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Objective: Most brain function assessments for disorders of consciousness

(DOC) utilized quantified characteristics, measured only once, ignoring the

variation of patients’ brain states. The study aims to investigate the brain activities

of patients with DOC from a new perspective: variability of a large timescale

functional network.

Methods: Forty-nine patients were enrolled in this study and performed

a 1-week behavioral assessment. Subsequently, each patient received

electroencephalography (EEG) recordings five times daily at 2-h intervals.

Functional connectivity and networks were measured by weighted phase

lag index and complex network parameters (characteristic path length, cluster

coe�cient, and betweenness centrality). The relative coe�cient of variation (CV)

of network parameters was measured to evaluate functional network variability.

Results: Functional networks of patients with vegetative state/unresponsive

wakefulness syndrome (VS/UWS) showed significantly higher segregation

(characteristic path length) and lower centrality (betweenness centrality) than

emerging from theminimal conscious state (EMCS) andminimal conscious state

(MCS), as well as lower integration (cluster coe�cient) than MCS. The functional

networks of VS/UWS patients consistently presented the highest variability in

segregation and integration (i.e., highest CV values of characteristic path length

and cluster coe�cient) on a larger time scale than MCS and EMCS. Moreover,

the CV values of characteristic path length and cluster coe�cient showed a

significant inverse correlation with the Coma Recovery Scale-Revised scores

(CRS-R). The CV values of network betweenness centrality, particularly of the

cento-parietal region, showed a positive correlation with the CRS-R.

Conclusion: The functional networks of VS/UWS patients present the most

invariant segregation and integration but divergent centrality on the large time

scale networks than MCS and EMCS.

Significance: The variations observedwithin large timescale functional networks

significantly correlate with the degree of consciousness impairment. This

finding augments our understanding of the neurophysiological mechanisms

underpinning disorders of consciousness.

KEYWORDS

disorders of consciousness, EEG, functional connectivity, complex network, assessment

of brain function

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1283140
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1283140&domain=pdf&date_stamp=2024-02-15
mailto:104216321@qq.com
mailto:youdianhz@163.com
https://doi.org/10.3389/fneur.2024.1283140
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2024.1283140/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Gong et al. 10.3389/fneur.2024.1283140

Introduction

The human brain consists of approximately one hundred

billion neurons interconnected by thousands of trillions of

synapses. Its intricacy extends beyond mere numerical metrics,

encompassing the hierarchical arrangement of connections across

various scales. The configurations of these connections give

rise to functions, including consciousness (1, 2). Disorders of

consciousness (DOC) include complicated clinical symptoms (3).

Patients can be categorized into a vegetative state/unresponsive

wakefulness syndrome (VS/UWS) or a minimally conscious state

(MCS) based on their responsiveness to external stimuli (4). UWS

patients maintain behavioral arousal but lack awareness (5, 6).

MCS patients show signs of varying, yet reproducible, remnants

of non-reflex behaviors (7). Patients who have regained accurate

communication and/or functional use of objects are defined as

emergence from MCS (EMCS) patients. Recently, with the rapid

development of techniques, studies have attempted to uncover the

mystery of consciousness injury with different perspectives, such

as neuro-image (8, 9), neuro-spectroscopy (10, 11), and electro-

neurophysiology (12, 13). However, patients with DOC underwent

different types of brain injury and generated significant individual

differences, such as lesion size and location. These etiological

variations pose challenges to group studies on DOC patients. Thus,

far, it is still insufficient to recognize the brain states of patients

with DOC.

Electroencephalography (EEG) is commonly used in assessing

brain activities in patients with brain diseases. Existing research has

leveraged EEG to evaluate various aspects in patients with DOC,

including the resting-state brain condition (13), event-related brain

activities (14), sleeping (15), and neural responsiveness (16). Of

these, resting-state EEG is particularly informative in monitoring

and capturing the characteristics of patients’ foundational neural

activities (17). It provides several dimensionalities to describe the

brain conditions of patients with DOC, with the functional network

emerging as a key dimension in resting-state EEG analysis. It

quantifies the capacity of information interaction within different

neural units of the brain. Studies have revealed that information

interaction and integration are important characteristics of human

consciousness (18). Therefore, the functional network is intimately

linked to consciousness injury and recovery of patients with

DOC (19, 20). Studies have revealed that patients with preserved

functional networks are more likely to exhibit consciousness

signs (21, 22). Compared with MCS patients, VS/UWS patients

have always shown significantly worse functional networks (e.g.,

decreased network interaction) (23). Moreover, the functional

network (alpha participation coefficients) has shown a close

association with patients’ brain metabolism (24) and sensitivity to

brain intervention (25). Studies show that a functional network

measurement is a critical approach for assessing the brain states of

patients with DOC and exploring the underlying mechanisms of

conscious injury and rehabilitation.

Studies have shown that the brain state of patients with

DOC tends to vary (26–28). Such a conscious variation is

one of the critical impacts of misdiagnosis using behavioral

scales (27). Notably, the Coma Recovery Scale-Revised (CRS-R)

assessment yields inconsistent results, with patients performing

better in the morning than in the afternoon, even on the

same day (29). This variation has also been evidenced in EEG

studies leading to inconsistent diagnoses when comparing results

from the CRS-R and a combination of transcranial magnetic

stimulation and EEG (30). Moreover, the same patients also

showed various perturbational complexity indexes at different

time points (31). Periodic variations (roughly every 70min) have

been reported in MCS patients using resting-state EEG, with

no distinct periodicity in UWS patients (32). Cai et al. (33)

found a flexible network (transition of community assignment)

of DOC patients on the second scale, suggesting that the

presence of various brain conditions is a foundational property

in DOC patients. However, despite these findings, brain network

studies typically rely on single-time measurements of quantified

characteristics, overlooking potential network variations in DOC

patients, especially on a larger time scale. This study hypothesized

that the large timescale variation of brain networks might be

correlated with the extent of consciousness injury.

Based on the above considerations, this study measured the

functional connectivity and networks of patients with DOC on a

large time scale and explored the variability of these characteristics.

Methods and materials

Patients

Forty-nine patients (age: 54 ± 12 years; men: n = 29 and

women: n = 20) diagnosed with DOC (EMCS, n = 10; MCS,

n = 16; VS/UWS, n = 23) were enrolled in this study. The

statistical characteristics of the patients are listed in Table 1. The

details of the patients are given in Supplementary Table 1. All

the patients had no history of epilepsy, pacemakers, aneurysm

clips, neurostimulators, or brain/subdural electrodes. Patients in

the study had not received treatments with zolpidem, modafinil,

amantadine, midazolam, or baclofen. All the patients were free

from acute medical complications (e.g., acute pneumonia) for

at least 2 weeks prior to the commencement of the study. The

patients had a clear, long-lasting wakeful state time in the day,

as reported daily by their nurses. During the experiment, all

the patients received consistent routine medications (physical

treatment) and nursing (including nutrition and massage) within a

controlled environment of room temperature and light. Caregivers

provided written informed consent for participation. According

to the Declaration of Helsinki, this study was approved by the

ethics committee of the Affiliated Hospital of Hangzhou Normal

University.

Behavioral evaluation

A trained neurologist conducted a CRS-R (34) evaluation for

1 week, comprising at least five assessments during the afternoon

sessions on separate days. The CRS-R scale includes six items that

test auditory, visual, motor, oromotor, communication, and arousal

functions. CRS-R is both quantitative (scores range from 0 to 23)

and qualitative, with some key behaviors defining different states
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TABLE 1 Characteristics of the patients.

Characteristic Value

Age 54± 12 years

Gender Male= 29; Female= 20

Time from onset of acute brain

injury

3.3± 2 months, range: 2–12

Cause of acute brain injury: (number of patients)

Cardiac arrest 6

Intracerebral hemorrhage 13

Traumatic brain injury or subdural

hematoma

18

Subarachnoid hemorrhage 12

Coma recovery scale-revised score

Vegetative state n= 23, score: 5.0± 1.2

Minimally conscious state n= 16, score: 9.2± 2.8

Emerge minimally conscious state n= 10, score: 20.6± 2.6

of consciousness (coma, VS/UWS, MCS, or EMCS). After repeated

CRS-R tests, the neurologist used the highest scores to diagnose the

patients’ states: VS/UWS, MCS, and EMCS.

EEG recording and pre-processing

This study conducted EEG recordings 1 to 2 days after the

diagnosis assessment. Each patient received EEG recordings five

times at different time points in the day (T1, 9:00; T2, 11:00; T3,

13:00; T4, 15:00; T5, 17:00), each lasting for 15min. Before each

recording, a CRS-R arousal facilitation protocol was performed on

the patients to maintain their arousal. No nutrition was given at

least half an hour before and during the EEG recordings. All the

patients lay on the bed and remained in an arousal state (open

eyes) during the EEG recordings. The patients were monitored for

possible EEG signs of drowsiness and sleep onset (i.e., an increase

in tonic theta rhythms and sleep spindles). The recording would

be momentarily interrupted to apply the CRS-R arousal facilitation

protocols in case of drowsiness or sleep.

Each EEG recording was performed using a 32-channel EEG

recorder (BrainAmp 32 MRplus, BrainProducts) under consistent

conditions. The EEG cap includes 30 data recording channels (Fp1,

Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8,

TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, O1, Oz, and

O2), a reference electrode (location at FCz), and a ground (location

at AFz) electrode according to the 10/10 international system.

The equipment used sintered Ag/AgCl pin electrodes. We set a

bandpass filtered at DC to 1,000Hz in the recorder, with the EEG

signals digitized at a sampling rate of 2.5 kHz. The skin/electrode

impedance was maintained below 5 kΩ .

An offline pre-processing was performed using EEGLAB

12.0.2.5b, running in a MATLAB environment (version 2013b,

MathWorks Inc., Natick, USA). The EEG data were downsampled

to 500Hz and bandpass filtered (1–45Hz). Bad channels were

automatically detected and rejected using statistical methods based

on the spectrum and kurtosis distribution (35). The missing

channels were interpolated by superfast spherical interpolation.

The EEG signals were divided into non-overlapping epochs (10 s

each) for pre-processing. Bad trials were further identified and

rejected by combining the automatic probability distribution

measurement and visual inspection. The data would be rejected

if the number of bad epochs was over 30%. Moreover, a

fast, independent component analysis (using the Tanh contrast

function) was conducted. Each component’s topography and

spectrum were visually inspected to identify and remove artifact

components, including eye movement, heartbeat, and muscle

activities (Supplementary Figure 1). Finally, after aligning to a

common average reference, we obtained clean epochs from each

patient, ready for network analysis.

Brain network analysis

The weighted phase lag index (wPLI) is a conservative

measure of phase synchronization between electrodes, allowing

investigation of phase synchronization characteristics while

negating the adverse impact of volume conduction (36). The wPLI

was computed for each EEG channel across the other channels

based on the following equation (36):
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where i and j are the channel indices, Xi is the time-frequency

spectrum of channel i, X∗
j is the complex conjugate of Xj,

I

{

XiX
∗
j

}

is an imaginary section of the cross-frequency spectra

XiX
∗
j , E {.} is the expected value operator, and sgn {.} is the sign

function operator. In practice, we used the Hilbert transform to

obtain the time-frequency spectrum of signals with frequency

band at 1–45Hz, the other parameters included window length

of 2s and overlapping of 1s. The functional connectivity patterns

were obtained after the wPLI measurement, each node’s degree

representing the mean intensity of its connectivity with other

nodes. Each connectivity pattern (T1, T2, T3, T4, and T5) from the

epochs of each EEG recording was consolidated. To quantify the

network variability, we measured the similarity of the connectivity

patterns using normalized mutual information (NMI) (37–39) for

each pairwise neighboring epoch. NMI is a metric commonly used

in information theory and data clustering to quantify the degree of

similarity between two datasets based on the following equation.

It measures the mutual dependence between the datasets while

accounting for differences in their sizes. The normalization aspect

ensures that the value falls within a standardized range, facilitating

comparisons across different datasets or clustering algorithms.

NMI (A,B) =
−2

∑CA
i=1

∑CB
j=1 Nij log(

NijN

NiNj
)

∑CA
i=1 Ni log(

Ni
N )+

∑CB
j=1 Nj log(

Nj

N )

where A and B are different patterns, CA is the number of modules

in pattern A, and CB is the number of modules in pattern B. N

shows the number of nodes, which is the same in both patterns,
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andNij is the overlap between A’s module i and B’s module j, i.e., the

number of nodes that the modules have in common; Ni is the total

number of nodes in A’s module i; Nj is the total number of nodes

in B’s module j. The NMI ranges from 0 to 1, where 0 signifies that

the patterns are totally independent and 1 signifies that they are

identical (40).

Each pairwise neighboring pattern generated an NMI value

(a larger value indicates more similarity). The global explained

variance (GEV) (41) was used to measure the total variability

explained by an average pattern among the connectivity patterns,

with a higher GEV implying less variability. In this way, the GEV

values and the average of the NMI values could index the variability

of the functional connectivity patterns for the patients.

Brain networks are invariably complex, share a number of

common features with networks from other biological and physical

systems, and may hence be characterized using complex network

methods. Complex network analysis describes important properties

of complex systems by quantifying topologies of their respective

network representations (1). The average shortest path length

between all pairs of nodes in the network is known as the

characteristic path length of the network (42) and is the most

commonly used measure of functional integration.

L =
1

n

∑

i∈N

Li =
1

n

∑

i∈N

∑

j∈N,j6=i dij

n− 1

where Li is the average distance between node i and all other

nodes, and dij is the shortest path length (distance) between node

i and j. Characteristic path length reflects the overall efficiency of

information integration between different brain regions. Locally,

the fraction of triangles around an individual node is known as

the cluster coefficient and is equivalent to the fraction of the node’s

neighbors that are also neighbors of each other (42).

C =
1

n

∑

i∈N

Ci =
1

n

∑

i∈N

2ti

ki(ki − 1)

where Ci is the clustering coefficient of node i (Ci = 0 for ki <

2), and ti is the number of triangles around node i. It reflects the

information processing efficiency of the local brain area of the brain

network. Betweenness centrality is defined as the fraction of all

shortest paths in the network that pass through a given node (43).

bi =
1

(n− 1)(n− 2)

∑

h,j∈N,
h6=j,h6=i,j6=i,

ρhj(i)

ρhj

where ρhj is the number of shortest paths between h and j, and

ρhj (i) is the number of shortest paths between h and j that pass

through i. Betweenness centrality can find the vertices that have

a great influence on the information flow of the graph, and the

larger the value, the greater the influence of the vertices on the

information flow.

The connectivity patterns can be modeled as networks, with the

electrodes as nodes, and the wPLIi,j values denote the connection

strength. The connectivity patterns were submitted to the graph

theory algorithms implemented in the Brain Connectivity Toolbox

(44) to calculate the metrics that captured the key topological

characteristics of the graphs, such as the micro-scale cluster

coefficient (segregation), the macro-scale characteristic path length

(integration), and betweenness centrality (centrality). There is no

thresholding involved in the computation of the key topological

characteristics of the graphs. It is worth noting that for each EEG

recording (T1-T5), we first calculated the functional connectivity

and corresponding network characteristics of each epoch (10s) and

then took the average across all epochs. Furthermore, for each

patient, we measured the relative coefficient of variation (CV)

(ratio of the standard deviation to the mean) among the network

parameters obtained from the five recordings. The CV values of

the network parameters were used to quantify the variability of the

functional networks.

Statistical analyses

Statistical analyses were performed using SPSS version 20.0

(SPSS Inc., Chicago, IL, USA). The significance of the NMI and

GEV values between the pairwise diagnosis groups was tested by the

Mann-WhitneyU test. Bonferroni corrections were conducted after

multi-comparison (three comparisons VS/UWS vs. MCS, VS/UWS

vs. EMCS, and MCS vs. EMCS). The Mann-Whitney U test

combined with the Bonferroni correction (three comparisons) was

used to test the significance of average degree values, characteristic

path length, cluster coefficient, and betweenness centrality in each

pairwise diagnosis group. The significance of the CV values of

degree value or betweenness in diagnosis group contrast was tested

by the Friedman test in each electrode. The false discovery rate

correction (Q = 0.05) was used to correct the p-values after multi-

comparisons (30 comparisons for each diagnosis group). The CV

values of functional networks (characteristic path length, cluster

coefficient, and betweenness centrality) were compared between

the pairwise diagnosis groups using the Mann-Whitney U test

with Bonferroni corrections. The Kendall correlation measured

correlational analyses of the CV values with the patients’ CRS-

R. All the presented p-values were obtained after the multi-

comparison correction.

Results

The average degree (among all five recordings) showed

significance (p = 0.020, Kruskal-Wallis test) between the diagnosis

groups (three levels: VS/UWS, MCS, and EMCS) (Figure 1A). The

pairwise tests showed a significantly lower (p = 0.016, Mann-

Whitney U test) average degree value of VS/UWS (mean ± 1SD,

3.291 ± 0.512) than EMCS (mean ± 1SD, 4.202 ± 0.659) patients.

There was no significant difference between theMCS and VS/UWS.

On the electrode level, the parietal region of MCS and EMCS

patients demonstrated higher degree values but lower coefficient of

variation (CV) values than those of VS/UWS (Figure 1B).

The NMI indexed the connectivity similarity of the pairwise

neighboring recording. The NMI values of the EMCS patients

(median ± IQR, 0.356 ± 0.112) were significantly higher (p

= 0.010, Mann-Whitney U test) than those of the VS/UWS

(median ± IQR, 0.259 ± 0.110) patients (Figure 2A). There

was no significant difference between MCS and the other two
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FIGURE 1

Similarity of the connectivity patterns in vegetative state/unresponsive wakefulness syndrome (VS/UWS), minimal conscious state (MCS), and

emergence from MCS (EMCS). (A) The bars show the average degree values of the patients at five-time recordings (T1, T2, T3, T4, and T5). The

Kruskal-Wallis test was used to test the significance of the average degree (among all five recordings) across the diagnosis groups (VS/UWS, MCS,

and EMCS). The pairwise test used the Mann-Whitney U test with Bonferroni correction. *Significant di�erence, p < 0.05. (B) The topographies show

the degree values averaged among the five recordings of the electrodes (upper) as well as their CV values (lower).

groups (VS/UWS, EMCS patients). In the variability measurement

(Figure 2B), the average connectivity patterns explained more

variability with significantly lower GEV values in EMCS patients

(median± IQR, 0.031± 0.012) than inMCS (median± IQR, 0.038

± 0.021) (p = 0.020, Mann-Whitney U test) and UWS patients

(median± IQR, 0.043± 0.014) (p= 0.020, Mann-Whitney U test).

On an electrode level, EMCS showed significantly lower (p < 0.05,

Friedman test with FDR correction) degree CV values than MCS in

7/30 electrodes than VS/UWS in 15/30 electrodes (Figure 2C).

Figures 3A–C show the path length, cluster coefficient values,

and betweenness centrality of all the patients in each EEG

recording. VS/UWS patients showed significantly higher (p =

0.010, Mann-Whitney U test) (Figure 3A) characteristic length

path (mean ± 1SD, 15.493 ± 4.031 vs. 10.620 ± 2.545) and

lower (p = 0.015, Mann-Whitney U test) cluster coefficient (mean

± 1SD, 0.054 ± 0.013 vs. 0.077 ± 0.017) (Figure 3B) than EMCS

patients. However, betweenness centrality did not show significant

differences in VS/UWS, MCS, and EMCS.

VS/UWS patients showed significantly lower average

betweenness than MCS (mean ± 1SD, 0.045 ± 0.025 vs.

0.098 ± 0.042, p < 0.001, Mann-Whitney U test) and EMCS

patients (mean ± 1SD, 0.045 ± 0.025 vs. 0.096 ± 0.049, p < 0.001,

Mann-Whitney U test). The betweenness showed higher CV values

in centro-parietal electrodes in MCS and EMCS patients than in

VS/UWS patients (Figure 4A). Notably, the VS/UWS patients had

significantly lower (p < 0.05, Friedman test with FDR correction)

CV values of betweenness than EMCS in Cz, C3, C4, CP1, CP2, Pz,

P3, and P4 electrodes and significantly lower CV values than MCS

in F3, Cz, C3, Pz, P3, and P4 (Figure 4B).

The CV values of the characteristic path length of the EMCS

patients were significantly lower than those of the VS/UWS

(median± IQR, 0.054± 0.026 vs. 0.101± 0.054, p= 0.009, Mann-

Whitney U test) and MCS (median ± IQR, 0.054 ± 0.026 vs. 0.080

± 0.067, p= 0.040, Mann-Whitney U test) groups (Figure 5A). The

patients’ CRS-R scores showed a significantly negative correlation

(r = −0.46, p < 0.001) (Figure 6A). The CV values of cluster

coefficient from EMCS patients were significantly lower than those

of the VS/UWS (median± IQR, 0.055± 0.036 vs. 0.115± 0.0734, p

= 0.009,Mann-WhitneyU test), but not than those ofMCS patients

(median± IQR, 0.055± 0.036 vs. 0.091± 0.0788, p > 0.05, Mann-

Whitney U test) (Figure 5B). The patients’ CRS-R scores showed a

negative correlation (r = −0.47, p < 0.001) (Figure 6B). Notably,

the VS/UWS patients had significantly lower (p < 0.05, Friedman

test with FDR correction) CV values of betweenness centrality than

the MCS and EMCS groups (Figure 5C). Additionally, a strong

positive correlation (r = 0.605, p < 0.001) was observed between

the CRS-R scores of the patients and the betweenness CV values

(Figure 6C).

Discussion

This study recorded EEG repeatedly (five times at 2-h intervals

in a day) from patients with DOC and investigated the variability

of functional connectivity patterns and networks on large time

scales. The DOC patients showed different network variabilities

between VS/UWS and MCS. Specifically, the VS/UWS patients

demonstrated greater network variability than the MCS and

EMCS patients. This variability was attributed to similarity, GEV

measurement of connectivity patterns, and network integration

and segregation of CV values.

Naro et al. (45) addressed functional connectivity dynamics

in patients with DOC. Although no quantified analysis was

conducted, we observed significant functional connectivity

dynamics in the MCS patients, a phenomenon absent in

the VS/UWS group. It revealed such a phenomenon in the

instantaneous time scale (millisecond). However, our findings

showed converse results that VS/UWS had more “dynamic”

networks than MCS on a large time scale, reflecting the

macroscopic transitions of brain states. The network dynamics

summarily presented contradicting properties of DOC patients

between the short (millisecond and second) and large time scales
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FIGURE 2

The significant di�erence of normalized mutual information (NMI) and global explained variance (GEV) between vegetative state/unresponsive

wakefulness syndrome (VS/UWS), minimal conscious state (MCS), and emergence from MCS (EMCS). (A) Box plots of normalized mutual information

(NMI), which measured the similarity of each pairwise neighboring recording. (B) Box plots of global explained variance (GEV), which measured how

much the average connectivity pattern explained the variance among the patterns from all epochs. The Kruskal-Wallis test was used to test the

significance among the diagnosis groups on each time scale. The pairwise test used the Mann-Whitney U test with Bonferroni correction. (C)

Electrodes (bold dots) with significantly di�erent (Friedman test with false discovery rate correction) CV values of degree between EMCS vs. MCS and

EMCS vs. VS/UWS. *Significant di�erence after correction, p < 0.05.

FIGURE 3

Characteristic path length (CPL) cluster coe�cient (CC) and betweenness centrality (BC) of the functional network in vegetative state/unresponsive

wakefulness syndrome (VS/UWS), minimal conscious state (MCS), and emergence from MCS (EMCS). The bars show the patients’ path length values

(A), cluster coe�cient values (B), and betweenness centrality values (C) in each EEG recording. Significance tests were conducted using the

Mann-Whitney U tests with Bonferroni correction. *Means p < 0.05.

(hour). The VS/UWS patients showed a relatively more monotonic

functional network of instantaneous neural activities than the

MCS patients. However, their functional network was variable

over extended periods. Piarulli et al. (32) continuously monitored

the neural activities of patients with DOC for a prolonged

duration (4 h) and found that the MCS patients had a relatively

stable regularity of brain activities that could not be found in

the VS/UWS patients. However, Piarulli et al. did not measure

the network features but measured the signal complexity at the

electrode level, which reflected the information capacity of the

underlying local brain region. In methodology, the regularity of

local regions makes it easier to form stable coupling patterns in

networks. By contrast, the randomness of EEG in local regions

corresponds to the inordinate global coupling patterns measured

by functional connectivity. The observed variability in functional

connectivity in VS/UWS patients aligns with their irregular

EEG patterns at the electrode level. This confirms that VS/UWS

patients exhibit greater network variability over longer time scales,

corroborating our study findings.

The findings indicated that the patients with worse behavioral

scores exhibited more variable functional networks on a large

time scale. The variability of large-scale networks in DOC patients

has not been previously explored. It is important to clarify that

heightened network variability in VS/UWS patients does not

directly equate to increased brain activity. Although the VS/UWS

patients showed a more variable network on the large time scale,

the average degree value of the network was still significantly

lower than that of the MCS and EMCS patients. Therefore,

network variability could reflect the widely suppressed cortical

activities of VS/UWS patients. The large-scale impairment of

neural circuits blocked the information interaction among local

neuro groups, which caused more neuro islands and decreased
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FIGURE 4

Betweenness centrality of the functional network in vegetative state/unresponsive wakefulness syndrome (VS/UWS), minimal conscious state (MCS),

and emergence from MCS (EMCS). (A) CV values of betweenness centrality of each electrode in VS/UWS, MCS, and EMCS patients. (B) Electrodes

(bold dots) with significantly di�erent (Friedman test with false discovery rate correction) CV values of betweenness centrality compared to EMCS vs.

VS/UWS and MCS vs. VS/UWS.

FIGURE 5

The significant di�erence in CV values of network characteristics, including characteristic path length (CPL), cluster coe�cient (CC), and

betweenness centrality (BC) of the patients. The box plots show the CV values of the characteristic path length (A), cluster coe�cient (B), and

betweenness centrality values (C) in patient groups. Significance tests were conducted using the Mann-Whitney U tests with Bonferroni correction.

*Means p < 0.05.

information integration in the brain (46). The independent cortical

“islands” generated divergent and disorganized brain networks in

VS/UWS. By contrast, although variable, MCS patients maintained

a degree of network organization, as indicated by high cluster

coefficients and betweenness centrality comparable to those in

EMCS. From the view of an integral brain state, the excessively

separated neural activities could not generate coordinating and

stable coupling patterns for a long time, which is represented

by variable functional networks on a larger time scale. VS/UWS

brains had less organized brain activities with brain regions, which
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FIGURE 6

Correlation of CV values of path length (A), cluster coe�cient values (B), and betweenness centrality (C) with the patients’ CRS-R scores. The CRS-R

scores were the highest of the patients in a 1-week diagnosis. The blue lines show the linear fitting of the CV values and the CRS-R scores.

rendered the functional networks dispersed. Higher characteristic

path length, lower cluster coefficient, and lower betweenness

centrality values in VS/UWS could be revealed more than in

MCS or EMCS. Thus, the large time networks, which express

the basic brain conditions, were variant because of the dependent

activities of a large number of islands in VS/UWS brains.

This hypothesis, however, necessitates substantiation through

additional research.

Important brain regions (hubs) often interact with many

other regions, facilitate functional integration, and play a key

role in network resilience to insult. Measures of node centrality

(i.e., betweenness centrality) variously assess the importance of

individual nodes on the above criteria. Betweenness centrality is

the fraction of all shortest paths in the network that pass through

a given node and can be used to detect important anatomical or

functional connections. Bridging nodes that connect disparate parts

of the network often have a high betweenness centrality. BC’s CV

value shows a very different pattern from those of CPL and CC

across levels of consciousness. Compared with the CV values of

BC, the CV values of CPL and CC are significantly higher than

those of EMCS at the VS/UWS level, whereas the CV of BC presents

the opposite result, which is significantly lower than those of MCS

and EMCS at the VS/UWS level. This suggests that The VS/UWS

exhibits significantly higher variability in network integration and

segregation compared to MCS and EMCS. However, the centrality

of the functional network in VS/UWS remained lower. It is

noteworthy that the CV values of BC are also significant in spatial

properties. MCS and EMCS exhibit high node centrality variability

in the centro-parietal region compared to VS/UWS. Besides, a close

correlation was found between the variability of the betweenness

centrality of centro-parietal electrodes and the CRS-R scores of the

patients, and when the variability of CPL and CC was negatively

correlated with CRS-R, only the CV of betweenness centrality was

positively correlated with CRS-R. This underlines the significant

role of centro-parietal regions in organizing functional networks

within the conscious brain, aligning with the findings of previous

network studies (24, 47).

Although the underlying mechanisms remain unclear, the

variability of networks has added new and valuable characteristics

in understanding the brain conditions of DOC patients. Most

previous studies have concentrated on the magnitude of functional

connectivity and networks in patients with DOC (12, 45). However,

it is not easy to find common network properties among patients,

as DOC patients have large individual differences from each other,

which is impossible to balance in experiments. For example, the

size and location of brain injury always change the structure

of functional networks in patients after trauma. However, the

variability measurement takes only the variation of the functional

networks into account but disregards the network structures.

Therefore, it is a more robust and repeatable feature in the brain

assessment of DOC patients.

This study acknowledges certain limitations. First, we did

not conduct CRS-R evaluations preceding or following each EEG

recording, hindering our ability to correlate network variability

with observed behaviors. Second, the sample size was still small

and a healthy control was still required in the future study. Adding

to this, to ensure ample time for rest, nutrition, and massage,

each recording was limited to 15min. Although we strived to

regulate the various factors among patients, we have not completely

eliminated natural and artificial influences. Such as, environment,

lighting, temperature, meal times, family presence, nursing care,

and patients’ circadian rhythm (48). Thus, our study’s findings

warrant confirmation through multi-center cross-validation.

Conclusion

This study analyzed the variability of neural networks on

large time scales in DOC patients and revealed the relationships

of network variability with patients’ consciousness states. The
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findings revealed that VS/UWS patients had the most variable

functional networks on a large time scale compared with MCS and

EMCS patients. We suggest that the relative variability of large

time networks may represent the underlying chaotic construction

of neural circuits and variable brain conditions in VS/UWS.

Overall, although further work should be conducted to examine

the underlying mechanism, the findings indicate that the stability

of functional networks is an important feature that should be taken

seriously in assessing the brain conditions of DOC patients.
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