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Background: Cerebral small vessel disease (CSVD) is a significant contributor

to stroke, intracerebral hemorrhages, and vascular dementia, particularly in the

elderly. Early diagnosis remains challenging. This study aimed to develop and

validate a novel nomogram for the early diagnosis of cerebral small vessel

disease (CSVD).We focused on integrating cerebrovascular risk factors and blood

biochemical markers to identify individuals at high risk of CSVD, thus enabling

early intervention.

Methods: In a retrospective study conducted at the neurology department of

the A�liated Hospital of Hebei University from January 2020 to June 2022,

587 patients were enrolled. The patients were randomly divided into a training

set (70%, n = 412) and a validation set (30%, n = 175). The nomogram was

developed usingmultivariable logistic regression analysis, with variables selected

through the Least Absolute Shrinkage and SelectionOperator (LASSO) technique.

The performance of the nomogram was evaluated based on the area under

the receiver operating characteristic curve (AUC-ROC), calibration plots, and

decision curve analysis (DCA).

Results: Out of 88 analyzed biomarkers, 32 showed significant di�erences

between the CSVD and non-CSVD groups. The LASSO regression identified 12

significant indicators, with nine being independent clinical predictors of CSVD.

The AUC-ROC values of the nomogram were 0.849 (95% CI: 0.821–0.894) in

the training set and 0.863 (95% CI: 0.810–0.917) in the validation set, indicating

excellent discriminative ability. Calibration plots demonstrated good agreement

between predicted and observed probabilities in both sets. DCA showed that the

nomogram had significant clinical utility.

Conclusions: The study successfully developed a nomogram predictive model

for CSVD, incorporating nine clinical predictive factors. This model o�ers a

valuable tool for early identification and risk assessment of CSVD, potentially

enhancing clinical decision-making and patient outcomes.
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Introduction

Cerebral small vessel disease (CSVD) encompasses a range
of clinical, imaging, and pathological syndromes resulting from
various etiologies affecting the small arteries, arterioles, capillaries,
venules, and small veins within the brain (1). Prominent
radiological manifestations include recent subcortical infarcts,
lacunar infarctions, subcortical white matter lesions, cortical
surface iron deposition, perivascular spaces, cerebral microbleeds,
and microinfarctions (1, 2). CSVD is responsible for approximately
a quarter of ischemic strokes, the majority of intracerebral
hemorrhages in individuals over the age of 65, and is the leading
cause of vascular dementia (3, 4). With the gradual escalation
of the burden of CSVD, patients may exhibit symptoms such
as cognitive impairment, motor dysfunction, mood disorders,
and urinary and fecal incontinence (5). In its early stages,
CSVD often presents with no symptoms or only mild symptoms,
necessitating a reliance on imaging studies for diagnosis. While
cranial magnetic resonance imaging serves as the primary
diagnostic tool for CSVD, it comes with a relatively high cost
and encounters certain challenges in early detection. In this
context, there has been significant focus on predictive models
for cerebrovascular diseases, primarily aimed at forecasting
disease outcomes and patient prognosis. Despite these advances,
there remains a distinct lack of models specifically designed
for early diagnosis of CSVD (6–8). Addressing this gap, our
study proposes the development of a nomogram predictive
model specifically for CSVD diagnosis. This model integrates
cerebrovascular risk factors and blood biochemical markers
to promptly identify individuals at high risk, enabling early
intervention and improved care by healthcare professionals. Such
proactive management is crucial in slowing disease progression and
enhancing patient outcomes.

Methods

Study population and design

This study employed a retrospective design, primarily due
to the nature of our approach which involved collecting and
analyzing existing case records. Conducted at the neurology
department of the Affiliated Hospital of Hebei University from
January 2020 to June 2022, the study meticulously gathered data
from pre-existing medical records. This approach was chosen
as it allows for a comprehensive analysis of already available
data, thus providing insights into the patterns and correlations
that may not be evident in prospective studies. The retrospective
analysis also enabled us to utilize a large sample size, enhancing
the statistical power of our findings. The inclusion criteria were
carefully designed to ensure a representative sample of the patient
population, with particular attention to the completeness and
quality of the MRI sequences. The exclusion criteria were set to
omit cases with poor-quality MRI images or significant stroke
that could impede the accurate assessment of CSVD, as well as
patients with severe comorbid conditions that might confound the
study results. The patients met the following inclusion criteria:
(1) Age >55 years. (2) Complete cranial magnetic resonance

imaging (MRI) sequences, including T1-weighted axial, T2-
weighted axial, T2-weighted fluid-attenuated inversion recovery
(FLAIR), and axial susceptibility-weighted images. Exclusion
criteria: (1) Poor MRI image quality or significant stroke that
hampers the assessment of CSVD. (2) Presence of severe cardiac
diseases (acute myocardial infarction or severe heart failure),
severe infections, severe respiratory insufficiency, advanced renal
or hepatic diseases, tumors, or any other conditions that may
lead to abnormal laboratory results. Potential non-vascular origin
of CSVD, such as multiple sclerosis, intracranial tumors, or
central nervous system demyelinating diseases. Insufficient clinical
or laboratory data. This study, conducted with a retrospective
design, strictly adhered to ethical research practices, focusing
on the meticulous collection and analysis of pre-existing patient
data and records. Emphasizing the privacy and confidentiality
of patient data, all records were anonymized prior to analysis,
with personal identifiers removed to maintain strict confidentiality.
The data handling and analysis process conformed to the
guidelines set by data protection regulations, both nationally and
internationally, including adherence to the principles outlined
in the Declaration of Helsinki. The Institutional Review Board
(IRB) of the Affiliated Hospital of Hebei University conducted a
comprehensive review of our data protectionmeasures and granted
approval (Approval Number: HDFYLL-KY-2023-060), ensuring
that the study met the highest standards of patient data security
and ethical research practices. This commitment to data security
and ethical compliance highlights our dedication to respecting
participant privacy while contributing to cerebral small vessel
disease research.

MRI acquisition and assessment

Participants underwent brain MRI using a 1.5T MRI scanner
(Siemens,Munich, Germany). The neuroimaging criteria for CSVD
in this study included the presence of one or more of the
following features: lacunes, white matter hyperintensities (WMH),
enlarged perivascular spaces (EPVS), and cerebral microbleeds
(CMBs). WMH refers to areas of increased signal intensity
on T2-weighted brain images, typically observed symmetrically
between the hemispheres. Lacune was defined as a rounded or
ovoid lesion of CSF signal measuring 3–15mm in diameter.
CMBs were rounded, hypodense lesions with sizes of 2–10mm
in a susceptibility-weighted image (1). The presence of one
or more of these CSVD neuroimaging features was considered
as an indicator of the presence of CSVD. The CSVD group
included individuals with MRI scans that exhibited one or
more CSVD-related features. In contrast, the control group
was composed of individuals whose MRI scans showed no
evidence of CSVD, and their brain images were considered
normal. The assessment of CSVD neuroimaging features was
carried out by two experienced neurologists, namely Y. Jiang
and N. Li. These neurologists were blinded to the clinical data
of the participants. The evaluation was carried out according to
the guidelines for reporting vascular changes in neuroimaging
(STRIVE) (1, 9).
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FIGURE 1

Flow diagram of the selection of eligible patients.

Clinical blood biochemistry assessment

We retrospectively collected comprehensive data on the
following clinical parameters from the enrolled patients: complete
blood count, renal function, electrolyte levels, coagulation profile,
random blood glucose, fasting blood glucose, liver function,
lipid profile, cardiac enzyme panel, thyroid function tests, and
homocysteine levels. In this study, a total of 81 laboratory
parameters, encompassing blood glucose, glycated hemoglobin,
complete blood count, electrolytes, renal function, coagulation
profile, liver function, lipid profile, cardiac enzyme panel, thyroid
function tests, and homocysteine, were included. These laboratory
parameters were transformed into binary categorical variables
based on their respective median or cutoff values.

Clinical evaluation

Demographic information, including age and sex, as
well as medical history, such as hypertension, diabetes, and
hypercholesterolemia, were collected. Additionally, information
on smoking history, alcohol consumption history, and disease
duration was gathered. Hypertension was defined as systolic
blood pressure ≥140 mmHg and/or diastolic blood pressure
≥90 mmHg, or as individuals receiving antihypertensive
medications. Diabetes was defined as fasting blood glucose
levels ≥7.0 mmol/l, OGTT2h levels ≥11.1 mmol/l, or the use of
hypoglycemic medications. Hypercholesterolemia was defined
as total cholesterol levels or LDL cholesterol levels exceeding
the upper limit of the normal range. This study includes two
groups of subjects based on the presence or absence of a history
of stroke: the Stroke Group, consisting of individuals who have
experienced stroke at some point, and the Non-Stroke Group,

comprising individuals who have never had a stroke. This
study categorized the participants into two groups based on the
results of carotid artery ultrasound examination: the Carotid
Atherosclerosis Group, comprising individuals with carotid
artery ultrasound findings indicating intima-media thickening,
plaques, or stenosis; and the Non-Carotid Atherosclerosis
Group, consisting of individuals with normal carotid artery
ultrasound results.

Statistical analysis

A cohort comprising 587 patients underwent random
allocation into two distinct sets: the training dataset, consisting
of 412 individuals, and the validation dataset, consisting of 175
individuals. This allocation adhered to a predetermined ratio
of 7:3. In the development of the model, the conversion of
continuous variables into categorical ones was adopted, a strategy
commonly employed in the literature for risk prediction models
to facilitate ease of interpretation and to bolster generalizability.
This approach is widely recognized for its clinical applicability
and broad acceptance (10, 11). The determination of cutoff
points for these continuous variables was guided by clinical
insights and mirrored current practices in the literature, as well
as established statistical analyses. Categorical variables were
presented as frequencies with corresponding percentages (%).
To compare the baseline characteristics between the training set
and the validation set, we employed statistical tests appropriate
for the data types. Specifically, we used the χ2 test or Fisher’s
exact test for categorical variables. In the training set, we
applied the Least Absolute Shrinkage and Selection Operator
(LASSO) technique to identify the most significant risk factors
associated with CSVD. Variables exhibiting non-zero coefficients
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TABLE 1 Baseline characteristics: comparing CSVD patients with non-CSVD patients.

Variables Total (n = 587) Non-CSVD (n= 299) CSVD (n = 288) p

Gender, n (%) <0.001

Female 307 (52) 186 (62) 121 (42)

Male 280 (48) 113 (38) 167 (58)

Age (years), n (%) <0.001

≤57 170 (29) 104 (35) 66 (23)

58–63 133 (23) 87 (29) 46 (16)

64–69 143 (24) 67 (22) 76 (26)

>69 141 (24) 41 (14) 100 (35)

Stroke, n (%) <0.001

No 443 (75) 268 (90) 175 (61)

Yes 144 (25) 31 (10) 113 (39)

Carotid atherosclerosis, n (%) <0.001

No 245 (42) 158 (53) 87 (30)

Yes 342 (58) 141 (47) 201 (70)

Hypertension, n (%) <0.001

No 189 (32) 138 (46) 51 (18)

Level 1 38 (6) 15 (5) 23 (8)

Level 2 109 (19) 63 (21) 46 (16)

Level 3 251 (43) 83 (28) 168 (58)

Diabetes, n (%) 0.039

No 437 (74) 234 (78) 203 (70)

Yes 150 (26) 65 (22) 85 (30)

Hyperlipidemia, n (%) 0.009

No 382 (65) 179 (60) 203 (70)

Yes 205 (35) 120 (40) 85 (30)

Uric acid (µmol/l), n (%) <0.001

≤4.90 220 (37) 138 (46) 82 (28)

>4.90 367 (63) 161 (54) 206 (72)

Creatinine (µmol/l), n (%) <0.001

≤78 479 (82) 275 (92) 204 (71)

>78 108 (18) 24 (8) 84 (29)

CO2 binding a�nity (mmol/l), n (%) 0.003

≤27 384 (65) 178 (60) 206 (72)

>27 203 (35) 121 (40) 82 (28)

Total cholesterol (mmol/l), n (%) <0.001

≤4.3 270 (46) 111 (37) 159 (55)

>4.3 317 (54) 188 (63) 129 (45)

Low-density lipoprotein (mmol/l), n (%) <0.001

≤2.7 254 (43) 102 (34) 152 (53)

>2.7 333 (57) 197 (66) 136 (47)

(Continued)

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2023.1340492
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2023.1340492

TABLE 1 (Continued)

Variables Total (n = 587) Non-CSVD (n= 299) CSVD (n = 288) p

Lipoprotein (a) (mg/L) n (%) <0.001

≤317 363 (62) 220 (74) 143 (50)

>317 224 (38) 79 (26) 145 (50)

Albumin to globulin ratio, n (%) <0.001

≤1.53 336 (57) 138 (46) 198 (69)

>1.53 251 (43) 161 (54) 90 (31)

Homocysteine (µmol/l), n (%) <0.001

≤20 449 (76) 258 (86) 191 (66)

>20 138 (24) 41 (14) 97 (34)

Monocyte-to-HDL ratio, n (%) <0.001

≤0.27 127 (22) 88 (29) 39 (14)

>0.27 460 (78) 211 (71) 249 (86)

White blood cell count (×109), n (%) 0.009

≤6.73 294 (50) 166 (56) 128 (44)

>6.73 293 (50) 133 (44) 160 (56)

Monocyte count (×109), n (%) <0.001

≤0.44 295 (50) 172 (58) 123 (43)

>0.44 292 (50) 127 (42) 165 (57)

Calcium (mmol/l), n (%) 0.027

≤2.32 310 (53) 144 (48) 166 (58)

>2.32 277 (47) 155 (52) 122 (42)

Fibrinogen (g/l), n (%) 0.023

≤2.88 296 (50) 165 (55) 131 (45)

>2.88 291 (50) 134 (45) 157 (55)

Apolipoprotein A1 (g/l), n (%) 0.001

≤1.03 296 (50) 131 (44) 165 (57)

>1.03 291 (50) 168 (56) 123 (43)

Apolipoprotein B100 (g/l), n (%) 0.002

≤0.79 297 (51) 132 (44) 165 (57)

>0.79 290 (49) 167 (56) 123 (43)

Alanine aminotransferase (U/L), n (%) 0.005

≤16 303 (52) 137 (46) 166 (58)

>16 284 (48) 162 (54) 122 (42)

Aspartate aminotransferase (U/L), n (%) 0.028

≤19 337 (57) 158 (53) 179 (62)

>19 250 (43) 141 (47) 109 (38)

Lactate dehydrogenase (U/L), n (%) 0.012

≤158 307 (52) 172 (58) 135 (47)

>158 280 (48) 127 (42) 153 (53)

Albumin (g/l), n (%) 0.001

≤39 377 (64) 173 (58) 204 (71)

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 587) Non-CSVD (n= 299) CSVD (n = 288) p

>39 210 (36) 126 (42) 84 (29)

Globin (g/l), n (%) 0.001

≤26 340 (58) 193 (65) 147 (51)

>26 247 (42) 106 (35) 141 (49)

Direct Bilirubin (µmol/l), n (%) 0.024

≤3.60 302 (51) 168 (56) 134 (47)

>3.60 285 (49) 131 (44) 154 (53)

Systemic inflammation response index, n (%) 0.001

≤1.23 293 (50) 169 (57) 124 (43)

>1.23 294 (50) 130 (43) 164 (57)

Neutrophil-to-HDL ratio, n (%) <0.001

≤3.97 293 (50) 171 (57) 122 (42)

>3.97 294 (50) 128 (43) 166 (58)

High-density lipoprotein, n (%) 0.007

≤1.13 306 (52) 139 (46) 167 (58)

>1.13 281 (48) 160 (54) 121 (42)

Lymphocyte-to-monocyte ratio, n (%) <0.001

≤3.47 294 (50) 129 (43) 165 (57)

>3.47 293 (50) 170 (57) 123 (43)

in the LASSO regression model were chosen for subsequent
analysis. In the training cohort, the selected variables were
incorporated into a multivariable logistic regression analysis
to identify independent clinical predictors associated with
CSVD. Subsequently, a nomogram was constructed based on
these risk factors in a multivariable analysis. An analysis of
the Area Under the Receiver Operating Characteristic Curve
(AUC-ROC) was performed to assess the predictive accuracy of
the nomogram. Calibration curves were generated to compare
predicted probabilities with observed probabilities. Decision
Curve Analysis (DCA) was employed to assess the clinical utility
of the predictive model. Statistical analyses were conducted
using R software version 4.3.0 (http://www.r-project.org/)
and IBM SPSS Statistics for Windows, version 26.0 (IBM,
Armonk, NY, USA). Two-tailed p-values < 0.05 were considered
statistically significant.

Results

Baseline characteristics

Between January 2020 and June 2022, a total of 683 patients
who met the inclusion criteria were initially enrolled in this
study. However, 96 patients meeting the exclusion criteria were
subsequently removed from the study, resulting in a final cohort
of 587 patients eligible for data analysis (Figure 1). The training
set consisted of 412 individuals, and the remaining 175 individuals
were included in the validating set. The baseline characteristics

of the patients in the training and validation set are shown in
Table 1.

In our study, we compared two groups: the CSVD group
and the non-CSVD group. We found significant differences
(P < 0.05) in 32 out of the 88 analyzed biomarkers between
these two groups, while the remaining 56 biomarkers showed
no significant differences. The 32 biomarkers with significant
differences included: Gender, Age, Stroke, Carotid Atherosclerosis,
Hypertension, Diabetes, Hyperlipidemia, Uric Acid, Creatinine,
CO2 Binding Affinity, Total Cholesterol, Low-Density Lipoprotein,
Lipoprotein(a), Albumin to Globulin Ratio, Homocysteine,
Monocyte-to-HDL Ratio, White Blood Cell Count, Monocyte
Count, Calcium, Fibrinogen, Apolipoprotein A1, Apolipoprotein
B100, Alanine Aminotransferase, Aspartate Aminotransferase,
Lactate Dehydrogenase, Albumin, Globin, Direct Bilirubin,
Systemic Inflammation Response Index, Neutrophil-to-HDL
Ratio, High-Density Lipoprotein, and Lymphocyte-to-Monocyte
Ratio (Table 1). The other 56 biomarkers showed no significant
differences between the two groups including: Fasting Glucose,
Platelet Count, Mean Corpuscular Hemoglobin Concentration,
Mean Corpuscular Hemoglobin, Mean Corpuscular Volume,
Hematocrit, Red Blood Cell Count, Eosinophil Count, Basophil
Count, Eosinophil Percentage, Monocyte Percentage, Lymphocyte
Percentage, Hemoglobin, Platelet Distribution Width, Mean
Platelet Volume, Plateletcrit, Neutrophil Percentage, Neutrophil
Count, Lymphocyte Count, Monocyte Count, Platelet Large
Cell Ratio, Urea, Sodium, Potassium, Calcium, Magnesium,
Serum Phosphate, Prothrombin Time, Prothrombin Time Ratio,
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FIGURE 2

(A) LASSO coe�cient profiles for CSVD clinical predictors. This figure presents the coe�cient profiles of 88 features considered in the LASSO model

for predicting the risk of CSVD. The graph displays how each feature’s coe�cient varies with the log of lambda [log(lambda)], demonstrating the

shrinkage e�ect of the LASSO technique. (B) LASSO regression cross-validation results. This figure illustrates the evaluation of model performance

under various regularization parameters λ through cross-validation in LASSO regression. A vertical dashed line on the left side represents λmin,

which corresponds to the model with the best performance. On the right side, another vertical dashed line denotes λ1SE, representing a slightly

sparser model. The numbers of selected variables are annotated above each line.

International Normalized Ratio, Activated Partial Thromboplastin
Time, Thrombin Time, Hemoglobin A1c, Triglycerides, Very
Low-Density Lipoprotein, Apolipoprotein E, Creatine Kinase,
Creatine Kinase-MB, Alpha-Hydroxybutyrate Dehydrogenase,
Alkaline Phosphatase, Gamma-Glutamyl Transferase, Total
Protein, Albumin, Globulin, Albumin vs. Globulin Ratio,
Total Bilirubin, Direct Bilirubin, Unconjugated Bilirubin, Bile
Acid, Triiodothyronine, Thyroxine, Free Triiodothyronine,
Free Thyroxine, Thyroid-Stimulating Hormone, and Systemic
Immune-Inflammatory Index.

Variable selection

We collected data covering a total of 88 variables, including
age, gender, medical history, and laboratory tests. In our study, the
LASSO regression was implemented using the “glmnet package”
in R with a 10-fold cross-validation approach to optimize the
regularization parameter λ. We selected the value of λ based on
the 1SE (one standard error) criterion, which aims at choosing
a simpler model with a performance within one standard error
of the minimum cross-validation error. This approach helped
in striking a balance between model complexity and prediction
accuracy, enabling us to identify the most relevant predictors
for our model while controlling for overfitting (Figures 2A, B).
Through LASSO regression, we selected 12 indicators: Gender, Age,
Stroke, Carotid Atherosclerosis, Hypertension, Creatinine, Total
Cholesterol, Low-Density Lipoprotein, Lipoprotein(a), Albumin

to Globulin Ratio, Homocysteine, and Monocyte-to-HDL Ratio
(Table 2). The variables with non-zero coefficients in the LASSO
regression model were considered to be related to CSVD.

Multivariable analyses

In the multivariable logistic regression analysis, we included
the 12 variables identified from the LASSO regression. After
adjusting for confounding factors, the analysis revealed that
nine variables (Gender, Age, Stroke, Carotid Atherosclerosis,
Hypertension, Creatinine, Lipoprotein(a), Albumin to Globulin
Ratio, and Homocysteine) were significantly associated with the
risk of cerebral small vessel disease (P < 0.05), as shown in Table 3.
The results indicated that these nine variables were independent
clinical predictors of CSVD.

Predictive model development

In this study, logistic regression analysis was employed
to identify key variables associated with the risk of cerebral
small vessel disease (CSVD). Nine variables were selected
based on their statistical significance: Gender, Age, Stroke,
Carotid Atherosclerosis, Hypertension, Creatinine, Lipoprotein(a),
Albumin to Globulin Ratio, and Homocysteine. These variables
were then used to construct a nomogram, as depicted in Figure 3.
The nomogram operates by assigning point values to each
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variable based on their calculated beta coefficients, reflecting their
proportional prognostic impact. The total points accrued from
each variable are then used to estimate the patient’s probability
of developing CSVD. This probability is derived from the total
point’s projection on the probability scale provided at the bottom
of the nomogram. The inclusion of diverse variables, ranging from
biochemical markers like Creatinine and Homocysteine to clinical
features such as the presence of Carotid Atherosclerosis, allows for
a comprehensive assessment of CSVD risk. This approach enables
healthcare providers to make more informed decisions regarding
patient care and risk management.

TABLE 2 Coe�cients and lambda.1SE value of the LASSO regression.

Variable Coe�cients Lambda.1-SE

Gender 0.01578146 0.03784

Age 0.06940418

Stroke 0.15863094

Carotid_atherosclerosis 0.04352613

Hypertension 0.05894357

Creatinine 0.11182955

Total cholesterol −0.0047317

Low-density lipoprotein −0.0095456

Lipoprotein(a) 0.09607666

Albumin to globulin
ratio

−0.0918666

Homocysteine 0.10097174

Monocyte-to-HDL ratio 0.06366454

Nomogram validation

The value of AUC-ROC in training set is 0.849 (95% CI: 0.821–
0.894). This indicates excellent discriminative ability, meaning the
model effectively differentiates between patients with and without
CSVD. The value of AUC-ROC in validation set is 0.863 (95%
CI: 0.810–0.917). In the validation of the nomogram, we observed
high sensitivity and specificity in both the training and validation
sets, indicating the model’s robust performance in identifying true
positive and true negative cases of CSVD. Specifically, in the
training set, the sensitivity was 73.7%, and the specificity was
82.9%. In the validation set, the sensitivity further improved to
90.7%, while the specificity was 70.8%. These metrics highlight
the model’s consistent and strong discriminative power across
different datasets (refer to Figures 4A, B for detailed performance
metrics; Figures 4A, B). For a detailed breakdown of these
performance metrics, including sensitivity, specificity, and other
relevant statistical measures, refer to the Supplementary Table 1.
Both datasets showed near-ideal slope values of 1.000 and strong
C (ROC) indices (0.849 and 0.863, respectively), suggesting reliable
predicted probabilities and good model performance (Figures 5A,
B). In the Decision Curve Analysis (DCA) graph, the trajectory
of the model’s curve distinctly deviated from the two extremes,
indicative of a substantial clinical benefit. This observation suggests
that the model provides significant utility in a clinical setting, as it
demonstrates a marked improvement over the baseline strategies
represented by the extreme curves (Figures 6A, B).

Discussion

This study successfully developed a predictive model for
cerebral small vessel disease (CSVD) that incorporates nine
clinical predictive factors including gender, age, history of stroke,

TABLE 3 Multivariable logistic regression analysis of clinical predictors of CSVD.

B SE OR 95% CI Z P

Gender 0.526 0.233 1.690 1.07–2.67 2.253 0.024

Age 0.376 0.099 1.460 1.21–1.77 3.799 p < 0.001

Stroke 1.188 0.266 3.280 1.95–5.53 4.466 p < 0.001

Carotid_atherosclerosis 0.443 0.224 1.560 1.10–2.42 1.981 0.028

Hypertension 0.461 0.085 1.590 1.34–1.87 5.451 p < 0.001

Creatinine 0.798 0.306 2.220 1.22–4.05 2.606 0.009

Total cholesterol 0.248 0.433 1.280 0.55–2.99 0.573 0.567

Low-density lipoprotein −0.875 0.433 0.420 0.18–0.97 −2.022 0.063

Lipoproteina 1.121 0.220 3.070 1.99–4.72 5.091 p < 0.001

Albumin to globulin ratio −0.963 0.219 0.380 0.25–0.59 −4.397 p < 0.001

Homocysteine 0.728 0.269 2.070 1.22–3.51 2.703 0.007

Monocyte-to-HDL ratio 0.434 0.265 1.540 0.92–2.6 1.637 0.102

This table presents the results of the binary logistic regression analysis, which was conducted on 12 variables initially identified through LASSO regression as potential predictors for CSVD.Out of

these, nine variables were retained in the final CSVD diagnostic model, namely (Gender, Stroke, carotid_atherosclerosis, Hypertension, Creatinine, Lipoproteina, Albumin_to_Globulin_Ratio,

Homocysteine, and Age). The remaining three variables that were not included in the final model due to P-values > 0.05 are (Total Cholesterol, Low-Density Lipoprotein, Monocyte-to-HDL

Ratio). The table details the regression coefficient (B), standard error (SE), odds ratio (OR), 95% confidence interval (95% CI), Z-value, and P-value for each of the nine included factors. The

OR values indicate the relative risk associated with each factor, where values >1 suggest an increased risk, and <1 suggest a decreased risk of CSVD.
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FIGURE 3

Nomogram for predicting the risk of CSVD. This figure presents a nomogram developed for the early diagnosis of CSVD. The nomogram is

constructed based on a multivariable logistic regression analysis, incorporating key clinical predictors identified through the Least Absolute Shrinkage

and Selection Operator (LASSO) technique. In this graphical tool, each predictor is assigned a score based on its coe�cient in the regression model.

The total score, obtained by summing the individual scores for all predictors, can be used to estimate the probability of a patient developing CSVD.

This probability scale is provided at the bottom of the nomogram, facilitating its practical application in a clinical setting for risk assessment and early

intervention in individuals at high risk of CSVD.

FIGURE 4

(A, B) Receiver operating characteristic (ROC) curves for CSVD predictive model in training set (A) and validation set (B). The ROC curves plot the

sensitivity against the specificity for various threshold levels. The Area Under the Curve (AUC) value for each set quantifies the overall performance of

the model, indicating its capability to distinguish between patients with and without CSVD. A higher AUC value represents better discriminative ability

of the model in both training and validation phases.
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FIGURE 5

(A, B) Calibration plots for the CSVD predictive model using the training set (A) and the testing set (B). The calibration plots compare the predicted

probabilities of CSVD, as provided by the nomogram, against the actual observed frequencies. Ideally, a model’s predictions would align perfectly with

the 45-degree diagonal line, indicating a complete match between predicted probabilities and actual occurrences. The closer the points are to this

line, the higher the consistency between the model’s predictions and the actual outcomes, demonstrating good calibration performance in both sets.

FIGURE 6

(A, B) The decision curve analysis for the CSVD predictive model, applied to the training set (A) and the validation set (B). The DCA graphs display the

net benefit of using the predictive model at various threshold probabilities compared to two reference strategies: treating all patients or treating

none. The horizontal line in each graph represents the scenario where no patients are treated (assuming all are negative), yielding a net benefit of

zero. The oblique line represents the opposite extreme, where all patients are treated (assuming all are positive). The curves of the model diverge

from these extremes, indicating its clinical utility by providing a balance between the benefits and drawbacks of treatment decisions based on the

model’s predictions.

carotid atherosclerosis, hypertension, creatinine, Lipoprotein(a),
Albumin/Globulin Ratio, and homocysteine. The comprehensive
analysis of these factors provides crucial insights into the risk
assessment of CSVD, particularly in the early stages where
clinical manifestations are not pronounced. Unlike previous studies
focusing on single factors, our multivariate approach offers a more

holistic framework for risk assessment. This is particularly vital
as CSVD often involves multiple intertwined pathophysiological
mechanisms. Additionally, our findings highlight the history of
stroke as a robust predictor of CSVD with a significant odds ratio
(OR = 3.28). This accentuates the need for heightened vigilance
in patients with a stroke history, given their increased risk of
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developing CSVD. Furthermore, our research corroborates the
importance of considering ischemic stroke subtypes when assessing
the prognosis of stroke recurrence. Patients with recurrent lacunar
infarctions frequently show cognitive impairments, as indicated
in previous studies (12). Similarly, in cardioembolic stroke,
early recurrent embolization is a crucial predictor of in-hospital
mortality (13), emphasizing the varied impact of different stroke
subtypes on patient outcomes.

Research has confirmed that cerebral small vessel disease is
associated with traditional cerebrovascular risk factors such as
hypertension, age, elevated homocysteine levels, and gender (14–
16). Furthermore, recent studies have highlighted additional risk
factors that may contribute to CSVD, but were not included in
our current study. For instance, the relationship between sleep
apnea and stroke, as explored in the work by Domínguez-Mayoral
et al. (17), points toward sleep apnea as a notable vascular risk
factor. Though not a focus of this study, the potential role of sleep
apnea in CSVD underscores the complexity of this condition and
the necessity of considering a broader range of factors in future
research. As our understanding of CSVD evolves, incorporating
a wider array of risk factors, including those like sleep apnea,
could provide more comprehensive insights into its pathogenesis
and aid in the development of more accurate predictive models.
Furthermore, we acknowledge the potential importance of cerebral
atrophy in the context of CSVD. Although not the primary
focus of our study, cerebral atrophy as a manifestation of
CSVD has not been adequately characterized in existing literature
(18, 19). This limitation of our study is noteworthy, as a
deeper understanding of the progression of cerebral atrophy
could enhance our exploration of the pathophysiology of CSVD.
Another study showed that carotid plaque was associated
with the presence of lacunes and larger volumes of white
matter hyperintensities (WMH). Increased carotid diameter was
associated with lacunes, larger WMH volumes, and perivascular
spaces in the basal ganglia. However, carotid intima-media
thickness (IMT) and stiffness were not associated with CSVD.
These results suggest that carotid atherosclerosis and dilation are
linked to CSVD, and non-invasive carotid assessment could be a
rational approach for risk stratification of CSVD (20). The results
of these studies are consistent with our conclusions. Additionally,
our study underscores the potential value of non-traditional
biochemical markers such as creatinine, Lipoprotein(a), and the
Albumin/Globulin Ratio in the risk assessment of CSVD.

Elevated creatinine, indicative of impaired kidney function,
has been increasingly recognized as a contributing factor to
cerebrovascular pathologies. This relationship is supported by
the study of Fang et al., which demonstrated that chronic
kidney disease (CKD) promotes the formation of cerebral
microhemorrhages, a key feature of CSVD (21). Furthermore, the
systematic review and meta-analysis by Tang et al. reinforce the
association between kidney function and brain health, providing
additional validation for our model’s emphasis on creatinine levels
(22). The inclusion of creatinine in our predictive model is
not merely a reflection of renal health but may also indicate a
broader vulnerability to cerebrovascular conditions. Marini et al.
highlighted the genetic overlap between kidney function and
cerebrovascular disease, suggesting a shared genetic predisposition

that could underlie the association between elevated creatinine
levels and CSVD (23). Therefore, the dichotomous classification
of creatinine levels in our model serves as a crucial predictor,
signifying not just the state of renal function but potentially
reflecting the underlying risk for cerebral vascular pathology. This
underscores the importance of a holistic approach in assessing
CSVD risk, emphasizing the need to consider systemic diseases
such as renal impairment.

Lipoprotein(a) is a unique lipoprotein variant, distinguished
by its structure and physiological roles, primarily associated
with cardiovascular diseases (24, 25). Notably, recent studies
have suggested a compelling link between elevated lipoprotein(a)
levels and increased risk of CSVD (26, 27). These findings align
with our model’s emphasis on lipoprotein (a) as a significant
predictor, providing a molecular basis for understanding its
contribution to CSVD risk. The pathophysiological mechanisms
underlying this association can be attributed to lipoprotein(a)’s pro-
atherogenic and pro-thrombotic properties, which potentially lead
to microvascular damage and, consequently, to the development
of CSVD.

Current research indicates that the association between
the Albumin/Globulin Ratio (A/G ratio) and cerebral small
vessel disease (CSVD) remains unclear. However, studies
have highlighted its prognostic value in patients with acute
ischemic stroke (AIS). For instance, Wang et al. discovered
that lower serum A/G levels were linked to poor functional
outcomes and increased all-cause mortality at 3 months and
1-year follow-up in AIS patients. Additionally, lower A/G was
independently associated with poor outcomes in Acute Ischemic
Stroke Patients undergoing Intravenous Thrombolysis. Our
study also finds that lower levels of serum A/G are associated
with the occurrence of CSVD. While the A/G ratio is primarily
used to assess inflammation and nutritional status, its specific
role in cerebrovascular diseases warrants further investigation.
Given that CSVD is related to inflammation, Endothelial
Dysfunction and vascular dysfunction (3, 28–30), the A/G ratio
may indirectly influence physiological processes associated
with CSVD.

Our study has several limitations. Firstly, its retrospective
design may have introduced selection and information biases.
Secondly, the sample, originating from a single medical center,
might limit the generalizability of the results. Moreover, our
study did not encompass all potential risk factors, possibly
overlooking some factors influencing CSVD risk. Additionally,
it is important to note that due to the retrospective nature of
our study, the sample size was based on all cases meeting the
inclusion criteria within a specific time frame. Consequently,
we did not perform a priori sample size calculation, as the
available data volume typically determines the sample size in
such studies. This approach may have implications for the
results, and we have considered this aspect in interpreting
our findings. Nevertheless, our study provides a potent tool
for clinicians to identify individuals at high risk of CSVD
during routine examinations. Early intervention in these high-
risk groups could improve their long-term health outcomes and
potentially slow down or prevent the development of CSVD. Future
Research Directions Future research should focus on validating
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the efficacy of our model, especially in patient populations across
diverse demographics and geographical locations. Additionally,
exploring other potential biomarkers, such as indicators of
inflammation and endothelial function, might enhance the
predictive accuracy of the model. Prospective studies should
also be considered to better understand the pathophysiological
progression of CSVD and the long-term effectiveness of the
predictive model.

While our study primarily focused on the impact of
acquired risk factors in the development of cerebral small
vessel disease (CSVD), including hypertension, diabetes,
and arteriosclerosis, we acknowledge the potential role of
genetic factors in the pathogenesis of CSVD. Due to the
retrospective nature of our study design, the accessibility
to genetic data was limited. However, further exploration
in this area is essential for future research. Particularly, the
interplay between genetic and environmental factors might
offer crucial insights in the early diagnosis and personalized
treatment strategies for CSVD. Therefore, we suggest in our
conclusion that future research should take into account the
potential significance of genetic factors in the risk assessment
of CSVD, thereby providing more comprehensive guidance for
clinical practice.

Conclusion

In summary, our study provides a valuable
tool for the early identification and risk assessment
of CSVD, potentially improving clinical decision-
making and patient prognosis. Despite some
limitations, the prospective applications of this model
are promising.
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