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Introduction: Delirium is accompanied by immune response system activation, 
which may, in theory, cause a breakdown of the gut barrier and blood–brain 
barrier (BBB). Some results suggest that the BBB is compromised in delirium, 
but there is no data regarding the gut barrier. This study investigates whether 
delirium is associated with impaired BBB and gut barriers in elderly adults 
undergoing hip fracture surgery.

Methods: We recruited 59 older adults and measured peak Delirium Rating Scale 
(DRS) scores 2–3  days after surgery, and assessed plasma IgG/IgA levels (using 
ELISA techniques) for zonulin, occludin, claudin-6, β-catenin, actin (indicating 
damage to the gut paracellular pathway), claudin-5 and S100B (reflecting BBB 
damage), bacterial cytolethal distending toxin (CDT), LPS-binding protein (LBP), 
lipopolysaccharides (LPS), Porphyromonas gingivalis, and Helicobacter pylori.

Results: Results from univariate analyses showed that delirium is linked to 
increased IgA responses to all the self-epitopes and antigens listed above, 
except for LPS. Part of the variance (between 45–48.3%) in the peak DRS score 
measured 2–3  days post-surgery was explained by independent effects of IgA 
directed to LPS and LBP (or bacterial CDT), baseline DRS scores, and previous 
mild stroke. Increased IgA reactivity to the paracellular pathway and BBB 
proteins and bacterial antigens is significantly associated with the activation of 
M1 macrophage, T helper-1, and 17 cytokine profiles.

Conclusion: Heightened bacterial translocation, disruption of the tight and 
adherens junctions of the gut and BBB barriers, elevated CDT and LPS load in 
the bloodstream, and aberrations in cell–cell interactions may be  risk factors 
for delirium.
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Background

The estimated incidence of postoperative delirium in older adult 
patients with hip fractures is between 8.2%–24.0% (1–3). The major 
clinical characteristics of this acute and fluctuating neuropsychiatric 
syndrome are disturbances of attention, awareness, and other 
cognitive components (4). In hip fracture patients, delirium is 
associated with several adverse outcomes, such as an increased 
hospital stay, medical complications, poorer functional recovery, and 
an increased mortality rate (5–7). Older age, delirium history, 
premorbid dementia, multiple comorbidities, and functional 
dependency are common risk factors for postoperative delirium 
(2, 3, 8).

Hip fracture and surgery in older adults may initiate a complex 
neuro-pathophysiological process which leads to cognitive 
impairments and often delirium (9). The hypothesized 
pathophysiology of delirium comprises peripheral activation of the 
immune-inflammatory response system (IRS), neuroinflammation, 
oxidative stress, neurotransmitter dysregulation, and neural circuit 
disconnection (10, 11). Delirium in older adults following hip fracture 
surgery is associated with increased white blood cell numbers and 
neutrophil/lymphocyte ratio indicating aseptic inflammation (11). A 
recent meta-analysis shows that the delirium diagnosis is associated 
with a higher neutrophil/lymphocyte ratio in various critical care 
settings (12). Furthermore, we showed that delirium is characterized 
by IRS activation and a relative deficiency in the compensatory 
immunoregulatory system (CIRS), which prevents hyperinflammation 
(13). The increased IRS/CIRS ratio in delirium is indicated by 
increased macrophage M1; T helper (Th)1, and Th17 profiles, and a 
relative deficiency in Th2 and T regulatory (Treg) profiles (13).

There is now evidence that interactions between activated IRS 
pathways (e.g., M1 macrophage), breakdown of the BBB, and 
increased gut permeability play a role in neuropsychiatric disorders 
(14–17). Although previous studies have associated post-surgery 
delirium with BBB breakdown (18), there is no direct evidence that 
the breakdown of the paracellular pathway is associated with delirium. 
Nevertheless, there is some data on associations between gut 
microbiota diversities and postoperative delirium (19, 20). Few studies 
supported the hypothesis of an association between insomnia and 
abnormalities in the gut-brain axis (21, 22).

In the context of schizophrenia, notable correlations were 
identified between cognitive deficits or positive symptoms and 
biomarkers of IRS activation, including dysfunction of paracellular 
adherens junctions (e.g., IgA to E-cadherin and β-catenin) and tight 
junctions (e.g., IgA to occludin and zonulin), bacterial translocation 
(e.g., elevated IgA/IgM to Gram-negative bacteria), as well as 
disruption of the blood–brain barrier (e.g., increased IgA to occludin 
and β-catenin) (23, 24). A recent review and meta-analysis show that 
schizophrenia, major depression, bipolar disorder, and chronic fatigue 
syndrome are accompanied by indicants of leaky gut, with increased 
serum lipopolysaccharides (LPS) or antibodies directed to LPS of 
Gram-negative gut-commensal bacteria, LPS-binding protein (LBP), 
and zonulin (25, 26). In addition, increased IgG or IgA responses 
directed against Helicobacter pylori or Porphyromonas gingivalis may 
be  associated with neurocognitive deficits in Alzheimer’s disease 
(27–29).

The hepatic secreted LBP may bind LPS in the systemic 
circulation, thereby forming an LPS-LBP complex, which 

consequently activates inflammatory cascades via the Toll-Like 
Receptor (TLR) 4 complex (30, 31). Some Gram-negative bacteria, 
including Helicobacter species, produce a bacterial cytolethal 
distending toxin (CDT), which is involved in IRS activation, host cell 
DNA intoxication, and apoptosis (32). Increased expression of LPS, 
the LPS-LBP complex, and CDT in the serum may indicate the 
breakdown of the gut barrier, with consequent increased translocation 
of bacterial antigens through the gut epithelium barrier into the 
lamina propria layer and the adjacent lymphatic and vascular systems 
(33–36). This bacterial translocation may occur via (a) the transcellular 
pathway and increased reactivity to actin may indicate this process 
(37, 38); and (b) the paracellular pathway, which comprises tight 
junctions (TJs) and adherens junctions (AJs) as major components 
(39, 40). Increased IgA/IgM/IgG responses to TJs (including zonulin, 
occludin, claudin-5/6) and AJs (including β-catenin) are biomarkers 
indicating the breakdown of the paracellular pathway (26).

Invasion of bacterial antigens through a dysfunctional intestinal 
barrier may trigger inflammatory cells inside the lamina propria layer 
to produce chemokines and pro-inflammatory cytokines, including 
tumor necrosis factor-α (TNF-α), interleukin (IL)-1, and IL-6, which 
may further expand the inflammatory signal to the systemic level (41). 
Conversely, systemic inflammation may damage the intestinal barrier 
and cause increased gut permeability due to, for example, increased 
levels of IL-1β, IL-6, and TNF-α (15, 26, 42). Reciprocal interactions 
between increased gut permeability and systemic IRS activation were 
demonstrated in disease models such as inflammatory bowel disease 
(43), cancer (44, 45), schizophrenia (46), depression (47, 48), and 
Alzheimer’s dementia (49, 50), but data in delirium is lacking.

Interestingly, the intestinal epithelial barrier and the BBB share 
some TJ and AJ-associated proteins such as occludin, claudin-5/6, 
β-catenin, and actin (24, 51). Some epitopes are more specific to the 
BBB, such as claudin-5 and S100 calcium-binding protein B (S100B) 
(52–54). Therefore, increased IgA/IgM/IgG responses to these 
epitopes may indicate increased damage to the gut (leaky gut) and 
BBB (leaky brain) barriers (24, 55). Despite recent evidence 
demonstrating increased IgA/IgM levels to gut and BBB breakdown 
epitopes in schizophrenia (24, 56, 57), depression (42, 58), autism 
(59), and Alzheimer’s disease (50, 60), no such data were reported 
in delirium.

Hence, the current study aims to examine (a) whether delirium 
severity in post-surgery patients with hip fracture is predicted by 
disturbances of the gut epithelial and the BBB as measured by using 
IgA/IgG responses to antigens and self-epitopes including LPS, LBP, 
CDT, zonulin, occludin, claudin-5, claudin-6, S100B, β-catenin, actin, 
P. gingivalis and H. pylori; and (b) whether these IgA/IgG responses 
are associated with the IRS response in post-surgery older adults.

Methods

Participants

A cohort of 59 elderly individuals with hip fractures who were 
admitted to the Hip Fracture Pathway Inpatient Care at King 
Chulalongkorn Memorial Hospital in Bangkok, Thailand, was 
enrolled in our study from June 2019 to February 2020. Patients who 
were 65 years of age or older and presented with a low-energy impact 
hip fracture, subsequently underwent surgery for the fracture, and 
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were transferred to the surgery intensive care unit (SICU) or 
orthopedic wards, were included in the study. Individuals who met the 
following criteria were excluded from the study: major psychiatric 
illness (including schizophrenia, substance use disorders, bipolar 
disorder, psycho-organic disorders), a lifetime history of neuro-
inflammatory and neurodegenerative diseases (including Alzheimer’s 
and Parkinson’s disease, multiple sclerosis), (auto) immune disorders 
(including psoriasis, systemic lupus erythematosus, inflammatory 
bowel disease, rheumatoid arthritis), coma, intracranial hemorrhage, 
pathologic fractures, and hip fractures from a high impact accidents. 
Individuals who have experienced remission of depression, modest 
neurocognitive disorders, or stroke without developing post-stroke 
disabilities within a year of the acute event may qualify for inclusion 
in the study.

Clinical assessments

In addition to bedside interviews, sociodemographic and clinical 
information was gathered via electronic medical records. The 
cognitive status and delirium levels were evaluated at baseline, 24 h 
prior to the surgery. The cognitive status, delirium score, and diagnosis 
were evaluated daily for 3 days after the procedure. At the patient’s 
bedside, the Delirium Rating Scale, Revised-98-Thai Version (DRS-R-
98-T) was utilized to assess the degree and manifestation of delirium 
until 3 days after the surgery (29, 30). This evaluation occurred on the 
evening of day zero, the day before the surgery, as well as in the 
morning and evening. The DRS-R-98-T demonstrates satisfactory 
inter-rater reliability and sensitivity and specificity in detecting 
delirium (29, 30). The severity of sleep–wake cycle disturbance was 
evaluated using the first item of the DRS-R-98-T (peak values of day 
1 and 2), which ranged from normal (0 point) to severe (3 point) sleep 
disruption (61). As a result, scores two and three were merged into a 
single score (2), producing an ordinal variable with values of zero, one, 
and two. Data was gathered regarding the administration of 
benzodiazepines, opiates, anticholinergic medications, and psychiatric 
drugs, in addition to pertinent perioperative and postoperative clinical 
information including blood loss, operative duration, and the need for 
restraint because of agitation. Acute coronary events, arrhythmias, 
severe hypertension, and atrial fibrillation were among the 
cardiovascular complications obtained after surgery. The BMI was 
calculated by dividing the square of the subject’s height by their body 
weight (in kilograms).

The study protocol (registration number 528/61) was assessed and 
authorized by the institutional review board of the Faculty of 
Medicine, Chulalongkorn University. It adhered to the principles and 
procedures outlined in the International Guideline for the Protection 
of Human Subjects, the Belmont Report, the CIOMS Guideline, and 
the International Conference on Harmonization in Good Clinical 
Practice (ICH-GCP). Consent forms for the study were duly signed by 
every patient or their first-degree relatives.

Determination of antibodies by ELISA

Aside from the clinical evaluation, venous blood samples were 
collected at 7 a.m. on day 0. Blood samples were stored at −80°C until 
thawed and then forwarded to the lab for IgA/IgG and cytokine/

chemokine testing. IgA-and IgG antibodies to the epitopes were 
measured using ELISA methods. LPS from Escherichia coli, 
Salmonella, Shigella, Klebsiella, and Pseudomonas, LBP, and actin were 
purchased from Sigma-Aldrich (St. Louis, MO, United States), and 
occludin, zonulin, claudin-5, claudin-6, S100B, β-catenin, CDT, 
P. gingivalis, and S100B were synthesized by Bio-Synthesis® 
(Lewisville, TX, United States). H. pylori was purchased from the 
American Type Culture Collection® (Manassas, VA, United States). 
Jackson-Immuno Research® offered affinity pure goat anti-human IgA 
α-chain-specific and anti-human IgG, FC-specific (West Grove, PA 
United States). The IgG and IgA assays were performed as discussed 
previously (62). In brief: all antigens were prepared at a concentration 
of 1 mg/mL in 0.01 M phosphate buffer saline (PBS) pH 7.4. The 
optimal amount of each antigen was found to be one microgram in 
100 microliters of 0.01 M carbonate buffer at pH 9.6, which was added 
to different wells of Costar ELISA plates. Plates were incubated at 25°C 
for 4 h, followed by overnight incubation at 4°C. In the next step, the 
unbound antigens were removed, and plates were washed 3 times with 
PBS containing 0.05% Tween 20, and 200 microliters of 2% bovine 
serum albumin (BSA) was added to block the non-coated regions of 
ELISA plate wells. Plates were kept at 4°C overnight, and after the BSA 
were washed, dried, and kept at 4°C until used. Calibrators, controls, 
and patients’ sera dilution at 1:50 for IgA and 1:100 for IgG in 0.01 M 
PBS pH 7.4 with 2% BSA and 0.05% Tween 20 were added to separate 
wells and incubated at room temperature for 1 h. Several wells 
contained all the reagents, but no serum was used to measure the 
background or blank ODs. After repeated washing and removing 
unattached serum proteins, alkaline phosphatase labeled anti-human 
IgA at 1:400 or anti-human IgG at 1:800 was added to separate sets of 
microwell plates and incubated for another hour. After repeating the 
washing procedure, adding 1 mg/mL of substrate para-
nitrophenylphosphate, and incubating at room temperature for 
30 min, a yellow color formed proportionately to the antibody 
concentration in the samples. The reaction was then halted with 60 
microliters of 2 N NaOH, which created the endpoint color, which was 
measured at 405 nm with an ELISA reader. The antibody index was 
computed as follows: antibody index = (OD of sample − OD blank)/
(OD of calibrator − OD of blank).

Based on the results we  computed five IgA/IgG z-unit-based 
composite scores as (a) z transformation of IgA/IgG to LPS (z LPS) + z 
CDT + z G. gingivalis + z H. pylori (labeled IgA/IgG Bacterial, reflecting 
increased bacterial load); (b) z occludin + z zonulin + z claudin-6 
(labeled IgA TJs, reflecting damage to the endothelial TJs); (c) z 
claudin-5 + z S100B (labeled IgA/IgG BBB, reflecting damage to the 
BBB especially when also IgA TJs are present), (d) z catenin + z actin 
(labeled IgA/IgG CATACT); and (e) z LPS + z LBP (labeled IgA/IgG 
LPS + LBP, reflecting increased LPS load in the plasma).

Cytokine and chemokine assays

The methodology for analyzing cytokines and chemokines has 
been previously documented (13, 62). To summarize, the study 
employed the Bio-Plex ProTM Human Chemokine Assays 
manufactured by Bio-Rad Laboratories, Inc. in the United States of 
America. The Bio-Plex® 200 System (Carlsbad, California), was 
utilized to analyze the samples. 11.0% was the intra-assay CV for all 
analytes. In the data analysis, we utilized fluorescence intensities while 
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subtracting the blank analyte values, as these intensities are a more 
reliable substitute for concentrations, particularly when examining 
numerous plates. The levels of IL-2, IL-10, IL-12, and IL-13 were 
omitted from the analyses focusing on a particular cytokine, because 
too many values were below the detection limit. Nonetheless, the 
values of those cytokines were included when creating immunological 
profiles because quantifiable levels of specific cytokines may contribute 
to the IRS/CIRS composites. The IRS and CIRS immune profiles, as 
well as the IRS/CIRS ratio (11, 62), were the primary immunological 
outcome determinants in this investigation. IRS was conceptualized 
as z-unit-based composite score based on z M1 (z IL-1β + z 
IL-6 + zTNF-α + z CXCL8 + z CCL3 + z IL-2 + z IL-12 + z 
interferon-γ + z IL-17). CIRS was conceptualized as z IL-4 + z IL-9 + z 
IL-13 + z IL-10 + z IL-1RA. The IRS/CIRS ratio was conceptualized as 
z IRS − z CIRS. Since IL-9 and IL-13 may have dual roles, we have 
recomputed the IRS/CIRS ratio without those two cytokines (labeled 
as IRS/CIRS2). There was a strong correlation between both IRS/CIRS 
and IRS/CIRS2 (r = 0.904, p < 0.001).

Statistics

To ascertain relationships between sets of categorical data, the 
X2-test was utilized. Conversely, analysis of variance (ANOVA) was 
employed to investigate differences in scale variables between groups. 
The primary outcome analysis was the quantitative DRS-R-98 scale 
score, which was predicted by the explanatory variables, which are 
biomarkers measured 1 to 2 days prior. Pearson’s product moment 
correlation coefficients were computed to ascertain the relationships 
between the DRS scores and the IRS, CIRS, and IRS/CIRS data, as 
well as the IgA/IgG reactivity to self-epitopes and antigens. To 
examine the relationship between the dichotomized peak DRS scores 
on days 2–3 and the IgA/IgG responses on day 0 (which were entered 
as input variables), binary logistic regression and generalized 
estimating equation (GEE) analysis with repeated measurements 
were applied. We calculated the odds ratio (OR) with 95% confidence 
intervals and parameter estimates (B with SE values) for the logistic 
regressions; Nagelkerke values were utilized as pseudo-R2 effect sizes. 
While allowing for confounding variables, GEE was utilized to 
examine the relationships between the repeated DRS score 
measurements (days 2 and 3) and the IgA/IgG reactivities and DRS 
score on day 0. The study employed multiple regression analysis to 
investigate the relationship between predictors (such as IgA and IgG 
responses) and outcome variables (such as DRS scores), while 
controlling for confounding variables (such as age and sex). The effect 
size was determined using R2, and multivariate normality, collinearity, 
and multicollinearity were consistently assessed using Cook’s distance 
and leverage, tolerance and VIF, and the White and modified 
Breusch-Pagan tests for homoscedasticity, respectively. Furthermore, 
an automatic step-up method was implemented, incorporating values 
of 0.05 p-to-enter and 0.06 p-to-remove. All bootstrapped regression 
analyses were conducted using 5,000 samples; in cases where the 
results did not concur, the bootstrapped results are displayed. 
We accounted for the following variables in all regression analyses: 
gender, age, mild cognitive impairment, prior stroke, BMI, surgical 
duration, time to surgery, estimated blood loss during surgery, and 
use of deliriogenic medications. The statistical analysis was conducted 
using IBM SPSS for Windows version 28 (version 2022). A 

significance level of 0.05 was applied, and two-tailed tests were 
utilized. For numerous associations and comparisons, a False 
Discovery Rate (FDR) p correction was implemented. The a priori 
estimated sample size for a multiple regression analysis using 
G*Power analysis with an effect size of 0.30, an alpha of 0.05, a power 
of 0.80, and five predictors is around 49. Partial Least Squares (PLS) 
analysis using SmartPLS (SmartPLS) (23) was employed to examine 
whether the effects of age on the increases in the DRS score from 
baseline to 2–3 days later were mediated by IgA responses to 
different antigens.

Results

Sociodemographic and clinical data

The sociodemographic, clinical, and immune data of the study 
population are demonstrated in Table 1. To differentiate patients 
with increased DRS scores on days 2 and 3 from those with lower 
values, we  computed the peak DRS values on day 2 and 3 and 
dichotomized the values using a visual binning method. 
Consequently, we examined two study groups, namely post-surgery 
patients with and without increased peak DRS values 2–3 days after 
surgery, using a cut-off value of ≥4. There were no significant 
differences between the two study groups in sex, education years, 
BMI, blood loss volume, duration from fall to hospital admission, 
hospitalization to surgery, or total duration of hospitalization. As 
expected (because higher age is a risk factor for delirium), patients 
in the high peak DRS group were significantly older than those in 
the low peak DRS group. The high-peak DRS group showed 
significantly higher IRS and IRS/CIRS scores than the low-peak DRS 
group, while there were no significant differences in CIRS scores 
between the groups.

Prediction of DRS score by biomarkers

Table 2 shows the results of binary logistic regression analyses 
with the high peak DRS group (reference group: low peak DRS group) 
as the dependent variable and the IgA bacterial, TJs, BBB, CATACT, 
and LPS + LBP composite scores. The high peak DRS group was 
significantly associated with baseline IgA scores across all five 
composite scores. Table 2 shows the results of GEE analyses with the 
DRS scores on days 2 and days 3 as dependent variables (repeated 
measures) and the IgA values to antigens on days 0 and 1 as predictors 
(repeated measures). As such, the IgA values at days 0 and 1 predicted 
the DRS values on days 2 and 3, respectively. We found that the 5 IgA 
values directed to the bacterial, TJs, BBB, CATACT, and LPS + LBP 
composite scores significantly predicted the DRS scores on days 2 and 
3. The same table shows the results of the effects of the separate IgA 
values on the DRS values. We found that all IgA values directed to all 
epitopes, except LPS, were significantly associated with the DRS values 
some days later. Supplementary Figure 1 shows a clustered bar graph 
showing the IgA values for the 5 composites and all separate IgA 
values in post-surgery patients with low vs. high peak DRS scores. 
Supplementary Figure  2 shows that there were no significant 
differences in any of the IgG antibody values directed to the 
different epitopes.
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Intercorrelation matrix between IgA 
responses, DRS, and IRS/CIRS data

Table 3 shows the intercorrelation matrix between the five IgA 
composite scores and the day 1, day 2, and peak DRS scores, as well as 
the IRS, CIRS, and IRS/CIRS values. The results indicate that there is 
no significant correlation between the five baseline IgA values and the 
DRS score on day 1, whereas there were highly significant associations 
with the peak DRS values. To examine the associations between the 
baseline IgA composite scores and the actual changes in the DRS 
scores from day 0 to days 2 and 3, we computed the residualized peak 
DRS values after regression on the DRS Day 0 values. These actual 
changes in DRS values were significantly associated with all five IgA 
composite scores. There were also significant correlations between the 
baseline IgA levels and the bacterial, TJs, BBB, CATACT, and 
LPS + LBP composite scores and the baseline IRS and IRS/CIRS 
scores, but less with the CIRS values. In addition, the IRS/CIRS2 ratio 
was significantly correlated with the bacterial (r = 0.414, p = 0.002), TJs 
(r = 0.438, p = 0.001), BBB (r = 0.356, p = 0.007), CATACT (r = 0.394, 
p = 0.003), and LPS + LBP (r = 0.390, p = 0.003) composite scores. All 
correlations remained significant after the FDR p correction.

While all IgA responses were correlated with the peak DRS and 
residualized peak DRS scores, not one of the five IgG composites was 
correlated with the clinical scores, even without FDR p correction. On 
the other hand, the IRS/CIRS ratio was significantly correlated with 
IgG CATACT (r = 0.299, p = 0.025), LBP + LPS (r = 0.361, p = 0.006), 
TJs (r = 0.342, p = 0.010) and BBB (t = 3.11, p = 0.020) composite scores. 
These correlations remained significant after the FDR p correction. 
Insomnia was not significantly correlated with IgA or IgG levels to 
bacterial, TJ, BBB, CATACT, and LPS + LBP composites, even without 
FDR p correction.

Results of multiple regression analysis

Table 4 shows the results of multiple regression analyses with the 
DRS scores as dependent variables and the IgA composites as well as the 
DRS values on days 0 and 1, and demographic data and known risk 
factors for delirium (age, sex, previous stroke) as explanatory variables. 
Regression #1 shows that 48.3% of the variance in the peak DRS scores 
could be explained by the regression on IgA to CDT, DRS days 0, and 
previous stroke (all three positively associated). Figure 1 shows the partial 
regression of peak DRS values on IgA to CDT. Regression #2 examines 
the same variables, except that DRS days 0 and 1 were excluded from the 
analysis. This regression shows that 47.1% of the variance in the peak 
DRS score was explained by the regression on IgA claudin-6, a history of 
stroke, age, and SSRI treatment before admission; 30.1% of the variance 
in the DRS score on day 0 could be explained by age and SSRI. Regression 
#4 found that 45.0% of the variance in the peak DRS scores is associated 
with DRS Day 1, IgA CATACT, and a history of previous stroke (all three 
are positively associated). Figure 2 shows the partial regression of peak 
DRS scores on IgA to the CATACT composite. Deleting IgA to CDT and 
CATACT showed that the IgA BBB composite was the third most 
significant explanatory variable that, together with age and previous 
stroke, explained 39.6% of the variance in the peak DRS values.

The same table shows the results of multiple regression analyses with 
the IRS/CIRS values as the dependent variables and IgA/IgG responses 
to different epitopes as the explanatory variables. Entering the IgA 
responses to the separate epitopes (regression #6) showed that 28.4% of 
the variance in the IRS/CIRS ratio is explained by IgA claudin-6, 
previous stroke, and age (all positively associated). The regression of 
IRC/CIRS2 on the same variables showed that claudin-6 was a significant 
predictor (β = 0.404, t = 3.21, p = 0.002). Entering the five IgA composite 
scores (regression #7) shows that 28.3% of the variance in the IRS/CIRS 

TABLE 1 Socio-demographic, clinical and immune data in older adults divided into those with lower and higher peak Delirium Rating Scale, (DRS) 
scores on days 2 and 3 after surgery (peak DRS).

Variables Low peak DRS 
(N  =  36)

High peak DRS 
(N  =  23)

F/χ2 df P

DRS day0 2.28 (2.42) 3.48 (2.50) 3.36 1/57 0.072

DRS day1 1.86 (1.94) 4.87 (3.98) 15.06 1/57 <0.001

Peak DRS day2 + 3 2.15 (0.95) 6.78 (2.54) 54.69 1/57 <0.001

Age (years) 77.9 (7.7) 85.0 (5.9) 13.89 1/57 <0.001

Sex (F/M) 28/8 18/5 0.00 1 0.965

Education (years) 8.3 (5.4) 7.7 (6.4) 0.18 1/57 0.676

Body mass index (kg/m2) 22.02 (3.13) 21.51 (3.34) 0.33 1/57 0.567

Fall to hospital (hours) 2.2 (4.9) 1.3 (1.1) 0.61 1/57 0.439

Hospital to surgery (hours) 74.4 (76.2) 74.1 (58.5) 0.00 1/57 0.989

Length of stay (days) 9.2 (4.4) 12.1 (6.4) 4.29 1/57 0.043

Insomnia (0/1/2) 10/11/9 3/7/11 3.37 2 0.187

Blood loss (mL) 210.0 (115.6) 201.3 (107.0) 0.08 1/57 0.773

IRS (z scores) −0.255 (0.938) 0.424 (1.071) 6.50 1/57 0.013

CIRS (z scores) 0.042 (0.941) 0.086 (1.192) 0.03 1/57 0.876

IRS/CIRS (z scores) −0.258 (0.913) 0.392 (0.966) 6.69 1/57 0.012

IRS/CIRS2 (z scores) −0.219 (0.921) 0.343 (1.145) 4.69 1/57 0.035

Results are shown as mean (SD) or as ratios. F, results of analyses of variance; χ2, results of analysis of contingency tables. IRS, z unit-based composite score reflecting the immune-
inflammatory responses system; CIRS, z unit-based composite score reflecting the compensatory immune-regulatory system; Insomnia was scored as an ordinal variable, namely 0 (no 
symptoms), 1 (mild), and 2 (moderate to severe).
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ratio is explained by IgA to TJs, previous strokes, and age as explanatory 
factors. Entering IRS/CIRS2 as a dependent variable showed that TJ was 
the most significant composite (β = 0.431, t = 3.51, p = 0.001), whereas age 
and stroke were not significant. Finally, in regression #7, we have also 
added the IgG responses and found that 43.2% of the variance in the IRS/
CIRS ratio (regression #8) was explained by IgG to LBP + LPS day 0 and 
the same variables as in regression #7. Figure  3 shows the partial 
regression of the IRS/CIRS ratio on IgG to LBP + LPS. Entering IgG to 
CATACT (β =0.266, t = 2.33, p = 0.024), and TJs (β =0.270, t = 2.31, 
p = 0.025) instead of LBP + LPS in regression #8 showed that these IgG 
responses were also significant.

Figure 4 shows the results of a mediation PLS analysis with the 
changes in the DRS score from baseline to a few days later as the 
dependent variable and the IgA responses (entered as a factor 
extracted from the 5 IgA indices; labeled IgA responses) as the 
mediator between age and the changes in the DRS score. The IgA 
responses factor shows adequate validity (Cronbach’s alpha = 0.92; 
explained variance = 0.81, all loadings > 0.66) and the model quality 
fit data are adequate (SRMR = 0.036). There was a significant specific 
indirect effect of age on the DRS score that was completely mediated 
by the IgA responses (t = 1.98, p = 0.048). There was a significant 
direct effect of age on the IgA responses, and a significant total effect 
of age on the DRS score (t = 2.65, p = 0.008).

TABLE 2 Results of binary logistic regression analysis (LR) and generalized estimating equations (GEE) with the Delirium Rating Scale (DRS), either as 
binary or continuous score, as dependent variables, and IgA responses to self-antigens as explanatory variables.

DRS Binary (LR) B SE Wald (df  =  1) p OR 95% CI

IgA Bacterial 0.286 0.105 7.45 0.006 1.33 1.08; 1.63

IgA Tight Junctions 0.266 0.098 7.42 0.006 1.31 1.08; 1.58

IgA BBB 0.531 0.186 8.15 0.004 1.70 1.18; 2.45

IgA β-catenin-actin 0.528 0.185 8.19 0.004 1.70 1.18; 2.44

IgA LPS + LPB 0.517 0.201 6.59 0.010 1.68 1.13; 2.49

Peak DRS2 + 3 (GEE) B SE Lower 95% CI Higher 95% CI Wald (df = 1) p

IgA Bacterial 1.271 0.3862 0.514 2.028 10.83 <0.001

IgA Tight junctions 1.303 0.3911 0.536 2.069 11.09 <0.001

IgA Blood brain barrier 1.297 0.3962 0.521 2.073 10.72 0.001

IgA β-catenin-actin 1.314 0.3954 0.539 2.089 11.05 <0.001

IgA LPS + LPB 1.197 0.3942 0.425 1.970 9.22 0.002

IgA LPS 0.819 0.4310 −0.026 1.664 3.61 0.057

IgA LPB 1.219 0.3445 0.544 1.894 12.52 <0.001

IgA Zonulin 1.027 0.4146 0.214 1.839 6.14 0.013

IgA Occludin 1.245 0.3883 0.484 2.006 10.28 0.001

IgA Claudin-5 1.325 0.3822 0.576 2.074 12.02 <0.001

IgA Claudin-6 1.315 0.3867 0.557 2.073 11.56 <0.001

IgA S100B 1.178 0.4006 0.393 1.963 8.65 0.003

IgA β-catenin 1.255 0.3846 0.501 2.009 10.65 0.001

IgA Actin 1.203 0.3855 0.447 1.958 9.73 0.002

IgA CDT 1.304 0.4025 0.515 2.093 10.50 0.001

IgA P. gingivalis 1.145 0.4133 0.335 1.955 7.67 0.006

IgA H. pylori 1.221 0.4055 0.426 2.015 9.06 0.003

LPS, lipopolysaccharide; LBP, lipopolysaccharide binding protein; CDT, cytolethal distending toxin; P. gingivalis, Porphyromonas gingivalis; H. pylori, Helicobacter pylori; z composite IgA 
scores, see assays for computation.

TABLE 3 Intercorrelation matrix between the Delirium Rating Scale (DRS) 
scores, immune indices, and IgA responses to self-antigens.

Variables Basal 
DRS

Peak 
DRS 
2  +  3

Res 
peak 
DRS 
2  +  3

IRS CIRS IRS/
CIRS

IgA Bacterial 0.074 

(0.590)

0.438 

(<0.001)

0.461 

(<0.001)

0.422 

(0.001)

0.380 

(0.021)

0.380 

(0.004)

IgA Tight 

junctions

0.089 

(0.516)

0.436 

(<0.001)

0.491 

(<0.001)

0.473 

(<0.001)

0.339 

(0.011)

0.414 

(0.002)

IgA Blood 

brain barrier

0.077 

(0.573)

0.457 

(<0.001)

0.490 

(<0.001)

0.462 

(<0.001)

0.343 

(0.010)

0.392 

(0.003)

IgA 

β-catenin-

actin

0.158 

(0.246)

0.425 

(0.001)

0.483 

(<0.001)

0.407 

(0.002)

0.193 

(0.155)

0.344 

(0.009)

IgA 

LPS + LPB

0.089 

(0.514)

0.378 

(0.004)

0.399 

(0.002)

0.380 

(0.004)

0.232 

(086)

0.385 

(0.003)

Basal DRS, DRS score on day 0; peak DRS2 + 3, peak DRS scores on days 2 and 3 after 
surgery; res peak DRS, residualized changes in peak DRS2 + 3 scores after partialling out the 
effects of basal DRS (dubbed the residualized peak DRS2 + 3); IRS, z unit-based composite 
score reflecting the immune-inflammatory responses system; CIRS, z unit-based composite 
score reflecting the compensatory immunoregulatory system; z composite IgA scores, see 
assays for computation.
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Discussion

IgA biomarkers of delirium severity

The first major finding of this study is that delirium and DRS 
scores are predicted by IgA responses to bacterial, LPS-LBP, TJ, BBB 
breakdown, and CATACT in older adults with hip fractures. To our 
knowledge, this is the first study demonstrating an association 
between delirium severity and IgA responses to LPS, LPB, CDT, 
H. pylori, zonulin, occludin, claudin-5, claudin-6, β-catenin, and actin. 

These findings extend those of previous publications showing an 
association between delirium and P. gingivalis (63), and S100B 
(64, 65).

Older adults who were exposed to hip fracture surgery, trauma with 
connective tissue injury, perioperative state, ICU stay, dehydration and 
hypoxemia, infection, and metabolic impairment are more vulnerable to 
developing delirium syndrome, especially when they have neurocognitive 
impairments (6). These precipitating factors may aggravate various 
upstream processes of circadian dysregulation (66), HPA axis 
dysregulation (67), oxidative stress (68), and neuro-inflammation (69), 

TABLE 4 Results of multiple regression analyses with the peak Delirium Rating Scale, Revised-98-Thai version (DRS) scores on days 2 and 3 post-
surgery, DRS score on day 1, and immune indices as dependent variables.

Dependent 
variables

Explanatory 
variables

B t p F model df p R2

# 1 Peak DRS2 + 3 Model 16.51 3/53 <0.001 0.483

DRS Day 0 0.415 4.11 <0.001

IgA CDT 0.429 4.29 <0.001

Previous stroke 0.280 2.77 0.008

#2 Peak DRS2 + 3 Model 11.57 4/52 <0.001 0.471

IgA Claudin-6 0.450 4.27 <0.001

Stroke 0.281 2.73 0.009

Age 0.331 3.18 0.003

SSRI 0.243 2.30 0.025

#3 DRS Day 0 Model 11.62 2/54 <0.001 0.301

Age 0.484 4.22 <0.001

SSRI 0.329 2.87 0.006

#4 Peak DRS2 + 3 Model 14.44 3/53 <0.001 0.450

DRS Day-1 0.448 4.31 <0.001

IgA CATACT 0.345 3.36 0.001

Previous stroke 0.231 2.25 0.29

#5 Peak DRS2 + 3 Model 11.57 3/53 <0.001 0.396

IgA BBB 0.382 3.47 <0.001

Previous stroke 0.324 3.03 0.004

Age 0.311 2.82 0.007

#6 IRS/CIRS Model 6.99 3/53 <0.001 0.284

IgA Claudin-6 0.342 2.86 0.006

Previous stroke 0.276 2.37 0.021

Age 0.247 2.07 0.044

#7 IRS/CIRS Model 6.96 3/53 <0.001 0.283

IgA TJs 0.341 2.84 0.006

Previous stroke 0.272 2.33 0.023

Age 0.244 2.03 00.47

#8 IRS/CIRS Model 9.68 4/51 <0.001 0.432

IgA TJs 0.296 2.66 0.011

IgG LPB + LPS 0.375 3.40 0.001

Age 0.333 2.61 0.012

Previous stroke 0.244 2.30 0.026

CDT, cytolethal distending toxin; LBP, lipopolysaccharide binding protein; LPS, lipopolysaccharide; BBB, blood brain barrier; TJs, tight junctions; IRS, z unit-based composite score reflecting 
the immune-inflammatory responses system; CIRS, z unit-based composite score reflecting the compensatory immunoregulatory system.
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which consequently and interactively may cause neurotransmitter 
dysregulation (70) and neuronal network disconnection (71), which are 
clinically expressed as delirium (9, 10, 72). Therefore, the immune 
findings from this study indicate that, apart from the above risk factors, 
bacterial translocation (LPS-LPB) (73, 74), gut-blood–brain barrier 
dysfunctions [zonulin (75), occludin and claudin (76, 77)] are involved, 
as indicated by animal models and human studies.

Interestingly, the current immune findings in delirium partly 
overlap with previous findings in schizophrenia. Thus, in 
schizophrenia, several studies reported significant associations with 
increased bacterial translocation (78–80), breakdown of transcellular 
and paracellular tight/adherens junction barriers (23, 81, 82), as well 

as the BBB (24, 83). Moreover, our study demonstrated a significant 
association between increased levels of IgA in P. gingivalis, H. pylori, 
and CDT (and their z composite score) and delirium severity. 
P. gingivalis is a Gram-negative bacterium found in the oral mucosa 
and is reported to be  involved with periodontitis and low-grade 
systemic inflammation-related diseases such as atherosclerosis, 
diabetes, cancer, depression, and schizophrenia (84, 85). Similarly, 
H. pylori infection directly contributes to localized inflammation and 
is indirectly associated with cardiovascular disease, metabolic 
syndrome, autoimmune diseases, and Parkinson’s disease (86, 87). 
Both bacteria were evidently associated with the development of 
Alzheimer’s disease and other dementia syndromes (88–90).

FIGURE 1

Partial regression of peak Delirium Rating Scale (DRS) scores on IgA to bacterial cytolethal distending toxin (BCDT).

FIGURE 2

Partial regression of peak Delirium Rating Scale (DRS) scores on IgA to the β-catenin-actin (CATACT) complex.
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The results of this study also demonstrated a significant 
association between delirium and IgA responses to the LPS + LPB 
complex and CDT. LPS (endotoxin) and its systemic response protein 
secreted from the liver (LBP), jointly form the LPS-LPB complex (91). 
Therefore, these IgA responses are indicants of increased bacterial 
load in peripheral blood (25). Moreover, the LPS-LBP complex in 
peripheral blood may further activate the innate immune system and 
pro-inflammatory cytokines via activating the TLR-4 pathway (34, 
35). Elevated CDT may dysregulate the immune-inflammatory system 
by breaking the intra-cellular and intra-nucleus cascades, leading to 

an apoptotic process in epithelial barrier cells and acquired immune 
lymphocytes, and activating pro-inflammatory cytokine-secreting 
macrophages (92, 93).

Our study also shows significant correlations between IgA 
directed to claudin-5, occludin, zonulin, and tight junctions, and 
increased DRS-R-T scores. Tight junctions are located at the apical 
intercellular area of the intestinal epithelial cell lines, and function 
as a barrier between the intraluminal and systemic parts of the 
gastrointestinal tract (94). Claudins are transmembrane proteins 
located at the inner and outer rims of the tight junctions and 

FIGURE 3

Partial regression of the immune response system (IRS)/compensatory immunoregulatory system (CIRS) on IgA to the lipopolysaccharide (LPS)—LPS-
binding protein (LBP  +  LPS) complex.

FIGURE 4

Results of partial least squares analysis. The outcome is the residualized (res) endpoint Delirium Rating Scale (DRS) score value (baseline values covaried 
out). The predictors are a factor extracted from 5 IgA responses (labeled IgA responses) to antigens, and age whereby the latter is allowed to predict 
the IgA responses. Shown are the pathway coefficients (with p-values). The figures in the blue circles denote the explained variances. The IgA 
responses combine blood brain barrier, lipopolysaccharides, lipoprotein binding protein, bacterial load in the bloodstream, catenin and actin, and tight 
junctions proteins.

https://doi.org/10.3389/fneur.2024.1294689
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Thisayakorn et al. 10.3389/fneur.2024.1294689

Frontiers in Neurology 10 frontiersin.org

coupled with occludins, which maintain the structural integrity of 
the tight junctions, and function as gatekeepers of the paracellular 
route (95, 96). Zonulin, on the other hand, induces the breakdown 
of the tight junctions, and increased zonulin levels indicate a leaky 
gut (97).

Adherens junctions (AJs) are located underneath the tight 
junction in the paracellular pathway and comprise the transmembrane 
E-cadherin protein, cytoplasmic alpha-and beta-catenin binding 
proteins, and cytoskeletal actin components (98). AJs support inter-
epithelial barrier functions, maintain cell and tissue architecture, 
cytoskeletal regulation, and cell signaling and gene transcription (99, 
100). All in all, these IgA findings imply a leaky gut, namely the 
breakdown of TJs and AJs and increased translocation of common 
Gram-negative or Gram-positive microbiota or their detrimental 
antigens into the systemic circulation. These mechanisms are 
frequently associated with TLR-4 complex activation and increased 
inflammatory signaling, which may result in systemic diseases 
(31, 101).

It should be  stressed that the delirious patients in our study 
showed significantly increased IgA reactivity to S100B, and 
claudin-5, which are specific products of BBB breakdown. As such, 
these findings, together with increased IgA reactivity to TJ and AJ 
antigens, not only indicate gut barrier impairments but also 
represent damage to the BBB. Significant evidence of the disruption 
of the gastrointestinal (gut) and blood–brain barriers (BBB) has 
been observed in individuals with neurocognitive impairments, 
autism, and schizophrenia (24, 42, 59, 102). Notably, certain 
conditions that increase the likelihood of delirium are also linked to 
both increased intestinal permeability and the translocation of LPS 
or bacteria from the gut into the bloodstream causing tissue damage 
(103), bone fracture (104, 105), aging (106), stroke (107), sepsis 
(108, 109), liver failure (110, 111), uremia (112, 113), alcohol (114, 
115), malnutrition (116, 117), and psychological stressors (118, 119). 
Furthermore, these risk variables were also linked to BBB 
disintegration (120–127), which is considered a prevalent and 
significant contributing factor to delirium (128).

IgA and IgG reactivity, IRS/CIRS, and cell–
cell interactions in delirium

The second major finding of this study is that IRS activation in the 
postoperative period is strongly associated with IgA responses to 
paracellular and BBB composites and bacterial antigens, and in addition 
to IgG levels directed to TJs, and LBP + LPS and β-catenin/actin. 
We previously reported that the onset and severity of delirium are 
significantly correlated with IRS activation, including increased M1 
(with IL-6, IL-8, and TNF-α), Th1, Th17, and T cell growth profiles 
(13). Consequently, our results indicate that leaky barriers and bacterial 
antigens increase the risk of delirium in part by activating the IRS. It is 
interesting to note that IgA/IgG responses observed in our study were 
strongly associated with IRS activation and did not impact the CIRS.

Moreover, natural polyreactive IgA antibodies (PABs) such as 
those determined here may induce immune-inflammatory responses 
and contribute to inflammatory disorders and autoimmunity (28, 
129). Furthermore, PAB administration to the brain may cause 
damage to neuronal circuits (65), and low-affinity PABs may serve as 
precursors for high-affinity pathogenic Abs (66). Therefore, our data 

imply that increased IgA reactivity may further enhance IRS activation 
(130–133). Moreover, increased IgA directed to β-catenin may also 
implicate cadherin signaling, cell–cell interactions, and thus 
intracellular signal transduction, cell proliferation, cell migration, and 
apoptosis (134).

Limitations

A limitation of this study could be the smaller sample size of older 
adults with hip fractures. Nevertheless, the a priori estimated sample 
size was at least 49 when considering an effect size of 0.30, an alpha of 
0.05, and a power of 0.80. Furthermore, the actual power for the 
regression analyses performed in this study (see Table 4) with the DRS 
scores as dependent variables, alpha = 0.05, n = 59, and 3 predictors (see 
Table 1) was 0.999, indicating a well-powered study. Future studies 
should be carried out to replicate these findings in other countries and 
cultures. An open question is whether these biomarkers are traits (risk 
factors of post-injury delirium) or state biomarkers of delirium. 
Therefore, future research should measure these biomarkers before 
trauma and surgery and again after surgery. It would also be interesting 
to assess the enterotype of gut dysbiosis in delirium to examine whether 
gut dysbiosis contributes to delirium via the increased leaky gut.

Another concern could be  that BBB breakdown composite 
markers measured in the blood may be insufficient to conclude that 
increased BBB permeability is a risk factor for delirium. Nevertheless, 
many different findings in patients with delirium indicate that BBB 
breakdown is involved: (a) damage to the most important proteins of 
the paracellular pathway (as indicated by our findings) plays a role in 
BBB disruption (135). Furthermore, alterations in the tight junction 
protein complexes (as detected in our study) are known to result in 
increased paracellular permeability leading to increased BBB 
permeability (136). (b) peripheral inflammation with increased levels 
of some pro-inflammatory cytokines as detected in delirium (13) is 
known to lead to BBB disruption (137, 138). (c) Previously, we have 
shown increased autoimmunity against neuronal self-epitopes 
indicating glial fibrillary acidic protein, neurofilament protein, glial 
fibrillary acidic protein, myelin basic protein, myelin oligodendrocyte 
glycoprotein, metabotropic glutamate receptors mGluRs 1 and 5, 
N-Methyl-D-Aspartate receptor (NMDAR) GLU1 (NR1) and GLU2 
(NR2) (62). In addition, these indicants of damage to neural tissue 
epitopes are associated with signs of peripheral immune activation 
and severity of delirium (62). Future research should measure other 
specific biomarkers of BBB breakdown in delirious patients, such as 
increased leakage of gadolinium as assessed using magnetic resonance 
imaging, increased CSF plasminogen and fibrinogen, and increased 
peripheral blood neuron-specific enolase (NSE) (139, 140).

Lastly, the difference in age between patients with high and low 
peak DRS scores and the knowledge that IgA levels may increase with 
age (141) may be perceived by some as a limitation of this study. 
Nevertheless, our study is not a case–control study, but a cohort study 
that examines the predictive effects of baseline risk factors (IgA levels 
and age, and other) on the onset of delirium 2–3 days later. As such, 
the primary outcome of this cohort study is the regression of the 
changes in the DRS scores on the basal risk factors. Since age is a risk 
factor of delirium (13), it is natural that in our cohort study, those with 
higher DRS scores have a higher age. To identify the risk factors for 
increased DRS scores, including IgA responses to self-epitopes, and 
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bacterial antigens, age, and comorbidities, we conducted a prospective 
cohort study with patients exposed to the same injury. Therefore, the 
primary analyses of this study are the multiple regression analyses that 
characterize the risk factors for delirium severity and not the 
comparison between patients with low and high DRS scores. These are 
only displayed to illustrate the mean values of the measured variables. 
It should be noted that matching the delirium and control groups by 
age would result in selection bias due to the partial restriction imposed 
by group selection. This methodology would result in gains or losses 
in multiple regression analyses and, by implication, imprecision. Any 
such selection or matching based on age has the potential to introduce 
substantial bias into the regression results (13). By employing 
mediation analysis, we investigated the relationships between age, IgA 
responses, and changes in the DRS score. Our findings indicate that 
IgA responses play a substantial mediating role in the effects of age on 
changes in the DRS score. In other words, our prospective cohort 
study found that higher IgA responses can be considered as biomarkers 
of post-surgery delirium in old adults. It is important to replicate and 
validate our cohort study in different nations and cultures. 
Additionally, case–control studies should investigate whether these 
potential predictive biomarkers may be used as diagnostic biomarkers.

Conclusion

Aberrations in the tight and adherens junctions of the paracellular 
pathway of the gut and BBB barriers, increased bacterial translocation 
and LPS and DCT load in the systemic circulation, and cell–cell 
interactions are identified as risk factors of delirium in older adults 
after hip fracture surgery. IgA/IgG reactivity to the antigens measured 
here may contribute to IRS activation, which is another 
pathophysiological factor leading to delirium and which could 
mediate at least in part the effects of IgA/IgG responses on delirium. 
Consequently, leaky gut, translocation of bacterial antigens, IRS 
activation, and BBB disruption are new drug targets to treat and 
potentially prevent delirium. The data from animal and human studies 
demonstrate the use of antioxidants, including zinc and glutamine, 
norfloxacin, infliximab, tofacitinib, CKD-506, and larazotide acetate 
to restore the leaky gut barrier and prevent or attenuate bacterial 
translocation (142–146). Minocycline, raparixin, atorvastatin, 
melatonin, and mesenchymal stromal cell therapy may promote BBB 
restoration in various neurological conditions (147, 148).
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