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Background:While emerging evidence supports a link between traumatic brain

injury (TBI) and progressive cognitive dysfunction in Veterans, there is insu�cient

information on the impact of cannabis use disorder (CUD) on long-term

cognitive disorders. This study aimed to examine the incidences of cognitive

disorders in Veterans with TBI and CUD and to evaluate their relationship.

Methods: This retrospective cohort study used the US Department of

Veterans A�airs and Department of Defense administrative data from the Long-

term Impact of Military-Relevant Brain Injury Consortium-Chronic E�ects of

Neurotrauma Consortium Phenotype study. Diagnoses suggesting cognitive

disorders after a TBI index datewere identified using inpatient and outpatient data

from 2003 to 2022. We compared the di�erential cognitive disorders incidence

in Veterans who had the following: (1) no CUD or TBI (control group), (2) CUD

only, (3) TBI only, and (4) comorbid CUD+TBI. Kaplan-Meier analyses were used

to estimate the overall cognitive disorders incidence in the above study groups.

The crude and adjusted Cox proportional hazards models were used to estimate

crude and adjusted hazard ratios (HRs) for cognitive disorders.

Results: A total of 1,560,556 Veterans [82.32% male, median (IQR) age at the

time of TBI, 34.51 (11.29) years, and 61.35% white] were evaluated. The cognitive

disorder incidence rates were estimated as 0.68 (95% CI, 0.62, 0.75) for CUD

only and 1.03 (95% CI, 1.00, 1.06) for TBI only per 10,000 person-months of

observations, with the highest estimated cognitive disorder incidence observed

in participants with both TBI and CUD [1.83 (95% CI, 1.72, 1.95)]. Relative to the

control group, the highest hazard of cognitive disorderswas observed in Veterans

with CUD+TBI [hazard ratio (HR), 3.26; 95%CI, 2.91, 3.65], followed by thosewith

TBI only (2.32; 95 CI%, 2.13, 2.53) andwith CUD (1.79; 95 CI%, 1.60, 2.00). Of note,

in the CUD only subgroup, we also observed the highest risk of an early onset

cognitive disorder other than Alzheimer’s disease and Frontotemporal dementia.

Discussion: The results of this analysis suggest that individuals with comorbid

TBI and CUD may be at increased risk for early onset cognitive disorders,

including dementia.

KEYWORDS

traumatic brain injury, cannabis use disorder, dementia, Veterans, Cox proportional

hazards model

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1261249
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1261249&domain=pdf&date_stamp=2024-01-16
mailto:aryan.esmaeili@va.gov
https://doi.org/10.3389/fneur.2024.1261249
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2024.1261249/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Esmaeili et al. 10.3389/fneur.2024.1261249

Introduction

Individuals with traumatic brain injury (TBI), independent of

severity, are at increased risk for dementia (1) a neurodegenerative

disorder that is characterized by a decline in one or more

cognitive domains (2) and profoundly affects mortality, quality

of life, caregiver stress, and economic burden (3). The risk

of dementia is of particular concern for Veterans with TBI

since they frequently present with other associated risk factors

for dementia, including post-traumatic stress disorder (PTSD),

depression, and sleep impairment that may compound risk and

accelerate neurodegenerative processes (4, 5). TBI has been a

central focus of morbidity in recent war efforts, as nearly 20% of

the more than 2.5 million deployed U.S. military Service Members

and Veterans (SMVs) since 2003 sustained at least one TBI (6, 7).

Importantly, more than 80% of the TBIs are mild in severity

(mTBI) and up to 8% of all Veterans who have sustained TBI are

expected to have persistent symptoms related to the event more

than 6 months post-injury (8, 9). Difficulty with cognitive, affective,

somatosensory, and vestibular symptoms are common post-TBI

complaints (10, 11). Post-9/11 combat-deployed service members

are at risk of single and repetitive blast and non-blast injuries,

in particular mild TBIs (12). Although yet to be fully defined,

the mechanisms by which TBI promotes neurodegeneration may

be modulated by an array of processes manifesting from insult

related neuropathological changes that may be further exacerbated

by repetitive injury (13, 14). A history of TBI exposure may also

accelerate the time to dementia diagnosis (15), evidenced by a

recent study showing an increased risk for early-onset dementia in

young post-9/11 Veterans with prior TBI (16).

No study has demonstrated the beneficial effects of smoking

marijuana (17). To date, the United States Food and Drug

Administration (FDA) has not recommended cannabis for the

treatment of any disease or condition (18). Cannabis use disorder

(CUD) is defined as problematic marijuana use that causes

impairment or distress, without necessarily leading to addiction

(19, 20). Zehra et al. (21) suggested that CUD possesses addictive

properties akin to other drugs of abuse. Despite the lack of efficacy,

cannabis is frequently used to self-treat a wide array of symptoms

and conditions, including those associated with persistent post-

concussion symptoms (e.g., chronic pain, headache, insomnia,

anxiety, irritability, etc.) (22–25). Owing to expanded legalization,

lower perceptions of risk, and the absence of establishedmedication

regimens (26), the use of cannabis for symptom management

following TBI has likely increased (25, 27) in parallel with growing

trends in overall use in both the general U.S. population (28)

and in Veterans (29–32). Cannabinoids may regulate some of

the processes that lead to neurodegeneration (33), and therefore

may be useful in the treatment of neurodegenerative dementias

such as Alzheimer’s disease (AD), in particular for symptoms of

agitation (34, 35). However, to date, systematic reviews have noted

that available data evaluating cannabinoids for the treatment of

dementia progression are insufficient to draw clear conclusions

(36, 37). Additionally, studies have shown that cannabis use acutely

impairs cognitive functions including attention, concentration,

episodic memory, and associative learning in a dose-dependent

fashion (38, 39). As observed in some types of dementia, structural

changes, such as decreases in regional brain volume in the

hippocampus, amygdala, and striatum have also been linked to

heavy, chronic cannabis use (40–45). The existence of these non-

conclusive and contradictory studies on effectiveness of cannabis

on dementia treatment warrant further study. The objective of this

study was to examine the association of CUD in the emergence of

cognitive disorders in Post-9/11 Veterans diagnosed with TBI.

Methods

Participants and data source

The cohort for this retrospective analysis included participants

from the Long-term Impact of Military-Relevant Brain Injury

Consortium–Chronic Effects of Neurotrauma Consortium

(LIMBIC-CENC) Phenotype study. As described in detail

previously (46), this is a large cohort of Post-9/11 active duty and

veteran U.S. military persons who received care in the Department

of Defense (DoD) for at least 3 years, including those exposed and

unexposed to TBI(s). Data for this study included healthcare data

during deployment [e.g., DoD Trauma Registry (DoDTR) and

Theater Management Data Store (TMDS)], DoD, VA, and Non-VA

community inpatient and outpatient data. To ensure accurate TBI

status and sufficient data to identify cognitive disorder, we included

only those participants who also had 2 years of care in the Veterans

Health Administration (VHA) during the study period. The

research protocol was reviewed and approved by the University

of Utah and Stanford institutional review board (IRB) and was

conducted in accordance with all applicable federal regulations.

Measures and outcomes

Development of study groups
We used a hierarchical approach to identify TBI by prioritizing

data from DoDTR and TMDS (Glasgow Coma Scale score,

Abbreviated Injury Severity Score, and ICD-9-CM and ICD-10-CM

codes), followed by self-reported data from the comprehensive TBI

evaluation (CTBIE) data collected in the process of clinical care loss

of consciousness (mild, ≤30min; moderate to severe, >30min),

alteration of consciousness or posttraumatic amnesia (mild<24 h;

moderate to severe, ≥24 h 16), and ICD-9/10-CM diagnosis codes

from the Armed Forces Health Surveillance Division algorithm

(47). The index date for TBI was the first date of diagnosis or the

date of the CTBIE assessment; for those with more than one TBI

documented we used the date of the most severe TBI. Veterans who

did not enroll in VHA and did not complete the initial VA screening

for TBI were excluded from the study (Figure 1). For those without

TBI we calculated simulated TBI index dates using a Monte Carlo

simulation to generate age-correlated index dates (16). To establish

comparable analysis time windows across groups, it was necessary

to assign a simulated index date to each individual in the non-TBI

group. The simulated index dates were drawn at random from the

real distribution of injury dates. To further refine this approach,

the simulated index dates were only sampled from a subset of those
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FIGURE 1

Study flow chart for impact of cannabis on cognitive disorder in Veteran patients with TBI. CUD, Cannabis Use Disorder; DoD, Department of

Defense; LIMBIC-CENC, Long-term Impact of Military-Relevant Brain Injury Consortium-Chronic E�ects of Neurotrauma Consortium; TBI, Traumatic

Brain Injury; VHA, Veterans Health Administration.

in the TBI group who were of a similar age as the TBI negative

individual (within 5 years) (16).

Cognitive disorder was indicated by ICD-9/10 diagnosis codes

used to identify dementia by VHA Geriatrics and Extended Care

(Supplementary Table 3); ascertainment required a single ICD-9/10

dementia diagnosis code after TBI index date through September

11, 2022. Since prior research indicates that these diagnoses are not

accurate for individuals under age 65 (48, 49), we classified these

diagnoses simply as a “cognitive disorder.” To increase confidence

in confirmed dementia cases, we performed a sensitivity analysis

on the cohort with at least two ICD-9/10 codes for dementia

diagnosis and in the subgroup of 1) early onset of dementia (EOD)

(16), consisting of AD (ICD10 = G30.0), and Frontotemporal

dementia (FTD) and 2) non-EOD subgroups consisting of early

onset cognitive disorder other than AD and FTD.

Primary outcome
The primary outcome, time from TBI index date to cognitive

disorder diagnosis, was calculated using the TBI/simulated index

date and the first documented diagnosis indicating cognitive

disorder. To evaluate the associations among CUD and cognitive

disorder emergence following TBI, we categorized the cohort

into four groups: (1) Neither CUD nor TBI (control group),

(2) TBI only, (3) CUD only, and (4) comorbid CUD and TBI

(CUD+TBI). Cannabis CUD was identified using ICD-9 (304.3:

Cannabis dependence, and 305.2: Non-dependent cannabis abuse),

and ICD-10 codes (F12: Cannabis-related disorders including

F12.1 Cannabis abuse, F12.2 Cannabis dependence, and F12.9

Cannabis use, unspecified) for any ICD-9/10 diagnoses after TBI

index date.

Covariates
Sociodemographic and military characteristics, including

biological sex, age at index date, race/ethnicity, education, marital

status, branch, rank, rural/urban location of Veteran residence,

and VA service-connected disability group were obtained from the

VA DoD Identity Repository (VADIR; FY00-FY19) at the time of

military discharge.

Clinical characteristics
We identified comorbid conditions using ICD-9 and 10

codes obtained from the VA Corporate Data Warehouse (CDW)

and the DoD and VA Infrastructure for Clinical Intelligence

(DaVINCI). Conditions were identified using algorithms provided

in Supplementary Table 3 when individuals had one or more ICD-

9 and 10 diagnoses between TBI index date to September 11,

2022. We identified the Medication-assisted treatment (MAT)

after the TBI index date using the algorithm provided by VA

Pharmacy Benefits Management Services (Supplementary Table 3).

The U.S. district/region is identified using the VA medical center

(stations) that was assigned based on the Veteran home address

(Veteran residence).

Statistical analysis
Descriptive analyses of demographic characteristics and risk

behaviors from baseline data by CUD and TBI status were

conducted. We estimated the cognitive disorder incidence rates

(IRs) using Kaplan-Meier methods for the overall cohort and

for each of the four groups. Participants were censored at the

date of their last health care system encounter or September

11, 2022 (whichever came first). We used Cox proportional

hazards models to calculate the crude and adjusted CUD

and TBI-specific hazard ratio (HR) for cognitive disorder

incidence using CUD+TBI as the main exposure, controlling

for sociodemographic and clinical characteristics. To increase

confidence in confirmed dementia cases, we performed a sensitivity

analysis by re-running the Cox proportional hazards models

in the EOD and Non-EOD cohort (Table 2). All analyses
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TABLE 1 Demographic and clinical characteristics of veterans by CUD and TBI status (N = 1,560,556).

Control N (%) TBI only N (%) CUD only N (%) CUD + TBI N (%) Total N (%)

Overall 1,12,4686 (72.07) 3,45,896 (22.16) 48,100 (3.08) 41,874 (2.68) 1,560,556 (100)

Male 9,02,228 (80.22) 3,04,369 (87.99) 39,783 (82.71) 38,243 (91.33) 1,284,623 (82.32)

Age at TBI (Mean± SD) 35.36 (11.60) 33.30 (10.42) 28.43 (8.07) 28.58 (7.29) 34.51 (11.29)

Race/ethnicity (White) 6,84,525 (60.86) 2,20,561 (63.77) 26,501 (55.1) 25,796 (61.6) 9,57,383 (61.35)

Black or African American 2,32,517 (20.67) 54,881 (15.87) 13,172 (27.38) 7,211 (17.22) 3,07,781 (19.72)

Hispanic or Latino 1,15,010 (10.23) 35,771 (10.34) 4,353 (9.05) 3,629 (8.67) 1,58,763 (10.17)

Other 86,198 (7.66) 33,403 (9.66) 3,901 (8.11) 5,150 (12.3) 1,28,652 (8.24)

Unknown 6,436 (0.57) 1,280 (0.37) 173 (0.36) 88 (0.21) 7,977 (0.51)

Education (college and above) 3,46,404 (30.8) 83,513 (24.14) 5,730 (11.91) 4,491 (10.73) 4,40,138 (28.2)

High school and less 7,74,755 (68.89) 2,61,783 (75.68) 42,282 (87.9) 37,330 (89.15) 1,116,150 (71.52)

Unknown 3,527 (0.31) 600 (0.17) 88 (0.18) 53 (0.13) 4,268 (0.27)

Marital status (not married) 5,44,334 (48.4) 1,62,840 (47.08) 33,069 (68.75) 27,000 (64.48) 7,67,243 (49.16)

Married 5,79,138 (51.49) 1,82,875 (52.87) 15,001 (31.19) 14,857 (35.48) 7,91,871 (50.74)

Unknown 1,214 (0.11) 181 (0.05) 30 (0.06) 17 (0.04) 1,442 (0.09)

Branch (air force) 2,08,515 (18.54) 34,084 (9.85) 5,661 (11.77) 2,487 (5.94) 2,50,747 (16.07)

Army 5,10,432 (45.38) 2,06,662 (59.75) 26,205 (54.48) 28,100 (67.11) 7,71,399 (49.43)

Marines 1,61,454 (14.36) 61,554 (17.8) 6,953 (14.46) 6,957 (16.61) 2,36,918 (15.18)

Navy/coast guard 2,43,312 (21.63) 43,433 (12.56) 9,275 (19.28) 4,328 (10.34) 30,0348 (19.25)

Other 973 (0.09) 163 (0.05) 6 (0.01) 2 (0) 1,144 (0.07)

Rank (enlisted) 1,004,715 (89.34) 3,21,134 (92.85) 47,300 (98.34) 41,262 (98.54) 1,414,411 (90.64)

Officer 1,05,095 (9.34) 20,969 (6.06) 672 (1.4) 508 (1.21) 1,27,244 (8.15)

Warrant 14,812 (1.32) 3,764 (1.09) 124 (0.26) 102 (0.24) 18,802 (1.2)

Rurality (Rural) 3,13,229 (27.85) 1,09,710 (31.72) 12,344 (25.66) 12,941 (30.9) 4,48,224 (28.72)

Urban 8,06,537 (71.71) 2,35,011 (67.94) 35,677 (74.17) 28,840 (68.87) 1,106,065 (70.88)

Unknown 4,920 (0.44) 1,175 (0.34) 79 (0.16) 93 (0.22) 6,267 (0.4)

VA SCD None/0% 2,54,515 (22.63) 39,619 (11.45) 10,384 (21.59) 5,060 (12.08) 30,9578 (19.84)

10-40 percent 1,85,725 (16.51) 24,283 (7.02) 4,943 (10.28) 1,831 (4.37) 2,16,782 (13.89)

≥50 percent 6,84,446 (60.86) 2,81,994 (81.53) 32,773 (68.14) 34,983 (83.54) 1,034,196 (66.27)

District (North Atlantic) 2,46,134 (21.89) 71,638 (20.71) 9,963 (20.71) 8,365 (19.98) 3,36,100 (21.54)

Southeast 2,29,057 (20.37) 67,119 (19.4) 10,061 (20.92) 7,832 (18.7) 3,14,069 (20.13)

Midwest 2,17,771 (19.36) 70,310 (20.33) 9,437 (19.62) 8,701 (20.78) 3,06,219 (19.62)

Continental 2,26,839 (20.17) 73,873 (21.36) 9,917 (20.62) 8,982 (21.45) 3,19,611 (20.48)

Pacific 2,04,855 (18.21) 62,948 (18.2) 8,720 (18.13) 7,994 (19.09) 2,84,517 (18.23)

Headache 2,82,990 (25.16) 1,97,752 (57.17) 14,821 (30.81) 25,226 (60.24) 5,20,789 (33.37)

Other chronic pain 8,84,584 (78.65) 3,14,294 (90.86) 41,360 (85.99) 39,197 (93.61) 1,279,435 (81.99)

EOD (AD and FTD disease) 845 (0.08) 527 (0.15) 38 (0.08) 59 (0.14) 1,469 (0.09)

MAT (recent) 29,563 (2.63) 19,292 (5.58) 10,485 (21.8) 11,650 (27.82) 70,990 (4.55)

Severe mental illness 1,28,519 (11.43) 82,841 (23.95) 23,283 (48.41) 25,302 (60.42) 2,59,945 (16.66)

Depression 3,89,215 (34.61) 1,90,748 (55.15) 36,809 (76.53) 35,197 (84.05) 6,51,969 (41.78)

PTSD 2,92,631 (26.02) 2,25,294 (65.13) 28,998 (60.29) 36,407 (86.94) 5,83,330 (37.38)

Personality disorder 22,613 (2.01) 15,817 (4.57) 8,488 (17.65) 10,123 (24.17) 57,041 (3.66)

(Continued)
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TABLE 1 (Continued)

Control N (%) TBI only N (%) CUD only N (%) CUD + TBI N (%) Total N (%)

Alcohol use disorder 2,09,531 (18.63) 1,21,974 (35.26) 34,111 (70.92) 34,672 (82.8) 4,00,288 (25.65)

Opioid use disorder 24,459 (2.17) 20,824 (6.02) 14,697 (30.56) 18,720 (44.71) 78,700 (5.04)

Other drug use disorder 28,869 (2.57) 24,150 (6.98) 28,052 (58.32) 27,556 (65.81) 1,08,627 (6.96)

Nicotine use disorder 1,78,754 (15.89) 93,409 (27) 20,290 (42.18) 23,682 (56.56) 3,16,135 (20.26)

Anxiety 3,63,430 (32.31) 1,74,680 (50.5) 32,448 (67.46) 31,843 (76.04) 6,02,401 (38.6)

Insomnia 2,07,220 (18.42) 1,17,128 (33.86) 10,998 (22.86) 16,704 (39.89) 3,52,050 (22.56)

Memory loss 14,928 (1.33) 56,855 (16.44) 1,072 (2.23) 8,023 (19.16) 80,878 (5.18)

CHF 20,709 (1.84) 7,384 (2.13) 801 (1.67) 864 (2.06) 29,758 (1.91)

Cardiac disease 1,12,527 (10.01) 50,198 (14.51) 5,921 (12.31) 8,178 (19.53) 1,76,824 (11.33)

Stroke 15,412 (1.37) 13,779 (3.98) 588 (1.22) 1,725 (4.12) 31,504 (2.02)

Convulsions disorders 91,835 (8.17) 87,675 (25.35) 11,772 (24.47) 20,070 (47.93) 2,11,352 (13.54)

CKD 19,286 (1.71) 6,535 (1.89) 860 (1.79) 844 (2.02) 27,525 (1.76)

SCD, Service Connected Disability; TBI, Traumatic Brain Injury; CUD, Cannabis Use Disorder; MAT, Medication-Assisted Treatment; CHF, Congestive Heart Failure; CKD, Chronic Kidney

Disease; PTSD, Post-Traumatic Stress Disorder; EOD, Early Onset Dementia; AD, Alzheimer’s disease; FTD, Frontotemporal dementia. The statistical difference is significant for all variables (p

< 0.005).

were conducted using Stata version 17 (StataCorp LP, College

Station, TX).

Results

Sociodemographic and clinical
characteristics

A total of 1,560,556 Veterans were included in the analysis

and stratified by TBI and CUD status. Table 1 presents some of

the key demographic and health characteristics of each of the

four groups. A fuller range of these variables may be seen in

Supplementary Table 1, which also includes standardized mean

differences between the clinical and population differences by TBI

and CUD status. The median (IQR) age at the time of TBI was

34.51 (11.29) years. Veterans with CUD+TBI tended to be male,

with a high school education or less, were enlisted in the Army, and

had higher service-connected disability percentages compared with

the other 3 groups (Table 1). The TBI-CUD group also had higher

rates of diagnoses for headache, other chronic pain, participation in

MAT programs, mental health conditions [i.e., severe mental illness

(such as schizophrenia, Bipolar II disorder), depression, PTSD,

personality disorder, anxiety, insomnia], and alcohol, opioid, and

other substance use disorders compared with the other groups.

Cognitive disorder IR and hazard ratio by
TBI and CUD status

The cognitive disorder IR and corresponding HR by TBI and

CUD status are shown in Table 2. Overall, we identified 9,844

Veterans with a history of any type of cognitive disorder. The

overall cognitive disorder IR was estimated as 0.52 (95% CI: 0.51,

0.53) per 10,000 person months of observations (PMO). After

controlling for all demographic and risk factors, the hazard of

cognitive disorder was 2.32 (95% CI: 2.13, 2.53), 1.79 (95% CI: 1.60,

2.00), and 3.26 (95% CI: 2.91, 3.65) for Veterans with TBI only,

CUD only, and CUD+TBI, respectively, compared to the control

group. Figure 2 shows the time from TBI to cognitive disorder

by subgroup. Despite a very low incidence of cognitive disorder

in our cohort, the risk of cognitive disorder was significantly

higher in Veterans with CUD+TBI. The cognitive disorder rate

was 0.25%, 0.30%, and 4.4% at 5, 10, and 15 years after TBI,

respectively, in Veterans with CUD + TBI. After controlling for

all demographic and risk factors, the modifying effect (interaction

term) between CUD and TBI on the progression of dementia

was <22% the expected rate for the combined risks of TBI and

CUD [Supplementary Table 2, HR = 0.78 (95% CI: 0.69, 0.89)] in

Veterans diagnosed with TBI.

EOD vs. non-EOD

Among the 9,844 Veterans with an assigned diagnosis of

cognitive disorder, 5,360 were identified as early onset cognitive

disorder with at least 2 documented dementia diagnoses (1,053 and

4,307 Veterans with EOD and non-EOD, respectively, Table 2). The

crude and adjusted HRs of the CUD+TBI, CUD only, and TBI

only groups, relative to the control groups, were lower in the EOD

subgroup relative to the Non-EOD group. We did not observe any

significant differences in the hazard of EOD between the CUD only

and control groups.

EOD and non-EOD among Veterans with
TBI

We examined factors related to EOD and Non-EOD

development among Veterans with TBI, after adjusting for
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TABLE 2 Cognitive disorder incidence rate (overall and by TBI and CUD status), and hazard ratio of dementia by CUD and TBI status.

Person-time Failures (Documented
cognitive disorder)

IR (95% CI) per 10000
PMO

Crude Adjusted model∗

HR (95% CI) HR (95% CI)

All types of cognitive disorder

Overall 190,800,000 9,844 0.52 (0.51, 0.53)

Control 136,600,000 4,053 0.30 (0.29, 0.31) Ref Ref

TBI only 4,255,8896 4,381 1.03 (1.00, 1.06) 3.47 (3.33, 3.62) 2.32 (2.13, 2.53)

CUD only 6213722.8 423 0.68 (0.62, 0.75) 2.31 (2.09, 2.55) 1.79 (1.60, 2.00)

CUD+TBI 5386415.6 987 1.83 (1.72, 1.95) 6.21 (5.79, 6.65) 3.26 (2.91, 3.65)

EOD (AD and FTD disease)

Overall 191,300,000 1,053 0.06 (0.05, 0.06)

Control 136,800,000 646 0.05 (0.04, 0.05) Ref Ref

TBI only 42,866,265 354 0.08 (0.07, 0.09) 1.75 (1.54, 1.99) 1.75 (1.3, 2.35)

CUD only 6237732.1 20 0.03 (0.02, 0.05) 0.68 (0.44, 1.07) 1.49 (0.93, 2.39)

CUD+TBI 5458252.4 33 0.06 (0.04, 0.09) 1.29 (0.91, 1.83) 2.81 (1.74, 4.53)

All other early onset cognitive disorder (Non-EOD)

Overall 191,100,000 4,307 0.23 (0.22, 0.23)

Control 136,700,000 1,529 0.11 (0.11, 0.12) Ref Ref

TBI only 42,696,148 2,195 0.51 (0.49, 0.54) 4.61 (4.32, 4.92) 3.04 (2.68, 3.44)

CUD only 6228235.2 157 0.25 (0.22, 0.29) 2.27 (1.93, 2.68) 1.84 (1.54, 2.20)

CUD+TBI 5426337.5 426 0.79 (0.71, 0.86) 7.08 (6.36, 7.88) 3.95 (3.33, 4.67)

HR, Hazard Ratio; IR, Incidence Rate; CI, Confidence Interval; EOD, Early Onset Dementia; TBI, Traumatic Brain Injury; CUD, Cannabis Use Disorder; PMO, Person Months of Observations;

Ref, Reference. The covariates included in the adjusted model: CUD, TBI, sex, age at the time of TBI, TBI severity, race, education, marital status, branch, rank, rurality, service-connected

disability groups, District, Headache, Chronic Pain, MAT (recent), Oncology, Severe Mental Illness, Depression, PTSD, Personality Disorder, Alcohol Use Disorder, Opioid Use Disorder, Other

SUD, Nicotine Use disorder, anxiety, insomnia, CHF, Perivascular disease, Cardiac disease, Stroke, Diabetes Mellitus (DM), DM with complications, convulsions disorders, Neurologic disorder

(No Convulsions disorders), Liver Disease, CKD, and death. ∗The covariates included in the adjusted model.

select variables: TBI severity, sex, race/ethnicity, and education, as

shown in Table 3. More severe categories of TBI were associated

with higher risk of dementia development, as observed with

penetrating and moderate/severe TBI; and conversely, less severe

TBI, specifically mild TBI and post concussive syndrome (which

is indicative of mild TBI), were associated with lower risk of EOD

and non-EOD development relative to no TBI. Other factors

related to increased risk of EOD were being male, older age at time

of TBI, and Hispanic or Latino ethnicity (relative to White). Other

factors related to Non-EOD development were being male, older

age at time of TBI, Black or African American (relative to White),

and having up to a high school education (relative to completing

college or higher).

Discussion

Among a large cohort of Post-9/11 Veterans, incidence rates of

cognitive disorder were highest among those with a history of TBI

and concomitant CUD followed by those with TBI only, CUD only,

and those without a history of TBI or CUD. Veterans with CUD +

TBI had a 3.26 times higher hazard for cognitive disorder compared

with those in the control group. Prior studies have established

the association between TBI and dementia (1, 50) and potential

mechanisms linking the two conditions (14, 51, 52). As expected,

Veterans with TBI only had a 2.32 times higher hazard for cognitive

disorder compared with those in the control group. While we are

not able to assess a dose-response association between CUD and

cognitive disorder, we found a higher hazard of cognitive disorder

in those with CUD only and CUD+TBI, compared with the control

group. Depending on the type and severity, TBI may be exhibited

by focal brain damage causing ’shearing and stretching’ injuries in

cerebral brain tissues (53, 54) or diffuse axonal injury that may

involve subcortical and deeper white matter tissues such as the

brainstem and corpus callosum (55). Conversely, the distribution

of cannabinoids in the brain, regardless of the intake route, occurs

after modifying the deleterious effects on the blood–brain barrier

(56). Although the brain’s blood supply originates in the base of the

skull (the brainstem, amygdala, and hypothalamus) and terminates

in the cortical area, a previous study demonstrated that cannabis

users exhibited significantly increased blood volumes in the frontal,

temporal, and cerebellar areas (57).

While our finding is consistent with a previous study indicating

higher risk of EOD in Veterans with TBI (16), our data also suggests

that CUD is an independent risk factor for cognitive disorder

only in the non-EOD group. Compared with the control group,

the CUD-only group exhibited a 79% higher hazard for cognitive

disorders, primarily driven by the non-EOD subgroup (excluding
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FIGURE 2

The time from TBI (or TBI index date in the control group) to cognitive disorder, Kaplan–Meier survival estimate and life table, in four groups: Control,

TBI only, CUD only, and CUD+TBI. TBI, Traumatic Brain Injury; CUD, Cannabis Use Disorder.

AD and FTD). A previous systematic review of brain imaging

studies among adolescent cannabis users revealed functional and

structural evidence of lesions in the frontoparietal, frontolimbic,

frontostriatal, and cerebellum regions (58). The results are also

consistent with previous studies demonstrating that cannabis

use is associated with cognitive functional disorder and bilateral

hippocampal and amygdala volume reduction in midlife patients

with heavy, chronic cannabis use (40, 45). Our findings indicate

AD and FTD are less likely to be observed in the CUD patients,

which may be explained by intact cortical areas in cannabis

users but need further investigation. Since AD is characteristically

a disease of older age (59) and those who were older tended

to have lower cannabis quantity use and fewer consequences

associated with cannabis use (60, 61), other considerations include

possible age-related behavioral changes among those with CUD.

Additional factors not measured in these analyses, including

social, structural, and biological characteristics, may contribute

to dementia susceptibility in Veterans with non-EOD and co-

occurring CUD.

The hazard ratio for dementia diagnosis across all categories

was more pronounced in individuals with non-EOD, compared

with EOD, which could be explained by genetic risk factors

and the physiopathology of TBI and CUD in the progression of

dementia. The genetic risk factors may pave the way to approach

the hypothesis behind the dissimilarity in our EOD vs. non-EOD

results. Previous studies addressed the potential roles of several

missense mutations and known variant genes in the pathogenesis

of early-onset AD (62) and decreased levels of dopaminergic

neurotransmitters in patients with AD (63). Conversely, distinct

genetic factors for CUD might concurrently initiate underlying

pathways related to AD (64). Cannabinoids have been shown to

increase mesolimbic dopamine transmission in the short term

(65). The risk factors underlying CUD development likely involve

multiple genes that interact with each other and the environment,

ultimately leading to cognitive disorders. TBI is defined as an

impact, penetration, or rapid movement of the brain within the

skull and the event can be classified as either impact (direct

contact of the head with an object) or non-impact (encountering

non-impact forces like blast waves or rapid acceleration and

deceleration) (66).

Limitations

This study has several limitations. The results were restricted

to Veterans and based on characteristics and conditions measured

and stored in electronic health records (EHRs). Therefore, theymay

not represent other patient populations. We attempted to account

for the difficulties associated with obtaining chronicity and severity

of cannabis use by examining both DoD and VA records and

limiting cannabis exposures to ICD codes related to CUD. The EHR

system in VHA allowed us to identify a CUD diagnosis after the

TBI index date, further strengthening the methodology. However,

we note that we were not able to quantify the route of cannabis

intake (i.e., inhalation vs. ingestion), which is an area for further

exploration. While our approach focused on cognitive disorders

due to inaccuracy of dementia codes in younger individuals,
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TABLE 3 The impact of selected demographic and clinical characteristics on cognitive disorder (adjusted cox proportional hazards model) among

veterans with TBI (N = 1,554,319).

All EOD Non-EOD

TBI severity (No TBI) Ref Ref Ref

Mild 0.81 (0.75, 0.89) 0.76 (0.56, 1.04) 0.76 (0.67, 0.86)

Moderate/Severe 1.31 (1.19, 1.44) 1.00 (0.70, 1.45) 1.30 (1.13, 1.49)

Penetrating 2.88 (2.6, 3.2) 1.61 (1.09, 2.38) 3.33 (2.89, 3.85)

Post concussive syndrome 0.40 (0.28, 0.57) 0.45 (0.14, 1.46) 0.42 (0.25, 0.69)

Male 1.31 (1.23, 1.4) 1.22 (1.01, 1.48) 1.52 (1.38, 1.68)

Age at the time of TBI 1.08 (1.08, 1.08) 1.17 (1.16, 1.18) 1.08 (1.07, 1.08)

Race (White) Ref Ref Ref

Black or African American 1.04 (0.99, 1.10) 0.99 (0.83, 1.18) 1.11 (1.02, 1.20)

Hispanic or Latino 1.07 (0.99, 1.14) 1.33 (1.08, 1.64) 1.02 (0.91, 1.13)

Other 0.99 (0.92, 1.07) 0.89 (0.69, 1.14) 1.04 (0.93, 1.16)

Unknown 0.93 (0.64, 1.37) 0.40 (0.06, 2.85) 0.89 (0.48, 1.65)

Education (college or higher) Ref Ref Ref

High School and Less 1.14 (1.09, 1.20) 1.04 (0.90, 1.20) 1.19 (1.11, 1.29)

Unknown 1.1 (0.81, 1.50) 0.87 (0.43, 1.77) 1.01 (0.62, 1.64)

Alcohol use disorder 1.08 (1.02, 1.14) 0.94 (0.78, 1.15) 1.08 (0.99, 1.18)

Opioid use disorder 0.82 (0.76, 0.88) 0.71 (0.53, 0.94) 0.78 (0.7, 0.87)

Other drug use disorder 1.47 (1.37, 1.58) 1.26 (0.95, 1.67) 1.43 (1.28, 1.59)

Nicotine use disorder 0.91 (0.86, 0.96) 0.82 (0.68, 1.00) 0.90 (0.83, 0.98)

TBI, Traumatic Brain Injury; CUD, Cannabis Use Disorder; EOD, Early Onset Dementia; Ref, Reference.

further analysis is warranted in other older cohorts, and subsequent

analyses as this longitudinal cohort ages.

Conclusions

The results of our study suggest that CUD and TBI are

independent risk factors for cognitive disorder and the highest

incidence of cognitive disorder is observed in Veterans with

comorbid CUD+TBI. TBI and CUD are both independently

associated with cognitive impairment. Cognitive impairment is a

common post-TBI symptom that may last more than 6 months

post-injury (8, 9). Acute inhaled cannabis use is associated with

cognitive impairment that may last at least 5 h (38). However, the

timing of cognitive disorders is the key point in our study (i.e.,

time from TBI to ICD codes for dementia diagnosis) and likely

indicates permanent cognitive dysfunction after TBI insult. The

heterogeneity in impact of CUD on emergence of EOD and Non-

EOD subgroup in our cohort, who were relatively young at the time

of TBI, may be indicative of the potential harms of cannabis use

on long-term cognitive dysfunction. Given that cannabis receptor

(CB1R) is enriched in the mesocorticolimbic system (67) and

cannabis exposure increases long-term vulnerability to cognitive

impairments (68, 69), our results support the long-term harmful

effect of cannabis use in patients with cognitive disorder and

dementia subtypes that involved brain areas other than frontal and

temporal lobes (AD and FTD). Cannabis users showed that the

cerebral blood flow reduced in cortical regions and increased in the

right precuneus at baseline (70). Also, in the experimental animal’s

study, noxious effects of chronic cannabis exposure led to higher

THC and cannabidiol concentrations in cerebellum and occipital

cortex of squirrel monkeys and persisted after discontinuation

of the treatment (71). Further studies is needed to evaluate the

impact of the chronic cannabis use and structural changes inmedial

temporal structures and midbrain (40–45). Given the findings of

this analysis and the increasing awareness of the potential long-

term impacts of combat-related and civilian TBI and the growing

rates of CUD, further investigations are warranted.
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