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Purpose: To investigate the value of clinical-radiomics analysis based on T1-weighted

imaging (T1WI) for predicting acute bilirubin encephalopathy (ABE) in neonates.

Methods: In this retrospective study, sixty-one neonateswith clinically confirmed ABE

and 50 healthy control neonates were recruited between October 2014 and March

2019. Two radiologists’ visual diagnoses for all subjects were independently based on

T1WI. Eleven clinical and 216 radiomics features were obtained and analyzed. Seventy

percent of samples were randomly selected as the training group and were used

to establish a clinical-radiomics model to predict ABE; the remaining samples were

used to validate the performance of the models. The discrimination performance was

assessed by receiver operating characteristic (ROC) curve analysis.

Results: Seventy-eight neonates were selected for training (median age, 9 days;

interquartile range, 7–20 days; 49 males) and 33 neonates for validation (median

age, 10 days; interquartile range, 6–13 days; 24 males). Two clinical features and ten

radiomics features were finally selected to construct the clinical-radiomics model.

In the training group, the area under the ROC curve (AUC) was 0.90 (sensitivity:

0.814; specificity: 0.914); in the validation group, the AUC was 0.93 (sensitivity:

0.944; specificity: 0.800). The AUCs of two radiologists’ and the radiologists’ final

visual diagnosis results based on T1WI were 0.57, 0.63, and 0.66, respectively.

The discriminative performance of the clinical-radiomics model in the training

and validation groups was increased compared to the radiologists’ visual diagnosis

(P < 0.001).

Conclusions: A combined clinical-radiomics model based on T1WI has the potential

to predict ABE. The application of the nomogramcould potentially provide a visualized

and precise clinical support tool.

KEYWORDS

radiomics, acute bilirubin encephalopathy, magnetic resonance imaging, nomogram,

hyperbilirubinemia

Introduction

Neonatal hyperbilirubinemia, characterized by jaundice, is a common and benign disease

in neonates, but is the main cause of hospitalization in the first week after birth (1); neonatal

jaundice is the seventh and the ninth cause of neonatal death in the early neonatal period (0–6

d) and late neonatal period (7–27 d), respectively (2, 3). Even though most hyperbilirubinemia
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patients have a favorable prognosis, some severe cases may cause

neurotoxicity and lead to neonatal acute bilirubin encephalopathy

(ABE) (4) with a risk of neonatal mortality and life-long

neurodevelopmental handicaps (5, 6).

Hyperintensity of the bilateral globus pallidus (GP) on T1-

weighted imaging (T1WI) is considered to be a characteristic imaging

manifestation of ABE (7, 8). However, the presence of myelin in

these structures has also revealed hyperintensity on T1WI, which

is easily confused with the changes caused by brain damage in

ABE (9). Furthermore, hyperintensity on T1WI of GPs in neonates

with ABE may be transient and subtle (7); the lack of objectivity

and accuracy necessitates the need to determine GP signals by a

radiologist’s naked eye only, which may affect the early diagnosis

and treatment of ABE, especially for those neonates who may have

had early brain damage while the signal of GPs on T1WI has

not increased. Therefore, conventional T1WI is insufficient to meet

diagnostic needs. Radiomics is an emerging field that translates

medical images into quantitative data (10, 11). The internal texture

information of the GPs can be mined deeply by extracting high-

throughput features, and the biological information can be displayed

objectively and quantitatively.

The purpose of this study was to assess the value of a clinical-

radiomics model based on T1WI for predicting ABE in neonates and

to compare its diagnostic value with experienced radiologists’ visual

diagnosis results, providing a new tool for the early diagnosis and

individualized monitoring of ABE.

Materials and methods

Patients

This retrospective study was approved by the hospital ethics

committee and the requirement for informed consent was waived

because of the retrospective nature of the study. One hundred

and eleven neonates were recruited between October 2014 and

March 2019. Figure 1 shows the pathway of ABE and healthy

neonate inclusion and exclusion. Clinical features including age,

gender, weight, gestational week, pregnancy history of maternal,

meconium-stained amniotic fluid, premature rupture of membranes,

singleton or multiple-birth pregnancy, and type of delivery were

collected from all subjects. In order to construct a stable and

generalization model, all subjects (n = 111) were randomly

divided into a training group (n = 78) and a validation

group (n = 33) according to the ratio of 7:3. The training

group was used to construct models that were verified by the

validation group.

MRI acquisition

All subjects underwent MRI examination on a GE Signa HDxT

1.5T MRI scanner with a dedicated eight-channel head and neck

unite coil. Ten percent chloral hydrate (0.5 mL/kg) was administered

via anal enema for sedation 30min before examination. MRI

Abbreviations: T1WI, T1-weighted imaging; ABE, Acute bilirubin

encephalopathy; ROC, Receiver operating characteristic; AUC, Area under the

ROC curve; GP, Globus pallidus.

scanning was performed during the deep sedation. The imaging

protocol included axial T1WI (TR = 2950ms, TE = 25ms, slice

thickness = 4mm, matrix = 288 × 192, NEX = 2, FOV = 22.0 ×

22.0 cm).

Radiologists’ visual diagnosis

Radiologist 1 (JY) and radiologist 2 (JW), with 15 and 20

years of experience in neonatal radiology, respectively, independently

provided what they thought was the most likely diagnosis for all

subjects (n= 111) based on T1WI. For the subjects with controversial

diagnoses from radiologists 1 and 2, a review was conducted by

radiologist 3 with 25 years of experience (YM) to determine the

radiologists’ final visual diagnosis. Radiologists were blinded to all

clinical and diagnosis information except age at the time of MRI

scanning. Images were displayed in a random sequence.

Segmentation and feature extraction

MRI data were transferred to a personal computer and processed

based on 3D slicer software (http://www.slicer.org). The regions of

interest were manually outlined along the boundary of the bilateral

GPs on the slices with the largest area of bilateral GPs and its

adjacent upper and lower slices on T1WI. Then, a volume of interest

was automatically generated on the software. One hundred and six

features of each GP (212 features of bilateral GPs) for each neonate

were extracted by 3D slicer software. All radiomics features are

summarized in Supplementary material E1.

Feature selection and prediction model
building

Clinical feature and model
The clinical features in the training and validation group

were compared using an independent samples t-test (for normally

distributed data) or Mann–Whitney U-test (for non-normally

distributed data) for continuous variables and a chi-squared test for

categorical variables.

Features with P < 0.05 in the univariate analysis were

selected and fed into the multivariate logistic regression analysis

using a backward stepwise elimination method based on Akaike’s

information criterion. The clinical model was established by applying

multivariate logistic regression.

Radiomics feature and model
The dimensionality reduction of radiomics features was

performed. First, intraclass correlation coefficients were used

to assess the intra-observer repeatability of radiomics features.

The image segmentation of all cases was performed by observer

one with 15 years of experience (JY), and then observer two

with 10 years of experience (YL), and used the same method to

segment the 30 subjects who were selected from the whole sample

based on stratified sampling to reduce possible bias and ensure

the reliability of segmentation and feature extraction. Observers
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FIGURE 1

Flow diagrams show the pathway of ABE and healthy neonate inclusion and exclusion. ABE, acute bilirubin encephalopathy; TSB, total serum bilirubin;

BIND, bilirubin-induced neurologic dysfunction.

FIGURE 2

The workflow of clinical-radiomics analysis in the current study. VOI, volume of interest; ICC, intraclass correlation coe�cients; mRMR, maximal relevance

and minimal redundancy; Lasso, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; DCA, decision curve analysis.

were blinded to clinical and group information. Features with

intraclass correlation coefficients > 0.90 were retained, which

indicated high robustness and satisfactory reproducibility. Second,

maximal relevance and minimal redundancy were performed

to eliminate the redundant and irrelevant features, and 30

features were retained. Then, the least absolute shrinkage and

selection operator algorithm was performed to identify the most

valuable features. Finally, the radiomics score (rad-score) was
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TABLE 1 Patient clinical features between the training and validation groups.

Clinical feature Training group (n = 78) Validation group (n = 33) P-value

ABE (n = 43) HC (n = 35) P-value ABE (n = 18) HC (n = 15) P-value

Age (d) 8.00 (2.50) 11.00 (11.50) 0.220 9.50 (5.25) 19.00 (4.75) 0.135 0.502

Gender 0.168 0.697 0.315

Male 24 (55.81%) 25 (71.43%) 14 (77.78%) 10 (66.67%)

Female 19 (44.19%) 10 (28.57%) 4 (22.22%) 5 (33.33%)

Weight (g) 3224.42± 488.03 3447.00± 588.04 0.072 3262.22± 603.94 3336.00± 645.50 0.737 0.885

Gestational week (w) 38.35± 1.12 38.56± 1.36 0.760 38.42± 1.36 38.56± 1.51 0.642 0.808

Pregnancy history of maternal 0.820 0.482 0.891

Yes 17 (39.53%) 15 (42.86%) 9 (50.00%) 5 (33.33%)

No 26 (60.47%) 20 (57.14%) 9 (50.00%) 10 (66.67%)

Meconium-stained amniotic fluid 0.078 0.375 0.977

Yes 40 (93.02%) 24 (68.57%) 16 (88.89%) 11 (73.33%)

No 3 (6.98%) 11 (31.43%) 2 (11.11%) 4 (26.67%)

Premature rupture of membranes 0.649 0.300 0.188

Yes 20 (46.51%) 19 (54.29%) 5 (27.78%) 7 (46.67%)

No 23 (53.49%) 16 (45.71%) 13 (72.22%) 8 (53.33%)

Singleton or multiple-birth pregnancy 0.198 1.000 0.366

Singleton 43 (100.00%) 33 (94.29%) 17 (94.44%) 14 (93.33%)

Multiply 0 (0%) 2 (5.71%) 1 (5.56%) 1 (6.67%)

Type of delivery <0.001∗ <0.001∗ 0.342

Spontaneous labor 6 (13.95%) 20 (57.14%) 0 (0%) 8 (53.33%)

Cesarean delivery 37 (86.05%) 15 (42.86%) 18 (100.00%) 7 (46.67%)

TSB (umol/L) 387.84± 68.17 - 369.39± 40.30 - 0.196

BIND score 3.00 (2.00) - 3.00 (1.00) - 0.731

∗p < 0.05.

calculated based on the selected radiomics features weighted by

their coefficients.

Clinical-radiomics model and nomogram
The combined clinical-radiomics model was established to

predict the risk of ABE using multivariate logistic regression analysis

based on the selected clinical features and radiomics features. To

ensure the easy use of the model, the combined clinical-radiomics

model was further visualized as a nomogram.

Evaluation
The discrimination performances of the radiologists’ visual

diagnosis, clinical model, radiomics model, and clinical-radiomics

model were accessed by using receiver operating characteristic (ROC)

curve analysis. The area under the ROC curve (AUC), accuracy,

sensitivity, and specificity were calculated. DeLong’s test was used to

compare the statistical differences between the AUCs of the training

and validation groups. The calibration performance of the combined

model was tested by using the calibration curves accompanied by the

Hosmer–Lemeshow test; P > 0.05 were considered good fitness. The

clinical benefit for clinical application of the combined model was

assessed by using decision curve analysis.

The statistical analyses were performed using R software (v. 3.5.3,

http://www.R-project.org), and two-sided P < 0.05 were considered

to be statistically significant. The workflow is shown in Figure 2.

Results

Clinical feature and model

Sixty-one neonates with ABE (median age, 9 days; interquartile

range, 7–10 days; 35 male) and 50 healthy neonates (median age, 11.5

days; interquartile range, 6–19.75 days; 38 male) were included for

the training and validation groups. Demographic and clinical features

data are provided in Table 1.

The clinical features were further analyzed by univariate and

multivariate logistic regression analysis in the training group

(Table 2). In the univariate analysis, gestational week, meconium-

stained amniotic fluid, and type of delivery (P < 0.05) were included

in the multivariate analysis. Multivariate logistic regression analysis

indicated that gestational week and type of delivery (P < 0.05) were
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TABLE 2 Univariate and multivariate logistic regression analysis of clinical

features in the training group.

Clinical
features

Univariate analysis Multivariate analysis

Odds
ratio

P-value Odds ratio P-value

Gestational
week

0.45 <0.001∗ 0.47 0.001∗

Type of
delivery

8.22 <0.001∗ 7.53 <0.001∗

∗p < 0.05.

independent risk factors for predicting ABE. The clinical model was

established using the above three features.

Radiomics features and model

One hundred features of left GP and 106 features of right GPwere

considered stable with intra-observer stability (intraclass correlation

coefficients ranges: 0.901–1.000 and 0.941–1.000, respectively).

These features measured by observer one were selected for

subsequent analysis.

There remained ten radiomics features after dimensionality

reduction, and the coefficients of these features are presented in

Figure E1; these were selected to calculate the corresponding rad-

score:

Rad− score = 0.285 + 0.805× Right_RunEntropy+ 0.164

×Left_Correlation− 0.049× Right_SmallAreaLowGrayEmphasis

+0.267× Right_SurfaceVolumeRatio− 0.264× Right_Imc1

−0.325× Left_Maximum2DDiameterRow− 0.071

×Left_Skewness+ 0.12× Right_Correlation+ 0.264

×Left_GrayLevelNonUniformity_2+ 0.237× Left_Idmn

Clinical-radiomics model and nomogram
construction

Combined with the clinical features and the rad-score, the

clinical-radiomics model was established. Meanwhile, the nomogram

was established based on the clinical-radiomics model to individually

estimate the risk of ABE for each neonate (Figure 3).

Model performance evaluation

The ROC curves and discriminative performance of the clinical

model, radiomics model, and clinical-radiomics model are shown in

Figures 4A, B and Table 3. In the training group, the AUC of the

clinical model, radiomics model, and clinical-radiomics model was

0.83 (P < 0.001, 95% CI: 0.73–0.93), 0.83 (P < 0.001, 95% CI: 0.74–

0.92), and 0.90 (P < 0.001, 95% CI: 0.84–0.97), respectively, with

a sensitivity of 0.884, 0.581, and 0.814, specificity of 0.743, 1.000,

and 0.914, positive predictive value of 0.809, 1.000, and 0.921, and

negative predictive value of 0.839, 0.660, and 0.800. In the validation

group, the AUC of the clinical model, radiomics model, and clinical-

radiomics model was 0.86 (P < 0.001, 95% CI: 0.72–1.00), 0.79 (P =

0.005, 95% CI: 0.63–0.94), and 0.93 (P < 0.001, 95% CI: 0.85–1.00),

respectively, with a sensitivity of 0.944, 0.778, and 0.944, specificity

of 0.800, 0.667, and 0.800, positive predictive value of 0.850, 0.737,

and 0.850, and negative predictive value of 0.923, 0.714, and 0.923.

DeLong’s test showed that there was no significant difference between

the training group and the validation group in the clinical model,

radiomics model, and clinical-radiomics model (P = 0.759, P =

0.670, and P = 0.542, respectively).

The calibration curve results showed good consistency between

the nomogram-predicted probability of ABE and the actual ABE

observed in the training group and validation group (Hosmer–

Lemeshow test; P = 0.137 and 0.362, respectively) (Figures 5A, B).

The decision curve analysis applied to predict ABE is shown in

Figure 6.

Radiologists’ visual diagnosis

Radiologists’ information is shown in Table E2. The AUC of the

visual diagnoses of radiologists one and two based on T1WI were 0.57

(P = 0.215, 95% CI: 0.46–0.68) and 0.63 (P = 0.019, 95% CI: 0.53–

0.73), with a sensitivity of 0.377 and 0.459, specificity of 0.760 and

0.800, a positive predictive value of 0.657 and 0.737, and negative

predictive value of 0.500 and 0.548, respectively. The AUC of the

radiologists’ final visual diagnosis was 0.66 (P = 0.003, 95% CI:

0.56–0.77), with a sensitivity of 0.508, specificity of 0.820, a positive

predictive value of 0.775, and negative predictive value of 0.577. The

ROC curves of radiologists’ visual diagnosis are shown in Figure E2.

DeLong’s test showed that the discriminative performance of

the clinical model and clinical-radiomics model in the training and

validation groups was increased compared to radiologists’ visual

diagnosis (Table 4).

Discussion

Conventional MRI lacks quantitative indicators for brain damage

in ABE, and it is impossible to objectively and comprehensively

assess the risk of ABE, especially for neonates who may have brain

damage when their GPs do not show hyperintensity on T1WI. In this

study, we developed and validated a clinical-radiomics model based

on T1WI for individualized prediction of ABE, which demonstrated

good discrimination, calibration, and clinical benefit. It is worth

noting that the discriminative performance of the clinical model and

clinical-radiomics model in the training and validation groups was

increased compared to that of radiologists with rich experience in

pediatric radiology diagnosis. These results indicated that it is difficult

to identify the ABE early based on T1WI by the naked eye. Moreover,

the sensitivity of radiologists’ visual diagnosis was low; however,

the models were effectively improved. The nomogram was easy to

use and may facilitate personalized risk stratification and further

treatment decision-making for neonates with ABE, which could

potentially provide a visualized and precise clinical support tool.

ABE is brain damage caused by unconjugated bilirubin

passing through the blood-brain barrier (14). The neurotoxicity

of unconjugated bilirubin is highly selective, implicating GPs,
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FIGURE 3

The nomogram based on the clinical-radiomics model. Including gestational week, type of delivery, and rad-score. For each neonate, the total points

were calculated by adding up the points of each variable and translated into the risk of ABE. Type of delivery 1 represents spontaneous labor and 2

represents cesarean delivery.

FIGURE 4

ROC curves for the clinical model, radiomics model, and clinical-radiomics model in the training group (A) and the validation group (B).

the substantia nigra, reticulata, subthalamic nuclei, brain stem,

auditory, vestibular, and oculomotor nuclei, the hippocampus, and

cerebellum (15); it particularly implicates GPs, which are related to its

active metabolism (16). The mechanism of unconjugated bilirubin-

induced neuron damage has not been fully elucidated. Existing

hypotheses include excitotoxicity hypotheses (17), bilirubin-induced

neuroinflammation (18, 19), and oxidative stress mechanisms (20).

The destruction of bilirubin on neurons is recoverable in the early

stages; consequently, early identification of ABE risk factors and

intervention is an important method to prevent ABE, reduce the

sequelae, and improve the prognosis.

Gestational week and the type of delivery were considered

independent risk factors of ABE and they were incorporated into

the clinical model. For neonates, the earlier the gestational week,

especially gestational weeks earlier than 37 weeks, the higher the

risk of ABE. This was due to the lower liver enzyme activity in

premature infants, which affected the combination of human serum

albumin and bilirubin, and premature infants were often treated

with antibiotics, which destroyed the intestinal microecological

environment. These factors caused bilirubin accumulation and led to

ABE (21). The type of delivery also affected the risk of ABE; cesarean

births were more likely to develop ABE, and this may be related to

anesthesia (22, 23). In the radiomics model, the selected features

were composed of the following categories: one first-order feature

(Left_Skewness), two shape features (Right_SurfaceVolumeRatio and

Left_Maximum2DDiameterRow), and seven texture features (Right_
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TABLE 3 ROC curves of models in the training and validation group.

Model Clinical model Radiomics model Clinical-radiomics model

Training group AUC (95% CI) 0.83 (0.73–0.93) 0.83 (0.74–0.92) 0.90 (0.84–0.97)

Sensitivity 0.884 0.581 0.814

Specificity 0.743 1.000 0.914

Positive predictive value 0.809 1.000 0.921

Negative predictive value 0.839 0.660 0.800

Validation group AUC (95% CI) 0.86 (0.72–1.00) 0.79 (0.63–0.94) 0.93 (0.85–1.00)

Sensitivity 0.944 0.778 0.944

Specificity 0.800 0.667 0.800

Positive predictive value 0.850 0.737 0.850

Negative predictive value 0.923 0.714 0.923

P-value 0.759 0.670 0.542

ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval.

FIGURE 5

Calibration curves of the clinical-radiomics model in the training group (A) and validation group (B).

FIGURE 6

Decision curve analysis of clinical benefit for clinical application for

the clinical-radiomics model.

RunEntropy, Left_Correlation, Right_SmallAreaLowGrayEmphasis,

Right_Imc1, Right_Correlation, Left_GrayLevelNonUniformity_2,

and Left_Idmn). Smaller skewness reflected the left deviation of
the image, and more voxels were high intensity. Macroscopically,
the higher intensity of left globus pallidus increased the risk
of ABE. Smaller Left_Maximum2DDiameterRow and larger
Right_SurfaceVolumeRatio were correlated closely with the risk

of ABE. We speculated this was due to the neurotoxicity of

unconjugated bilirubin increasing the influx of calcium ions,

stimulating the activity of proteolytic enzymes, and leading to
apoptosis (20, 24), changing the shape and volume of GP. The
texture features described the distribution of voxel intensity and
the spatial relationship between local adjacent voxels, which were

a comprehensive reflection of the intrinsic properties of the image,

and they could quantify the complexity of the texture of bilateral

GPs in neonatal with ABE. However, associating a single texture

feature with complex biological processes remains a challenge. These

texture features included in the radiomics model may reflect the

heterogeneity of bilateral GPs in neonatal with ABE. Liu et al. (25)

also established models to distinguish between ABE and healthy

neonates based on T1WI, and the best model obtained good

diagnostic efficiency with an AUC of 0.946. Wu et al. (26) integrated
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TABLE 4 Comparison of discriminative performance between radiologists’

visual diagnosis and models.

Radiologist Group Model P-value

Radiologist 1 Training group Clinical model <0.001∗

Rad_score <0.001∗

Clinical-radiomics model <0.001∗

Validation group Clinical model 0.001∗

Rad_score 0.018∗

Clinical-radiomics model <0.001∗

Radiologist 2 Training group Clinical model 0.003∗

Rad_score 0.002∗

Clinical-radiomics model <0.001∗

Validation group Clinical model 0.009∗

Rad_score 0.083

Clinical-radiomics model <0.001∗

Radiologists’
final visual
diagnosis

Training group Clinical model 0.013∗

Rad_score 0.009∗

Clinical-radiomics model <0.001∗

Validation group Clinical model 0.023∗

Rad_score 0.171

Clinical-radiomics model <0.001∗

∗p < 0.05.

multimodal MRI with deep-learning approaches to diagnose

ABE, with the combination of three modalities, T1WI, T2WI,

and diffusion-weighted imaging, with an AUC of 0.991 ± 0.007.

However, these studies did not consider clinical factors. The most

important thing is that they did not set up independent validation

sets to verify the established models. Our study combined clinical

and radiomics models and achieved a good prediction performance;

the independent validation group verified the established model, and

the risk of overfitting was effectively avoided.

Our study had several limitations. First, this was a retrospective

study and potential bias may have been introduced in the selection of

research subjects; some clinical data such as albumin and blood type

were not considered. Furthermore, this batch of data was scanned

using the same equipment, the sample size was small, there was a long

inclusion period, and a lack of external validation; therefore, a larger

cohort of prospective studies based on multicenter data is needed

to verify the performance of the clinical-radiomics model. Lastly,

the regions of interest in this study were manually placed, which

may inevitably lead to certain errors. We have started to develop an

automatic segmentation tool for GPs, which can segment the GPs

more accurately and robustly in the future.

Conclusions

In conclusion, we developed and validated a combined clinical-

radiomics model based on T1WI to predict ABE. The application

of the nomogram could potentially provide a visualized and precise

clinical support tool.
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