive-

aggressive classifier updates its parameters incrementally and at the

individual training sample level rather than at a batch (updates

parameters after exposure to a fixed set of training samples)

or epoch level (updates model parameters after a full pass over

the entire training dataset). This makes the passive-aggressive

approach ideal for the implementation of the personalized fine-

tuning strategy described in the previous section. This classifier

is passive in that it does not update its parameters when training

samples are correctly classified and is aggressive in that it does

update when incorrectly classifying training samples (22).

The passive-aggressive classifier has several hyper-

parameters that can be adjusted to adjust its performance. In

our implementation, we used a hinge loss which is zero for

correct classifications and in case of misclassification increases

proportionally to the distance from the sample to the decision

boundary. The proportionality hyper-parameter controls the

degree of aggressiveness in the updates to the decision boundary in

the face of misclassification.

2.7 Performance metrics

We evaluated the performance of the personalized model using

accuracy (Equation 1), precision (Equation 2), recall (Equation 3),

and F1 score (Equation 4). In Equations 1–4, TP and TN represent

the number of true positives and true negatives respectively. For

each ISI threshold and personalization interval, we computed the

average and standard deviation for each metric. As it is usually

done with binary classifiers (23), we have also calculated the area

under the receiving-operator curve (AUC) which characterizes the

trade-off between true positive and false positive rate.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall(TPR) =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
(4)

3 Results

The demographic information for the final dataset of 1,489

respondents is reported in Table 3. In addition, the mean ISI values

per questionnaire are also reported.

The model’s performance without personalization, i.e., the

duration of the personalization interval is zero, serves as

baseline for comparison. The metrics for all ISI thresholds and

personalization interval are reported in Table 4. Figure 5 shows the

mean AUC for each ISI threshold and personalization interval.

The incremental AUC (iAUC) values for each ISI threshold

are shown in Table 5 and Figure 6. These emphasize AUC

improvements associated with the increase in the personalization

interval. Improvements can already be observed when the

personalization interval increases from 0 to 1 day, highlighting

the immediate impact of incorporating even minimal personalized

data into the model. Following the initial improvement, the iAUC

values tend to diminish with some negative values recorded. This

“diminishing return” trend suggests that personalization continues

to contribute positively to the model’s performance, the marginal

gains decrease as more personalization data are incorporated.

The difference in iAUC for all possible pairs of ISI threshold

was also statistically evaluated. The statistical significance of these

differences are shown in Table 6.
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FIGURE 6

Incremental AUC vs. personalization interval for each ISI threshold.

TABLE 6 Statistical testing for iAUC values.

iAUC t-statistic p-value

ISI 8–10 –0.035 0.972

ISI 8–15 0.022 0.983

ISI 10–15 0.056 0.956

4 Discussion

Our results suggest that significant accuracy improvement

can be achieved by integrating longitudinal individual-specific

data into an insomnia risk detection model. Such improvement

may be due to the fact that insomnia symptoms impact sleep

in an individualized manner. Indeed, the results across different

personalization intervals and ISI thresholds show the difficulties

of predicting insomnia risk; with near random results for a

generalized model that does not account for individual differences.

Even a modest amount of personalization was already sufficient to

increase the AUC by 0.3 which represented a 60% improvement

over the generic model which provided quasi-random results.

We could also observe that the AUC (Figure 5) exhibits a slight

degradation for approximately 30 days of personalization data. To

understand whether this degradation is intrinsic to our model,
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FIGURE 7

Experiment with chronologically randomized data. Incremental AUC vs. personalization interval for each ISI threshold.

we performed a test consisting in randomizing the data. In this

manner, the chronologic information is no longer present in the

data and if the degradation persists, then the specific machine

learning algorithm would have caused that. The outcome of this

experiment is shown in Figure 7. The fact that no AUC degradation

can be observed in Figure 7 suggests that the decrease in AUC

observed in Figure 5 may be due to the properties of the data. A

plausible explanation for this degradation may be the proximity

to the second questionnaire. However, no degradation could be

observed for dates that are in the vicinity of the dates for the second

or fourth questionnaires.

We considered three ISI thresholds in this research. The results

in Table 4, Figures 5, 6 show similar trends for all considered

thresholds. We performed a statistical comparison between the

iAUC curves for all possible pairs of ISI thresholds (see Table 6).We

did not find any statistically significant difference between any of

the comparisons which suggests that there could be an equivalence

in detecting insomnia risk by considering any of the three ISI

thresholds we tested in this research. An appropriate threshold for

insomnia risk is 10 which coincides with the choice by Oh et al. (7)

and may better reflect the high prevalence of insomnia.

Our study has some limitations which are listed below.

Frontiers inNeurology 10 frontiersin.org

https://doi.org/10.3389/fneur.2024.1303978
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Winger et al. 10.3389/fneur.2024.1303978

• The population drawn from Sleep Number customers is

not representative of the broader US population. This is

reflected by the relatively older age of respondents reported

in Table 3. Thus, the results reported in this research and

the relevance of model personalization may not apply to the

general population.

• The analysis reported in this research based on ISI threshold

to reflect insomnia risk does not permit to identify a specific

insomnia phenotype or the presence of comorbid sleep

disorders such as sleep disordered breathing or restless leg

syndrome. Comorbid conditions can influence the ISI and the

features we consider in ourmodel such as heart rate variability,

heart rate, breathing rate, sleep quality, and sleep debt.

• Self-reporting insomnia and the electronic delivery cannot

be considered as equivalent to diagnostics. Indeed, the

respondent engagement and interaction with the electronic

delivery method may be lower compared to in-clinic, and

in-person questionnaire administration.

• The responses to multiple delivery of the same questionnaire

even if done multiple weeks apart, may not necessarily

be independent.

• While the smart bed has a pressure sensor for each sleeper

on the bed, the nature of BCG is such that some minimal

contribution of the signal produced by one bed user can reflect

on that from the bed partner.

An opportunity to expand this research consists in

considering insomnia phenotypes such as difficulty of falling

asleep but normal sleep duration or normal sleep latency

but difficulties of staying asleep. Indeed, the advantage of

personalization may apply to insomnia phenotypes which could

be easier to apply at a scale instead of individual level. An

additional area for expansion is the prediction of insomnia

over shorter intervals to enable detection of acute insomnia

which if not treated early enough can convert into chronic

insomnia.

The combination of longitudinally and unobtrusively acquired

sleep data with personalized machine learning models constitutes

a paradigm that may be generalized across sleep medicine

from early detection, endotype, and phenotype identification

to enable treatment optimization, and recovery monitoring.

This research presents early encouraging results supporting that

vision.
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