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Objective: This research aims to investigate whether peripheral biomarkers 
might differentiate individuals with Tourette syndrome (TS) from those without 
the condition.

Methods: A broad range of databases was searched through November 2022. 
This study employed a systematic literature review and subsequent meta-
analysis of case-control studies that assessed the aberration of biomarkers of 
patients with TS and controls.

Results: A total of 81 studies were identified, out of which 60 met the eligibility 
criteria for inclusion in the meta-analysis. Following a meticulous screening 
procedure to determine the feasibility of incorporating case–control studies 
into the meta-analysis, 13 comparisons were statistically significant [CD3+  
T cell, CD4+ T cell, CD4+ T cell to CD8+ T cell ratio, NK-cell, anti-streptolysin 
O antibodies, anti-DNase antibodies, glutamic acid (Glu), aspartic acid (Asp), 
ferritin (Fe), zinc (Zn), lead (Pb), vitamin D, and brain-derived neurotrophic 
factor (BDNF)]. Publication bias was found for anti-streptolysin O antibodies. 
Suggestive associations were evidenced for norsalsolinol (NSAL), neuron-
specific enolase (NSE), and S100B.

Conclusion: In this study, we present empirical evidence substantiating the link 
between several peripheral biomarkers and the early diagnosis of TS. Larger 
and more standardized studies are necessary to replicate the observed results, 
elucidate the specificity of the biomarkers for TS, and evaluate their precision 
for use in clinical settings.
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Introduction

Tourette syndrome (TS), as one of the most prevalent childhood-onset neuropsychiatric 
disorders, is characterized by the presence of multiple motor tics and at least one vocal tic, 
persisting for a minimum of 1 year (1). Tics are defined as “sudden, rapid, recurrent, 
non-rhythmic motor movement or vocalization” (2). The global prevalence of TS in children 
and adolescents is estimated to be 0.7%, signifying its substantial impact on public health (3). 
Comorbidities commonly co-occur in TS patients, encompassing attention-deficit 
hyperactivity disorder (ADHD), anxiety, obsessive-compulsive disorder (OCD), learning 
difficulties, or other behavioral challenges (4). While some tics might exhibit mild 
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characteristics, others can lead to psychosocial, physical, and 
functional difficulties that significantly influence social interactions, 
academic accomplishments, and job performance (5).

Evaluating and treating TS is still complex (6) partly due to an 
unclear etiology and diagnoses based on sets of signs and symptoms. To 
date, there are no established gold standards employing biological tests 
to definitively validate psychiatric diagnoses (7), including TS. A 
biomarker is defined as “a distinct characteristic that is quantified as an 
indicator of typical biological processes, pathological processes, or 
responses to an exposure or intervention” (8). The detection of 
peripheral biomarkers, accessible through noninvasive in vivo 
measurements, has the potential to aid in distinguishing TS from other 
conditions and contribute to the development of individual treatment.

In this review, we aimed to clarify and quantify the correlation 
between peripheral biomarkers and TS. To meet this objective, 
we  conducted a systematic review and subsequently performed a 
meta-analysis encompassing studies assessing the association between 
TS and biomarkers in the following domains: immune processes 
(immune cells, antibodies, complement and cytokines); 
neurotransmitters, including monoamine neurotransmitters and 
amino-acid neurotransmitters; nutritional factors (trace elements and 
vitamins); hypothalamic-pituitary-adrenal axis (HPA) alterations; and 
markers implicated in other aspects of brain functioning (neurotrophic 
factors and prolactin). The findings from the reviewed data and our 
meta-analysis outcomes are thoroughly discussed in this article.

Methods

The present review adhered to the guidelines outlined in the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) (9). The review protocol was duly registered on PROSPERO 
(registration number: CRD42023391034).

Literature search

To conduct the review and meta-analysis, a comprehensive search 
was performed across five electronic databases [Medline/PubMed; 
Cochrane Library; Embase; Web of Science; the China National 
Knowledge Infrastructure (CNKI)], from their inception until 
November 2022, for all eligible studies for the association between 
biomarkers and TS in childhood. A search algorithm based on a 
combination of terms: (tic disorders OR tics OR Tourette OR Tourette 
Syndrome) AND (Serum OR Plasma OR Urine OR Saliva OR Blood 
OR Blood Platelets OR Erythrocytes OR Hair OR levels OR peripheral 
OR cerebrospinal fluid OR red blood cells OR salivary biomarker* OR 
urinary biomarker* OR plasma biomarker* OR blood biomarker* OR 
serum biomarker* OR biomarker*) was used. The search strings are 
described in Supplementary Table S1. Systematic exploration of the 
reference lists of articles was conducted to identify additional 
relevant publications.

Inclusion and exclusion criteria

Eligible studies were population-based investigations that 
compared the occurrence of one or more of the peripheral biochemical 

markers (as elucidated in the introductory section of this manuscript) 
of clinically diagnosed cases of TS versus healthy controls (unrelated 
to cases). We included studies that investigated children under 18 years 
and used categorical TS diagnosis criteria according to the 
International Classification of Diseases (ICD) manual, the Diagnostic 
and Statistical Manual of Mental Disorders (DSM), or less universally 
applicable criteria, such as Chinese Classification and Diagnostic 
Criteria of Mental Disorders (CCMD). In addition, studies that met 
the inclusion criteria should provide statistics required for meta-
analysis (or where data were retrievable from the authors). Comorbid 
OCD or ADHD was included in the analysis due to its relative 
significance among the three disorders. However, studies that 
combined the results of OCD, ADHD, and tic disorders (TD) without 
explicitly specifying the inclusion of patients diagnosed solely with TS 
were excluded from consideration.

Exclusion criteria encompassed case reports or reviews, articles 
not published in English or Chinese, and studies not involving human 
participants or selecting samples based on disorders other than 
TS. We  did not include potential genetic biomarkers because of 
different analytical methods. We  also did not include potential 
biomarkers from neuroimaging studies because we  would mainly 
focus on detection of peripheral biomarkers through biological fluid. 
Meta-analyses were conducted for all biomarkers with available data 
that were reported in a minimum of three published studies.

Data extraction and quality assessment

Two investigators individually retrieved information on the first 
author’s name, the population year, biological fluid type, sample size, 
diagnostic criteria used to diagnose TS, percentage of participants, 
mean age in years, and biomarkers examined from each eligible 
article. Biomarkers were presented as concentrations with mean 
(standard deviation, SD), median (interquartile range, IQR), or 
median (range), and the data of the latter were transformed to the 
former by particular formulae (10–12) on the website.1 We combined 
mean and SD from multiple groups into a single group by using 
Cochrane’s Formula (13, 14) on the website,2 if necessary. Study 
quality was rated using the Newcastle–Ottawa scale (NOS) (15), as 
recommended by the Cochrane Collaboration (14). Studies with NOS 
scores ranging from 7 to 9 were categorized as high quality, scores 
from 4 to 6 as medium quality, and scores less than 4 as low quality 
(Supplementary Table S3).

Statistical analyses

We employed R software version 4.1.2. for statistical analysis using 
the “meta” package. The standardized mean difference (SMD) was 
computed as the effect size (ES) in each eligible study to facilitate 
meta-analysis of continuous data, given the variability in measurement 
methods for different biochemical parameters. For categorical data 
involving studies assessing the positivity of specific antibodies with 

1 https://smcgrath.shinyapps.io/estmeansd/

2 https://www.statstodo.com/CombineMeansSDs.php
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cutoff values, we conducted meta-analysis using Mantel–Haenszel 
method and pooled the risk ratio (RR). The evaluation of the links 
between different peripheral biomarker levels and TS was conducted 
using ESs and their 95% confidence intervals (CIs). Sensitivity 
analyses were performed using leave-one-out method to ascertain 
whether any individual study significantly influenced the results. 
Between-study heterogeneity was assessed using χ2 test of goodness of 
fit test and I2 statistic. In instances where obvious heterogeneity (I2 is 
greater than 50%) (16) was observed among the studies, we employed 
a random-effects model in our meta-analysis. Conversely, a fixed-
effects model was utilized when no substantial heterogeneity was 
detected. Publication bias was quantified by Egger’s test and visualized 
by funnel plot when the usable data of biomarker levels were reported 
in at least 10 published studies (17). p-values of 0.05 or less were 
considered significant.

Results

The initial database search yielded 20,357 articles. Among them, 
4,173 records were removed due to duplication and 15,671 articles 
were excluded after reviewing the titles and abstracts, leaving 513 
papers with full-text available during the screening process. Finally, 

basing on the inclusion and exclusion criteria, we retained 81 studies 
for the systematic review and meta-analysis (a total of 8,313 
participants including 3,842 with TS and 4,471 comparison subjects). 
A flowchart summarizing the study selection process is presented in 
Figure 1.

A total of 39 studies focused on alterations in immune processes 
divided into immune cells (13 studies), antibodies (23 studies), 
complement (3 studies), and cytokines (12 studies). We  found 23 
studies of neurotransmitters including monoamine neurotransmitters 
(15 studies), amino-acid neurotransmitters (7 studies), and other 
neurotransmitters (4 studies). Thirteen studies reported nutritional 
factors (trace elements: 7 studies; vitamins 7 studies), and three studies 
analyzed biochemical alterations in the HPA pathway. We used the 
term “other” for nine studies that investigated biomarkers involved in 
other aspects of brain functioning [neurotrophic factors: 3 studies; 
prolactin: 3 studies; neuron-specific enolase (NSE): 2 studies; S100B 
protein: 1 study]. Nearly all included studies quantified biomarker 
concentrations in the serum or plasma of participants with TS.

Supplementary Table S2 provides a detailed account of the 
attributes of the case–control studies selected for inclusion in the 
meta-analysis. All subsequent analyses presented herein are founded 
upon SMD. According to the quality assessment results from our 
meta-analysis, 50 articles were designated as high quality, with 10 

Records identified through database 
searching: n=20,357 

(Medline/PubMed-1,561; Cochrane 
Library-403; Embase-4,174; Web of 

Science-9,806; CNKI-4,413)

Records after duplicates removed:
n=16,184

Titles and abstracts reviewed:
n=16,184

Records excluded:
n=15,671

Full-text articles assessed for eligibility:
n=513

Studies totally included:
n=81

Studies included in meta-analysis:
n=60

Full-text articles excluded with 
reasons: n=432
Review or case report      10
Conference abstract        2
No full-text               62
No necessary data         92
Duplicate 18
No control groups 12
Unhealthy control subjects 60
TD patients without 
a TS group 72
Adults or animal models 42
Imaging or genetic studies 36
No peripheral biomarkers 26

FIGURE 1

Flow chart depicting the selection procedure for review and meta-analysis.
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articles categorized as medium quality, and this classification was 
deemed satisfactory. The Egger’s test and funnel plots of the data from 
the eligible studies indicated publication bias for anti-streptolysin O 
antibodies (Supplementary Figure S8), suggesting that these results 
may not be  robust enough. In addition, the results of sensitivity 
analyses are presented in Supplementary Figures S9–S13.

Immune system

Out of the 39 case-control studies involved, 31 studies were 
subjected to meta-analysis for immune cells, antibodies, complement, 
and cytokines.

Immune cells
The serum levels of specific B or T clusters of differentiation (CD) 

tagging lymphocyte cell subpopulations were investigated in several 
studies. We  found significantly lower CD3+ T cell levels (18–27) 
[SMD = −0.58 (−0.92, −0.25); I2 = 78%; p < 0.01], lower CD4+ T cell 
levels (18–20, 22–28) [SMD = −1.03 (−1.80, −0.26); I2 = 95%; p < 0.01], 
and higher NK cell levels (18, 20, 23, 29) [SMD = 0.37 (0.13, 0.62); 
I2 = 0%; p < 0.01] in children with TS compared with healthy controls 
(Figure 2). Differences in serum CD4+ T cell to serum CD8+ T cell 
ratio (18–29) were noted between patients and control groups, with 
obvious heterogeneity of effect sizes across the studies [SMD = −0.67 
(−1.13, −0.20); I2 = 92%; p < 0.01] (Figure 2). However, our meta-
analysis found no significant variations between TS and controls to 
the levels of CD8+ T cell (18–20, 22–27) [SMD = 0.05 (−0.29, 0.39); 
I2 = 75%; p = 0.78] or CD19+ lymphocytes (18, 20, 30) [SMD = 0.64 
(−0.56, 1.83); I2 = 96%; p = 0.30] (Supplementary Figure S1).

Li et  al. (21) found decreased serum CD3+ CD4+ T cell 
percentages in children with TS compared with healthy controls, 
whereas no alterations were observed in the serum levels of CD3+ 
CD8+ T cell. Given its direct contact with the brain’s extracellular 
space, the classical cerebrospinal fluid (CSF) mirrors biochemical 
modifications occurring within the brain (31). According to a single 
study, the percentages of CSF total conventional T cells, B cells, or NK 
cells did not display significant group abnormalities (29).

Considering the observed disparities, it is not possible to reach a 
definitive conclusion based on the available data, indicating that 
immune cells can differentiate patients with TS from those without TS.

Antibodies
The meta-analysis of blood antibodies encompassed 15 eligible 

studies. Based on the quantitative meta-analysis of the gathered 
studies, there were no discernible variations in the levels of the listed 
immunoglobulins (Ig) (Supplementary Figure S2) between patients 
diagnosed with TS and control subjects: IgA (25, 27, 32, 33) 
[SMD = −0.01 (−0.44, 0.41); I2 = 67%; p = 0.95], IgM (25, 27, 32, 33) 
[SMD = −0.04 (−0.48, 0.40); I2 = 68%; p = 0.86], and IgG (25, 27, 32, 
33) [SMD = −0.21 (−0.45, 0.02); I2 = 31%; p = 0.08]. Similar results for 
CSF concentrations of Ig were found (29), although we did not have 
sufficient data for meta-analysis. Landau et al. (32) found a significant 
increase in serum IgE levels within the TS group when compared to 
controls, but this outcome was not replicated by Yuce et  al. (34) 
Moreover, Singer et  al. (35) reported that TS patients had higher 
serum levels of antineuronal antibodies (ANAb) against putamen than 
the controls; by contrast, no differences were observed in the levels of 

serum antibodies against neuron-like HTB-10 neuroblastoma cells 
(36) or plasma antiphospholipid antibodies (aPLAs) (37).

Qualitative meta-analysis indicated that the positivity for the 
following antibodies was more frequent in children with TS than in 
healthy participants: anti-streptolysin O antibodies (18, 20, 36, 38–44) 
[RR = 2.52 (1.65, 3.87); I2 = 63%; p < 0.01]; anti-DNase antibodies (36, 
40, 42, 43, 45) [RR = 1.99 (1.16, 3.41); I2 = 68%; p = 0.01] (Figure 3). 
Hence, the existing evidence allows us to suggest that Streptococcus 
might be a viable etiological candidate for TS, thereby supporting the 
PANDAS/PANS hypothesis (46, 47). The positivity of other 
autoantibodies was also examined in several studies. Concerning anti-
basal ganglia antibodies (ABGA), a category of anti-neuronal 
antibodies connected with a diverse spectrum of post-streptococcal 
neuropsychiatric disorders (48), two studies (38, 42) found an 
increased rate of ABGA-positive subjects in TS patients compared 
with that in controls. Moreover, Cheng et  al. (39) reported that 
significantly more patients in the TS group were positive for anti-brain 
antibodies (ABAb) and ANAb compared with the control group. 
However, no alterations were observed in the positivity of serum glial 
fibrillary acidic protein (GFAP) antibody between patients with TS 
and controls (49, 50). Although these findings need to be replicated, 
anti-Streptococcus antibodies and other autoantibodies mentioned 
above could be a potential biomarker of TS in light of the pathogenesis 
of neuroimmune interaction (51). In addition, two studies (52, 53) 
showed that the positive rate of Mycoplasma pneumoniae (MP) IgA in 
children with TS was higher than that in controls; hence, MP infection 
may be  associated with Tourette syndrome, despite the 
limited evidence.

Complement
Complement, an essential component of the complement system 

made up of a battery of dozens of activators and inhibitors, was 
investigated in three studies. Our meta-analysis found no alteration in 
C3 (25, 27, 33) [SMD = −0.11 (−0.53, 0.31); I2 = 52%; p = 0.61] or C4 
(25, 27, 33) [SMD = 0.22 (−0.07, 0.51); I2 = 0%; p = 0.14] concentrations 
between patients and controls (Supplementary Figure S3). Therefore, 
in the absence of further data, biomarkers associated with the 
complement system do not offer sufficient support to be considered 
as biomarkers for TS.

Cytokines
Eleven studies provided data for our meta-analysis. No significant 

distinction was observed between suffering from TS and control 
participants with regard to the levels of IFN-γ (28, 54–56) [SMD = 1.10 
(−1.32, 3.53); I2  = 99%; p = 0.37], IL-1β (39, 54, 57) [SMD = 0.73 
(−0.53, 1.98); I2 = 95%; p = 0.26], IL-4 (54–56) [SMD = 0.57 (−1.31, 
2.45); I2 = 98%; p = 0.55], IL-6 (22, 24, 39, 57, 58) [SMD = 0.46 (−0.35, 
1.28); I2 = 92%; p = 0.27], IL-8 (22, 24, 28, 58) [SMD = 0.50 (−1.76, 
2.76); I2 = 99%; p = 0.66], IL-12 (54, 57, 59, 60) [SMD = 1.22 (−0.40, 
2.84); I2 = 97%; p = 0.14], or TNF-α (57–60) [SMD = 1.89 (−0.28, 4.06); 
I2 = 98%; p = 0.09] (Supplementary Figure S4).

Several subsequent studies continued to search for the association 
between cytokines and TS. Two studies were conducted on serum 
IL-10, and the findings yielded divergent outcomes, with one study 
(61) reporting no alterations, while another study demonstrated 
reduced levels in children with TS (56). Zhang et al. (61) and Gao et al. 
(56) found significantly lower serum IL-2 levels in TS patients 
compared with controls. In addition, compared with controls, patients 
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FIGURE 2

Forest plots for standard mean difference (SMD) from meta-analysis of serum CD3+ T cell (A), CD4+ T cell (B), NK cell (C) levels and CD4+ T cell to 
serum CD8+ T cell ratio (D).
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with TS had higher serum levels of IL-13 and IL-17, as confirmed by 
Cheng et al. (39) and Gao et al. (55)

In summary, the absence of compelling evidence regarding 
immune impairment hinders us from drawing a definitive conclusion 
that cytokines may be possible candidates to differentiate patients with 
TS from those without.

Neurotransmitters

Twenty-three case-control studies of TS investigated on 
neurotransmitters. The studies suitable for meta-analysis consisted of 
eight for monoamine neurotransmitters [serotonin (5-HT): 5 studies; 
dopamine (DA): 8 studies; norepinephrine (NE): 6 studies] and seven 
for amino-acid neurotransmitters [gamma-aminobutyric acid 
(GABA): 4 studies; aspartic acid (Asp): 5 studies; glutamic acid (Glu): 
6 studies].

Monoamine neurotransmitters and their 
metabolites

5-HT
Our meta-analyses pertaining to peripheral blood 5-HT levels 

(62–66) did not reveal any statistically significant distinctions between 

TS patients and controls [SMD = −0.97 (−5.21, 3.28); I2  = 98%; 
p = 0.66] (Supplementary Figure S5). Consistent with this result, one 
study of urine 5-HT found lower levels in TS (67). 
5-Hydroxyindoleacetic acid (5-HIAA), the principal metabolite 
derived from serotonin, was observed in one study. The TS group was 
found to have significantly lower urine levels of 5-HIAA than the 
control groups (67). Zhao et  al. (64) reported no alteration in 
tryptophan (the precursor of 5-HT) between patients with TS and 
controls. Moreover, Sallee et al. (68) reported that platelet 5HTPR 
capacity was reduced in children with OCD, but this reduction was 
not evident in individuals with TS.

In summary, although contrasting results were obtained in terms 
of the concentrations of 5-HT between children with TS and controls, 
and no definitive evidence was found for tryptophan, the 5-HT system 
is still considered a viable candidate due to genetic and gene expression 
studies implicating its role in the etiology of TS (69–71).

DA
Based on the results of our meta-analysis, no significant disparities 

were observed in the blood levels of DA (62–66, 72–74) between 
patients and controls [SMD = 1.78 (−0.45, 4.01); I2 = 98%; p = 0.12] 
(Supplementary Figure S5). Rabey et al. (75) employed an assay for 
quantifying DA accumulation within platelet storage granules (PSG); 
the data showed a diminished capacity of PSG to accumulate DA, 
which may be considered a physiological mechanism to compensate 

FIGURE 3

Forest plots for risk ratio (RR) from meta-analysis of anti-streptococcal antibody titers [anti-streptolysin O antibodies (A); anti-DNase antibodies (B)].
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for the excessive DA activity. A pivotal role in the synaptic 
accumulation and quantal release of monoamines is carried out by the 
vesicular monoamine transporter (VMAT2). Ben-Dor et  al. (76) 
reported a considerable reduction in platelet VMAT2 density in 
individuals with TS through the assessment of high affinity [3H] 
dihydrotetrabenazine binding to platelet VMAT2.

One study evaluated the presence of the DA metabolite 
homovanillic acid (HVA) in plasma and found increased levels in 
children with TS (62). For tyrosine (Tyr), the precursor of DA and NE, 
one study was conducted in plasma and showed negative results (64). 
Norsalsolinol (NSAL), a type of tetrahydroisoquinoline (TIQ), has the 
capacity to modulate dopaminergic neurotransmission and 
metabolism in the central nervous system. Capetian et  al. (77) 
reported that NSAL concentrations in urine were elevated significantly 
in TS patients, which suggested that dopaminergic hyperactivity 
underlies the pathophysiology of TS. Hence, the concentrations of 
NSAL in urine have the potential to serve as a diagnostic biomarker 
for TS. β-endorphins, the neuromodulators of the brain, lead to excess 
accumulation of dopamine by inhibiting the release of GABA (78). 
However, one study was conducted for β-endorphins in CSF yielded 
a negative result (79).

Although these biomarker studies do not provide a definite 
correlation between DA and TS diagnosis, the DA system could still 
be a useful biomarker for TS given that genetic, animal, neuroimaging, 
and clinical studies have indicated the important role of DA in TS 
pathogenesis (4, 69, 80–82).

NE
Random-effect meta-analysis suggested that the levels of NE (62–

65, 72, 74) in blood did not significantly differ between children with 
TS and controls [SMD = −0.07 (−0.69, 0.54); I2  = 92%; p = 0.82] 
(Supplementary Figure S5). 3-Methoxy-4-hydroxyphenylethylene 
glycol (MHPG) and normetanephrine (NM) are metabolites of 
NE. Baker et al. (83) reported that the urinary excretion of MHPG and 
NME was significantly lower in patients with TS than in controls. 
Considering the limited number of studies, we failed to see clearly the 
effects of NE and its metabolites on TS onset.

Biogenic trace amines
B-Phenylethylamine (PEA), derived from the decarboxylation of 

phenylalanine (Phe), is considered a “trace amine” due to its low 
urinary excretion rate and brain concentration compared with 
catecholamines. One study (84) examined the levels of PEA, Phe, and 
the PEA metabolite phenylacetic acid (PAA) in urine and/or plasma; 
statistical analyses revealed that patients with TS had lower plasma 
Phe and urinary PEA than the controls, but urinary/plasma PAA was 
not different between them. However, the available data are insufficient 
to definitively establish a link between abnormalities in the synthesis 
or metabolism of PEA and the etiology of TS.

Amino-acid neurotransmitters
Our meta-analysis showed higher blood levels of Glu (62, 64, 74, 

85–87) [SMD = 3.50 (0.78, 6.22); I2 = 98%; p = 0.01] and Asp (62, 65, 
85–87) [SMD = 3.83 (0.22, 7.44); I2 = 97%; p = 0.04] in TS patients 
compared with normal subjects (Figure 4). However, our analysis did 
not reveal any statistically significant difference in the blood levels of 
GABA (62, 64, 65, 74) [SMD = −1.85 (−4.17, 0.47); I2 = 98%; p = 0.12] 
(Supplementary Figure S5) between cases and controls. Despite 

divergent data produced by different studies, amino-acid 
neurotransmitters still seem to be potential biomarkers for children 
with TS because of their important role in TS neurobiology 
(70, 88–91).

Other neurotransmitters
One study (92) reported no significant differences between CSF 

acetylcholinesterase (AChE) activity in patients with TS and controls. 
By contrast, Rabey et  al. (93) reported a reduction in cholinergic 
muscarinic binding in peripheral lymphocytes, as evidenced by 
measurements of (3H) quinuclidinyl benzilate [(3H)-QNB], indicating 
the potential involvement of cholinergic receptor alterations in the 
pathophysiology of TS. Nitric oxide (NO), functioning as a 
neurotransmitter and acting on the NMDA receptor, is suggested to 
play a role in the pathogenesis of basal ganglia in TS. However, studies 
of NO levels reported contrasting results. In one study (94), there were 
no significant differences between patients with TS and controls, while 
another study by Hu et  al. (95) reported higher plasma levels in 
patients compared to controls.

Nutritional factors

Trace elements
Seven studies that specifically assessed trace element status in 

children with TS were used for meta-analysis. In the TS group, the 
plasma/serum concentration of ferritin (Fe) (32, 96–100) 
[SMD = −0.55 (−1.04, −0.06); I2 = 91%; p = 0.03] and zinc (Zn) (32, 
63, 96–99) [SMD = −0.83 (−1.39, −0.28); I2  = 94%; p  < 0.01] was 
significantly lower compared to controls, as indicated by the results of 
our meta-analysis (Figure 5). However, in our meta-analysis, we found 
significantly higher serum lead (Pb) levels (96, 98, 99) among patients 
with TS [SMD = 0.54 (0.05, 1.04); I2  = 81%; p  = 0.03] (Figure  5). 
Moreover, no alterations were observed in the blood levels of calcium 
(Ca) (63, 96, 97, 99) [SMD = −0.12 (−0.44, 0.20); I2 = 80%; p = 0.48], 
magnesium (Mg) (96, 98, 99) [SMD = 0.00 (−0.11, 0.12); I2  = 0%; 
p = 0.98], and copper (Cu) (96, 98, 99) [SMD = 0.06 (−0.05, 0.18); 
I2  = 18%; p  = 0.28] between patients with TS and controls 
(Supplementary Figure S6). In addition, Liu et al. (98) reported no 
significant differences in serum manganese (Mn) levels between 
children with TS and control subjects. Exposure to high levels of heavy 
metals (lead et al.) and deficiencies for trace elements, such as Fe and 
Zn, may be connected with a clinical diagnosis of TS and increased 
risk of TS onset.

Vitamins
We examined seven studies of serum vitamin D. The pooled 

analysis demonstrated a significant reduction in serum vitamin D 
levels (100–106) among patients with TS [SMD = −1.54 (−2.42, 
−0.66); I2  = 96%; p < 0.01] (Figure  5). Although the number of 
eligible studies was limited, one study (105) provided further 
support for lower vitamin A levels in patients with TS compared 
to controls. However, a conflicting result was observed in the study 
by Hou et al. (102). Additionally, Wang et al. (105) reported no 
significant differences in the serum levels of vitamin E between the 
TS and control groups. Altogether, vitamin insufficiency, especially 
vitamin D deficiency, may contribute to an increased occurrence 
of tics.

https://doi.org/10.3389/fneur.2024.1262057
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Jiang et al. 10.3389/fneur.2024.1262057

Frontiers in Neurology 08 frontiersin.org

FIGURE 4

Forest plots for standard mean difference (SMD) from meta-analysis of blood Glu (A) and Asp (B) levels.

Hypothalamus-pituitary-adrenal axis 
pathway

For the meta-analysis of serum cortisol, three studies exploring 
the HPA axis were included. We found no difference between TS and 
control subjects in terms of the baseline serum levels of cortisol  
(28, 65, 107) [SMD = −0.34 (−3.31, 2.64); I2  = 99%; p = 0.82] 
(Supplementary Figure S7).

Despite the inadequate number of eligible studies for conducting 
a meta-analysis on adrenocorticotrophic hormone (ACTH) and TS, 
two studies (65, 107) demonstrated a significant rise in serum ACTH 
levels in the TS group when compared to controls.

Although initial studies on the physiological stress response, 
focusing on HPA axis activation, hinted at possible dysregulation in 
TS, the existing evidence for using HPA axis biological indicators as 
biomarkers for TS is still inadequate.

Other

The neurotrophin brain-derived neurotrophic factor (BDNF), one 
of the most widely investigated molecules in psychiatric disorders, is 
associated with neuronal maintenance, neuronal survival, plasticity, 
and neurotransmitter regulation (108, 109). The meta-analysis 
revealed diminished serum BDNF levels (110–112) in individuals 
with TS in comparison to the control group [SMD = −1.34 (−2.04, 
−0.64); I2 = 79%; p < 0.01] (Figure 6). The above results and the study 
of genetic susceptibility (113) suggest that BDNF could be a good 
candidate for TS biomarkers. Prolactin (PRL) is a peptide hormone 

produced and released from specialized cells called lactotrophs in the 
anterior pituitary gland (114). The levels of PRL (115–117) showed no 
statistically significant differences between TS patients and controls, 
according to the findings of the meta-analysis [SMD = −0.14 (−1.64, 
1.36); I2 = 95%; p = 0.85] (Supplementary Figure S7). Moreover, two 
studies (21, 118) reported that the NSE levels increased in patients 
with TS, suggesting the potential utility of NSE as a biomarker in 
TS. Nevertheless, additional research is needed to validate this 
observation. In addition, Ruan et al. (119) found higher serum level 
of the S100B protein (a specific protein reflecting the degree of brain 
injury and prognosis) in patients with TS than in healthy children.

Discussion

This extensive review aimed to evaluate biomarkers as potential 
diagnostic indicators for TS through a comprehensive review and 
meta-analysis of previous studies. Accessible fluid biomarkers can 
offer an objective assessment of the current situation, supporting TS 
diagnosis or assessing disease status and ultimately guiding clinical 
decisions. Our study demonstrated multiple significant variances of 
blood-derived parameter levels through comparisons between 
children with and without TS. Meanwhile, the results obtained from 
our study further corroborate the notion that both neurotransmitters 
and the immune system are dysregulated in TS; as such, lead exposure 
and trace elements or BDNF deficiencies may be  risk factors. 
Biomarkers measured in peripheral samples could potentially serve as 
diagnostic tools, although further research is required before their 
implementation in clinical practice.
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Our meta-analysis resulted in 13 significant findings, which are 
summarized in Table  1. Two of these were obtained from the 
qualitative analysis. Most biomarkers that showed significant 
differences between patients with TS and controls exhibited obvious 
heterogeneity in effect sizes across studies. These findings of 
heterogeneity could be explained by several factors, such as sample 

sources, cutoff positivity values, and study methodological procedures. 
They might also result from differences among the studies in terms of 
subject demographics, environmental exposures, life habits, 
nutritional status, or neuropsychiatric comorbidity. The significant 
heterogeneity indicated that TS is a complex and multifactorial 
disorder that results from a number of causative factors, with none 

FIGURE 5

Forest plots for standard mean difference (SMD) from meta-analysis of blood Fe (A), Zn (B), Pb (C) and vitamin D (D) levels.
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FIGURE 6

Forest plots for standard mean difference (SMD) from meta-analysis of serum BDNF levels.

TABLE 1 Summary of the effect size difference meta-analysis findings.

Source Biomarkers symbol SMD/RR p Significant 
heterogeneity?

Quantitative meta-
analysis?

Serum CD3+ −0.58 <0.01 Yes Yes

Serum CD4+ −1.03 <0.01 Yes Yes

Serum CD4+/CD8+ −0.67 <0.01 Yes Yes

Serum NK-cells 0.37 <0.01 No Yes

Serum/plasma Glu 3.50 0.01 Yes Yes

Serum/plasma Asp 3.83 0.04 Yes Yes

Serum Fe −0.55 0.03 Yes Yes

Serum Pb 0.54 0.03 Yes Yes

Serum/plasma Zn −0.83 <0.01 Yes Yes

Serum Vitamin D −1.54 <0.01 Yes Yes

Serum BDNF −1.34 <0.01 Yes Yes

Serum Anti-DNase-positive 1.99 0.01 Yes No

Serum/plasma Anti-streptolysin O -positive 2.52 <0.01 Yes No

being deemed essential or adequate for its initiation. This finding has 
been partially substantiated by genetic studies (4, 120, 121).

The significant meta-analyses for T cells, NK-cells, and anti-
Streptococcus antibody positivity suggest that patients with TS have 
immune disturbances, especially in the levels of immune cells and 
activity of some specific antibodies. Our investigation revealed 
reduced counts of CD3+ and CD4+ T cells in patients with TS, 
accompanied by a diminished CD4+ to CD8+ ratio. In contrast, there 
was an increase in the number of NK cells. However, when it comes 
to T cells specifically, an observational study revealed that patients 
experiencing symptom exacerbation might display heightened levels 
of T cells (122). The plausibility of a link between potential immune 
dysfunction and the initiation or progression of TS was identified in 
our study. Notably, immune dysregulation is also present in other 
neurological diseases, such as OCD (123). As such, we  cannot 
conclude that immune cells could become candidates for TS 
biomarkers, despite the significant findings.

The hypothesis of β-hemolytic streptococcal infections triggering 
TS and specific psychiatric disorders through immune responses has 
been proposed (124). Although tics might occur or worsen after group 
A streptococcal (GAS) infections, GAS infection as risk-modifiers for 
TS remains controversial (125). The term “pediatric autoimmune 
neuropsychiatric disorders associated with streptococcal infections” 

(PANDAS) refers to a group of disorders in children characterized by 
the sudden onset of tics, along with manifestations of obsessive-
compulsive behavior and personality changes, which are associated 
with streptococcal infections (126). Pediatric acute-onset 
neuropsychiatric syndrome (PANS), the later and more comprehensive 
version, has attracted considerable attention and sparked controversy. 
Population-based studies indicated a higher likelihood of prior 
streptococcal infection the onset of symptoms in patients with OCD 
or TS (127, 128). Moreover, Murphy et al. (129) reported that patients 
with significant fluctuations in tics/OCD symptoms had consistently 
elevated streptococcal titers compared to those with a stable or 
remitting course. However, caution is necessary in interpreting the 
results due to the presence of publication bias in studies examining 
anti-streptolysin O antibodies in TS patients and controls. In 
summary, the significance of anti-Streptococcus antibodies (anti-
streptolysin O antibodies and anti-DNase B antibodies) in TS requires 
further investigation, as the causal relationship between Streptococcus 
and TS is yet to be conclusively demonstrated. It is plausible that the 
higher levels of anti-Streptococcus antibodies observed in TS patients 
might be a consequence of stress-induced vulnerability to infections 
rather than serving as a direct etiological factor for TS (130).

The results in Table 1 implicate serum/plasma Glu and Asp levels 
as potential biomarkers for TS. Neurophysiological, brain imaging, 
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and postmortem studies have substantiated the pathological 
involvement of cortico-striatal-thalamo-cortical (CSTC) pathways in 
TS (131). Perturbations in the levels of excitatory amino acid 
neurotransmitters, like Glu and Asp, within the CSTC loop have been 
associated with the pathogenesis of TS (132). Glu, an excitatory 
neurotransmitter, is highly expressed in brain tissues and is regularly 
associated with nervous system abnormalities (133). Asp is involved 
in the synthesis and release of GABA and DA (134). Excitatory amino 
acid neurotransmitters, especially Glu, plays a crucial role in pathways 
associated with CSTC circuits and has significant interactions with 
dopaminergic systems (135). These findings provide substantial 
support for the potential involvement of excitatory amino acid 
neurotransmitters in TS etiology. Mahone et  al. (91) conducted a 
study that indicated an increase in Glu and GABA levels within the 
CSTC loop, leading to improved selective motor inhibition in children 
with TS. Additionally, the study conducted on D1CT-7 mice revealed 
a direct association between Glu release in the CSTC loop and tic 
disorder behavior (136). However, elevated levels of serum Glu and 
Asp have also been found in children with ADHD (137). And 
magnetic resonance spectroscopy studies suggest a possible rise in Glu 
levels in the striatum among children with ADHD, OCD, and autism 
spectrum disorders (ASD) (138, 139). Taken together, although 
positive results were found in preliminary studies, we have to admit 
that more evidence should be  provided before excitatory 
neurotransmitters can be used as biomarkers in the diagnosis of TS.

Table 1 also indicates that serum/plasma Zn, serum Fe, serum Pb, 
and serum vitamin D levels could be useful biomarkers for TS. Nearly 
all the studies corroborate the association of reduced levels of serum/
plasma Zn, serum Fe, and serum vitamin D with TS. In the realm of 
nutrient metabolism, zinc (Zn) assumes an indispensable role as a 
crucial cofactor, supporting the development and maintenance of 
brain structure. Additionally, Zn plays a vital part in the synthesis and 
regulation of melatonin, the pineal hormone that exerts substantial 
influence over dopamine function, making it a noteworthy component 
in TS treatment (140). Serum ferritin stands out as the prevailing and 
highly sensitive indicator of overall body iron reserves. Decreased iron 
stores might play a role in the hypoplasia of the caudate and putamen, 
potentially elevating susceptibility to tic development or leading to 
more severe tics (141). Meanwhile, the levels of Zn and Fe have a 
connection with DA metabolism, and decreased Zn and Fe levels 
could potentially contribute to impaired dopaminergic transmission 
in children diagnosed with TS. High-level lead exposure may cause 
neurotransmitter alterations, such as NE. The increased NE turnover 
is implicated in hyperactivity disorders, such as ADHD and TS (142). 
Interestingly, studies have found that children with ADHD and ASD 
also exhibit lower blood levels of Zn and Fe similar to those in TS 
patients, along with a history of lead exposure or elevated blood Pb 
levels (143–149). By regulating the gene expression of the rate-limiting 
enzyme, tyrosine hydroxylase, Vitamin D influences the production 
of both DA and NE (150). Therefore, vitamin D deficiency might 
contribute to dopaminergic dysfunction in TS. Moreover, In TS, 
vitamin D exerts a substantial anti-inflammatory effect, impacting 
both cellular and humoral immune responses. Therefore, inadequate 
vitamin D levels may be  associated with inflammation in 
TS. Conversely, an overactive immune system in TS might lead to 
heightened vitamin D consumption, contributing to its decreased 
levels (“reverse causation”) (151). It’s worth noting that vitamin D 
deficiency is also observed in other neurological and psychiatric 

disorders, such as ADHD, ASD, anxiety, depression, and schizophrenia 
(152–156). Given the potential modifiability of nutritional factors, 
their implication in TS holds particular importance for 
clinical application.

BDNF is a potential biomarker illustrated in Table 1. Belonging to 
the neurotrophic factor family, BDNF holds significant importance in 
supporting the development, maintenance, and protection of striatal 
neurons (157, 158) and has role in enhancing neuromuscular 
transmission excitation-contraction coupling (159). Furthermore, the 
nutritional impact of BDNF on dopamine neurons is noteworthy as it 
enhances the number of dopamine receptors in the brain, closely 
linked to TS pathogenesis (160). In addition, the BDNF gene’s high 
association with TS also implicates its involvement in other movement 
disorders, including ADHD and OCD (161).

Few studies were conducted on NSAL, NSE, and S100B, which 
could be additional potential biomarkers for TS. Hence, additional 
relevant studies are required to further investigate the subject.

There has been skepticism surrounding studies focusing on 
peripheral blood parameters. The question of whether serum/plasma 
levels can be indicative of CNS activity remains ambiguous. However, 
investigations have revealed that specific blood-brain barrier (BBB) 
transporters facilitate the transportation of intact neurotransmitters 
from the CNS to the periphery (162). Notably, certain biomarkers, 
such as BDNF serum levels, have been demonstrated to reflect 
alterations in the brain (163).

The clinical utility of biomarkers for TS remains elusive, with 
no biomarkers currently serving as reliable diagnostic tools. Our 
study adds significant value by identifying potential biomarkers 
for TS through a systematic meta-analysis designed to address 
specific questions or hypotheses (164). Our review indicates the 
potential usefulness of peripheral biomarkers in this context; 
however, further investigation is required to ascertain whether 
the statistical significance of our findings translates into 
diagnostic applicability.

We also note several limitations. Biomarkers discussed here are 
likely to be not specific, given that they are based on the evidence of 
association with other neurological or psychiatric disorders. Notably, 
we  did not account for potential variations in assay sensitivity, 
methods of sample collection, and molecular detection employed in 
different studies. Furthermore, confounding factors such as diet, stress 
status, and the specific diagnostic criteria for TS were not controlled 
in our analysis. Additionally, the prior treatment experiences of 
patients could have influenced the differentiation between TS and 
control subjects, despite biomarker assessments being conducted 
during a treatment-free period. Moreover, the use of different cutoff 
positivity values in various studies may have introduced bias into our 
findings. In light of these limitations, our study indicates that the 
biomarkers under review hold promise for potential clinical 
applications. Nevertheless, it is crucial to conduct further 
investigations before considering their adoption in clinical practice. 
The deep integration of omics sciences could be taken into account.

Conclusion

Our study demonstrated that TS is associated with peripheral 
levels of some T cells, NK-cells, anti-Streptococcus antibody positivity, 
Glu, Asp, Fe, Pb, Zn, vitamin D, and BDNF. Further studies should 
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be  conducted to replicate these findings before they are used in 
clinical settings.
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