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Neurosyphilis: insights into its
pathogenesis, susceptibility,
diagnosis, treatment, and
prevention

Sirui Wu, Fei Ye, Yuanfang Wang and Dongdong Li*

Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China

Background and aim: Invasion of the central nervous system by Treponema

pallidum can occur at any stage of syphilis. In the event that T. pallidum

is not cleared promptly, certain individuals may experience progression to

neurosyphilis, which manifests as cognitive and behavioral abnormalities, limb

paralysis, and potentially fatal outcomes. Early identification or prevention

of neurosyphilis is therefore crucial. The aim of this paper is to conduct a

critical and narrative review of the latest information focusing exclusively to the

pathogenesis and clinical management of neurosyphilis.

Methodology: To compile this review, we have conducted electronic literature

searches from the PubMed database relating to neurosyphilis. Priority was given

to studies published from the past 10 years (from 2013 to 2023) and other

studies if they were of significant importance (from 1985 to 2012), including

whole genome sequencing results, cell structure of T. pallidum, history of

genotyping, and other related topics. These studies are classic or reflect a

developmental process.

Results: Neurosyphilis has garnered global attention, yet susceptibility to and

the pathogenesis of this condition remain under investigation. Cerebrospinal

fluid examination plays an important role in the diagnosis of neurosyphilis, but

lacks the gold standard. Intravenous aqueous crystalline penicillin G continues

to be the recommended therapeutic approach for neurosyphilis. Considering its

sustained prominence, it is imperative to develop novel public health tactics in

order to manage the resurgence of neurosyphilis.

Conclusion: This review gives an updated narrative description of neurosyphilis

with special emphasis on its pathogenesis, susceptibility, diagnosis, treatment,

and prevention.
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Introduction

Neurosyphilis (NS) is a neurological infection caused by the spirochete Treponema

pallidum. T. pallidum can affect the central nervous system (CNS) during any stage of
syphilis (1). Estimates from theWHO indicate that approximately 22.3 million individuals
worldwide had T. pallidum infection, with 7.1 million new cases, in 2020 (2). However,
most regions have not monitored neurosyphilis at the national level, and there are few
studies reporting the incidence of neurosyphilis (3). As 1.2% to 1.8% of patients with
early syphilis will develop neurosyphilis, there is persistent prevalence of neurosyphilis
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worldwide (4). In Europe, the estimated annual incidence of
neurosyphilis varies from 0.16 to 2.1 per 100 000 adults; in
Australia, the annual incidence of neurosyphilis from 2007 to 2016
was 2.47 cases per 10,0000 people; in the Canadian province of
British Columbia, the incidence of neurosyphilis increased from
0.03 cases per 10,0000 people in 1992 to 0.8 cases per 10,0000
people in 2012; in Guangdong province of China, the incidence
of neurosyphilis increased from 0.21 cases per 10,0000 people in
2009 to 0.31 cases per 10,0000 people in 2014 (5–8). In high-income
countries, the prevalence of syphilis is extremely high among men;
in low-income and middle-income countries, syphilis is prevalent
among the general population; WHO estimates that the prevalence
of syphilis in Africa was the highest in 2016, whichmay be related to
insufficient health education, human and infrastructural resources
(9–11). It is speculated that similar patterns also exist in patients
with neurosyphilis (10). Neurosyphilis not only imposes a great
economic burden on patients but also causes a decline in quality
of life due to the stigma associated with the disease (12).

As pathogenic treponemes, yaws and syphilis treponemes
exhibit genetic similarity of more than 99.8% in their genome
(13). However, yaws are unlikely to affect the CNS, suggesting
that certain small genetic changes might be responsible for the
differences in pathogenesis among these organisms (13). Exploring
the genomes, neuroinvasion properties, and transmission routes
of T. pallidum is essential for comprehending the pathogenesis
of neurosyphilis and developing effective clinical strategies.
Benzathine penicillin G, the preferred drug for treating primary
syphilis, secondary syphilis, and tertiary syphilis patients with
normal cerebrospinal fluid (CSF) examination, cannot reach
an effective concentration in the CSF (14). Thus, identifying
syphilis patients at a high risk of developing neurosyphilis would
allow for targeted intervention. While the exact pathogenesis
is not completely understood, certain factors, such as genetic
susceptibility, for neurosyphilis have been identified (15).
Despite this, numerous clinical and preclinical questions remain
unanswered due to the complexities of real-world practice. This
review describes the strain factors and mechanisms behind the
neuroinvasion property of T. pallidum, as well as risk factors,
predictors, diagnosis, treatment and prevention of neurosyphilis.
Additionally, it addresses existing controversies and provides a
discussion on future prospects.

To compile this review, we have conducted electronic literature
searches from the PubMed database relating to neurosyphilis.
Priority was given to studies published from the past 10
years (from 2013 to 2023) and other studies if they were of
significant importance (from 1985 to 2012), including whole
genome sequencing results, cell structure of T. pallidum, history of
genotyping, and other related topics. These studies are classic or
reflect a developmental process.

The biological basis of T. pallidum

In contrast to gram-negative bacteria, T. pallidum has a helical
shape with a fragile dual-membrane structure and peptidoglycan
layer, but lacks lipopolysaccharides (LPS) (Figure 1) (16). The
flagellamotors are fixed in the cytoplasmicmembrane and arranged
in a row, allowing the flagella filaments to extend into the

periplasmic space between the two membranes (17). T. pallidum
can swim by rolling or undulation of the cell body driven by the
rotation of periplasmic flagella and it is the existence of periplasmic
flagella maintains its helical shape (18). The cytoplasmic filaments
anchored to the inner surface of the cytoplasmic membrane are
arranged in a ribbon configuration (17). The cone-shaped structure
locates at the end of spirochetes outside of the peptidoglycan
layer (17). However, the exact role of cytoplasmic filaments
and cone-shaped structure remains unknown (17). The defining
characteristic of T. pallidum is the low density of membrane-
spanning proteins and sufficient lipoproteins, which may reflect its
capacity for host immune response evasion (19).

The mechanisms of invasion of the
CNS by T. pallidum

Current research suggests that T. pallidum does not release
toxins into the host, but is one of the most invasive spirochetes
(20). It has been demonstrated in rabbit models, mouse models,
and human subjects that T. pallidum is capable of invading
the CNS early in the disease (21). Pham et al. found T.

pallidum in brain tissue, which was confirmed by 16S ribosomal
RNA sequencing (22). Additionally, metagenomic next-generation
sequencing (mNGS) detected T. pallidum nucleic acids in the CSF
at low levels (23). These studies provide substantive evidence for
the neuroinvasive capacity of T. pallidum.

The presence of T. pallidum in the CNS suggests its ability
to evade the immune system and actively invade the CNS,
leading to sustained damage. Macrophages are critical immune
cells, especially microglia in the CNS, acting as the first line of
immune defense (24). A case report of neurosyphilis observed
severe proliferation of microglia in the cerebral cortex (25). CSF
sTREM2 (a biomarker of microglial activation) was observed to
be at significantly higher levels in neurosyphilis patients (26).
Further study revealed that T. pallidum promotes microglial
apoptosis and inhibits microglial migration as a means of evading
clearance (27, 28). The balance between phagocytic uptake and T.

pallidum evasion is influenced by production of opsonic antibodies,
with TP0326 (BamA) and TP0751 (pallilysin) being identified
as opsonic targets (29, 30). In addition, Tp47 can activate the
NLPR2 inflammasomes in macrophages through PKM3 dependent
glycolysis, thereby mediating the infection of T. pallidum (31).

T. pallidum exhibits various effects on host vascular endothelial
cells, potentially linked to its invasion of the CNS (32) (shown in
Figure 2). Scanning electron microscopy revealed that T. pallidum
can directly adhere to human brain microvascular endothelial cells
in vitro (36). TP0751 shares the same endothelial receptor with
other neurotropic pathogens, and thus mediates interactions with
endothelial cells (37); TP0751 alters expression of tight junction
proteins, influencing the permeability of the blood-brain barrier
(BBB) by promoting bEnd3 cell apoptosis and IL-6 secretion (38).
Similarly, recombinant TP0965 shows a higher level of endothelial
permeability induction (39). Both intercellular junction pathways
and lipid raft-mediated endocytosis mechanisms for traversing
endothelial barriers were observed in T. pallidum, but without
disruption of barrier permeability (35). The latter view seems more
reliable due to the normal or only slightly increased quotient
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FIGURE 1

The cellular architecture of T. pallidum. The figure was created in BioRender.com.

(Qalb) level in neurosyphilis patients in clinical practice (40). In
addition to interacting with macrophages and endothelial cells,
the biochemical system, antigenic variation system, and matrix
metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases
(TIMPs) imbalance are involved in the pathogenesis of T.

pallidum (41–43).

Association of T. pallidum genome,
genotypes and neurosyphilis

The T. pallidum genome comprises a circular chromosome
with a total of 1041 predicted open reading frames (ORFs) (16).
Two major T. pallidum lineages (Nichols and SS14) cocirculated
acrossmultiple continents, with a worldwide predominance of SS14
lineages, which may be explained by its resistance to macrolides
(44). Whether this lineage is related to neurosyphilis has not been
studied, but the genotype has and is discussed below. Notably, the
genome exhibits a distinct set of repeat gene family sequences,
particularly the tprK gene, which is involved in immune evasion
and has potential as a latent vaccine (41). Furthermore, the genome
displays a considerable number of motility-associated genes (e.g.,
FlaB1, FlaB2, FlaB3, FlaA, FliG), enabling efficient movement of T.
pallidum in highly viscous environments such as connective tissues
by traveling planar waves (16, 17). The periplasmic flagella and
flexible peptidoglycan layer are the structural basis for achieving
this movement (17).

Findings from the rabbit intravenous infection model have
shown that certain strains of T. pallidum, such as Sea 81–4,
exhibit a particular affinity for the CNS (45). This finding provides
valuable clues regarding the association of strain typing and
the neurosyphilis phenotype, and the potential microbiological

mechanisms involved. The typing schemes frequently used in
T. pallidum are CDC typing (CDCT), enhanced CDC typing
(ECDCT), and multilocus sequence typing (MLST), based on
analysis of restriction fragment length polymorphism (RFLP) or
direct sequencing (46, 47). The loci detected in CDCT schemes
include the acidic repeat protein (arp) gene and the T. pallidum

repeat family genes [tprE (tp0313), tprG (tp0317), tprJ (tp0621)]
(48). Compared to CDCT, ECDCT adds the sequence analysis of
the tp0548 gene and has stronger discrimination against strains,
while MLST focuses on the analysis of four genes (tp0136, tp0548,
tp0705 and 23S rDNA genes) and further improves the typing
resolution of SS14-like strains (48, 49). For ECDCT, consistent
observations indicate a higher likelihood of neurosyphilis with
strain type 14d/f (Table 1) (47, 48, 50, 51). Correspondingly, MLST
type 1.1.2 appears to exhibit greater neuroinvasion (47). Except for
South Africa, the majority of the CSF specimens (54%) inspected
involved the 14a strain type, though subtype 14d was commonly
found in genital ulcer specimens from syphilis patients during the
same period (46). However, the nonuniform inclusion criteria of
neurosyphilis patients and the lack of enough subjects limit the
universality of these studies. Considering that strain type 14d/f
is predominant among syphilis patients, the base effect linked to
this subtype predisposing toward the development of neurosyphilis
should be taken into account (52). A systematic review and meta-
analysis concluded that CSF from patients with late neurosyphilis
had low typing efficiency (46.4%) (53). The typing efficiency of
lesion exudate was higher. However, it was difficult to collect
from neurosyphilis patients (47). A more sensitive CSF typing
method for T. pallidum deserves further investigation. Chen et al.
developed a suite of PCR-LwCas13a syphilis assays with excellent
sensitivity and specificity, which may be a promising alternative to
genotyping (54).
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FIGURE 2

Mechanisms of T. pallidum for Crossing the BBB. (A) The BBB is composed of brain microvascular endothelial cells, astrocytes, and pericytes.

Attaching to the host cells is the first step in T. pallidum neuroinvasion (33). (B) Several T. pallidum proteins are identified to be adhesins, including

laminin- (TP0751) and fibronectin- (TP0136, TP0155, TP0483) binding proteins (34). (C) T. pallidum adheres to endothelial cells at the site of

intercellular junction, resulting in a notable reduction in the expression of tight junction proteins ZO-1 and occludin through TP0751, and disrupting

VE-cadherin, thereby entering the BBB through a paracellular pathway; TP0751 coordinates intercellular transport by engaging with host receptors

(LamR) in lipid rafts and inducing endothelial uptake and transport in a cholesterol-dependent manner (35). The figure was created in BioRender.

Risk factors for neurosyphilis in
HIV-negative patients

Sex and age

An increased prevalence of syphilis has been observed among
men in China, the United States, and European countries, with a
significant proportion of men having sex with men (MSM) (5, 55–
57). For instance, in the United States, from 2008 to 2018, the
estimated number of male patients with syphilis rose from 40,300
to 121,000 (55, 58). However, the prevalence of syphilis is not the
highest in upper-middle-income and high-income countries (59).
On the one hand, wealth can increase the opportunities for MSM
to achieve syphilis by increasing regional mobility (59). On the
other hand, the convenience of syphilis detection and treatment
is convenient, which can reduce the spread of syphilis (59). The
prevalence of syphilis depends on the balance of various situations.
However, studies conducted in sub-Saharan Africa have shown
that women have a higher prevalence of syphilis, which is related
to the cultural, economic, and social marginalization of women
in the region (60). Male sex has been identified as a correlating
risk factor for neurosyphilis, in addition to its epidemiological
significance (3, 61, 62). As we strive to better understand the
pathophysiology of neurosyphilis, studies investigating the impact
of sex hormones on disease development and progressionmay yield
valuable insights (61).

Older age (≥45/60 years) is an independent risk factor for
HIV-negative neurosyphilis patients (3, 62). The link involved
may be attributable to the longer courses of disease in elderly
individuals. Accordingly, aging is accompanied by progressive
immunosenescence, which raises the possibility of infections (63).
Interestingly, neurosyphilis has been found to correlated with
certain neurodegenerative disorders, such as Alzheimer’s disease
(AD) (64). Pathological evidence has demonstrated that curly fibers
discovered in AD correspond to individual spirochetes, and their
aggregation in colonies produces similar senile plaques (65).

Serum non-treponemal test titer

Previous studies have indicated that non-treponemal tests, such
as the rapid plasma reagin (RPR) test, and toluidine red unheated
serum test (TRUST), have stronger specificity than treponemal tests
in the diagnosis of neurosyphilis (66). This may be explained by
the fact that blood-derived anti-treponemal IgG antibodies can
cross through the BBB and enter the CSF, thus leading to false-
positive results (67). Amultivariate analysis revealed that the risk of
developing neurosyphilis, but not secondary syphilis, increases with
an elevation in serumRPR titer (3). Jiang et al. retrospectively found
that HIV-negative syphilis patients with serum TRUST titers≥1:16
were eight times more susceptible to developing neurosyphilis
(68). Of note, patients with a fourfold decrease in serum RPR
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TABLE 1 Overview of six studies on molecular typing of T. pallidum strains from neurosyphilis patients.

First author
(citation)

Location Specimen
collection
period

Specimen
type

Specimen
size

Typing
system

Strain

Sahi et al. (47) Seattle, USA,
America

1999–2017 Whole blood, CSF 18 MLST Eight patients had a 1.1.2 strain; no
patients had a 1.3.1 strain; nine patients
had a tp0705 type 2 strain.

Sahi et al. (47) Seattle, USA,
America

1999–2017 Whole blood, CSF 18 ECDCT One patient had a 14d/g strain; 16
patients had a tp0548 type f strain.

Marra et al. (48) Seattle, USA,
America

1999–2008 CSF 84 ECDCT 22 patients had a 14d/f strain.

Dai et al. (50) Shanghai,
China, Asia

2007–2011 Lesion swab 4 ECDCT Two patients had a 14d/f strain; two
patients had a 19d/c strain.

Read et al. (51) Sydney,
Australia,
Oceania

2004–2011 Lesion swab 2 ECDCT Two patients had a 14d/f strain; two of
six patients with strain type 14d/f
developed neurosyphilis, compared with
0/85 with non-14d/f strains.

Molepo et al. (46) Pretoria, South
Africa, Africa

1999–2000 CSF 50 CDC Seven patients had a 14a strain; four
patients had a 3e strain; one patient had
a 17e strain; one patient had a 2i strain.

CSF, cerebrospinal fluid; ECDCT, enhanced CDC-typing; MLST, multi-locus sequence typing.

titers after treatment are more likely to develop asymptomatic
neurosyphilis (ANS), indicating a correlation between ANS and
treatment failure (69).

Specific genes carried by the host

Single-nucleotide polymorphisms (SNPs) of immune
regulatory genes may influence susceptibility to neurosyphilis. The
−1082 GG and −592 CC genotypes of the IL-10 promoter and the
TLR1_1805GG, TLR2_2258GA, and TLR6_745CT/TT genotypes
are associated with an increased risk of neurosyphilis (15, 70). At
present, the majority of risk factors found in studies are immutable,
posing challenges in intervening in risk factors to reduce disease
risk. It is imperative to further explore factors such as psychosocial
and physical activity factors to broaden our understanding of
potential prevention.

Risk factors for neurosyphilis in
HIV-positive patients

According to the European guideline on the management of
syphilis, there is no increased risk of neurological involvement in
HIV-infected patients with early syphilis (57). However, a study that
did not distinguish syphilis stages has shown that syphilis patients
with HIV infection are more likely to develop neurosyphilis (71).
One possible explanation for this is that HIV-positive patients
may be more inclined to undergo comprehensive and timely
examinations. From a pathophysiological perspective, the CNS is
a more immunologically privileged site due to the presence of the
BBB and limited movement of immune cells, combined with the
decrease in CD4T cells and meningeal lesions in HIV-positive
patients, which weakens the CNS’s ability to defend against T.

pallidum (72, 73).

In addition to male sex, advanced age, and high serological
titers, HIV-positive individuals have several other risk factors
regarding immune suppression. Numerous studies have reported
an increased risk of neurosyphilis in patients with higher viral
load and lower CD4(+) T cells count (< 350 cells/µl) compared
to the general population (74, 75). T. pallidum itself can induce
programmed cell death of CD4(+) and CD8(+) T cells with
an increase in HIV-ribonucleic acid (RNA) viral load (76, 77).
Actually, the synergism of HIV and T. pallidum is complicated
and lacks sufficient research. It is well acknowledged that the
characteristics of neurosyphilis can be confused withHIV infection,
as primarily characterized by an increased karyocyte count and
protein concentration (78). Antiretroviral therapy (ART) may
ameliorate this status, but it is still unclear whether ART-naive
patients with syphilis should undergo lumbar puncture (73).
However, what is certain is that the absence of ART or syphilis
treatment represents a significant risk factor for neurosyphilis (70,
74, 75).

Predictive indicators for neurosyphilis
risks and treatment responses

Predictors can be roughly divided into two types: temporally
advanced indicators and heterotopic predictive indicators. Current
research on predicting the risk of neurosyphilis primarily focuses
on the latter, particularly certain peripheral blood indicators.
Li et al. constructed a prediction model incorporating age,
serum TRUST titer, and various blood routine indicators,
which offers a valuable reference for the empirical treatment
of ANS (79). Serum neurofilament light chain (NfL) and the
neutrophil-to-lymphocyte ratio (NLR), which serve as markers
of neuroaxonal injury and inflammation, respectively, show
promise as novel predictors for neurosyphilis (80, 81). Although
diagnosis of neurosyphilis necessitates lumbar puncture, peripheral
blood predictors can to some extent indicate changes in
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the CNS, thereby reducing the need for unnecessary invasive
procedures (82). Additionally, applications of metabolomics,
transcriptomics, mRNA modification, SNPs, and neuroimaging
analysis in neurosyphilis have facilitated screening of additional
biomarkers (15, 70, 83–86).

To accurately predict the effectiveness of treatment, temporally
advanced indicators and heterotopic predictive indicators should
both be explored. The serological response, namely, normalization
or decrease of the serum RPR titer, can to some degree predict CSF
normalization, and the rate of follow-up lumbar puncture may be
reduced if neurological symptoms resolve (87, 88). As a fourfold
decline in CSF RPR titer is a reliable predictor for treatment
efficacy in CSF RPR-positive general paresis patients within 12
months after completing therapy, it is unnecessary to repeat
CSF tests for HIV-negative people (14, 89). A recently developed
minimal proteomic array not only allows for disease staging,
but also monitors response to appropriate treatment, helping to
confirm pharmacological cure (90). Furthermore, it is necessary
to discuss factors like socioeconomic status, access to healthcare,
and cultural influences which may contribute to the outcomes of
neurosyphilis in the future. We should mention two conditions
related to syphilis treatment: Jarisch-Herxheimer reaction (JHR)
and serofast status. JHR is a transient inflammatory phenomenon
observed in syphilis patients receiving antibiotic treatment (91).
JHR cannot be predicted reliably, but it was observed that its
frequency increases proportionally with white cell count and total
protein level in CSF (92). The serofast state refers to a situation in
which non-treponemal antibodies decline after treatment but fail
to completely revert to a nonreactive state, which may be related
to CNS infection (93, 94). Studies have shown that certain genetic
factors, such as the strain genotype of 14i/a, host interleukin-10
promoter polymorphisms, differentially expressed cytokines and
microRNAs, can predict increased risk of serofast status (94–97).
However, regardless of whether it is a risk factor or predictive
indicator, there remains uncertainty in the risk or prediction of
disease occurrence, as it only represents a possibility with varying
degrees of likelihood (98).

Diagnosis of neurosyphilis

The identification of neurosyphilis typically necessitates
the integration of epidemiological information, neurologic or
neuropsychiatric manifestations, serologic analysis of blood
and CSF, and, in certain instances, imaging assessment. For
syphilis patients with neurological symptoms, almost all major
guidelines recommend lumbar puncture (99–101). Nonetheless,
the neurological symptoms of neurosyphilis are not specific. Early
neurosyphilis can affect the meninges and central blood vessels,
including syphilitic meningitis, meningovascular neurosyphilis and
syphilitic gummas, oftenmanifested as headache, nausea, vomiting,
blurred consciousness, and neck stiffness; late neurosyphilis affects
the spinal cord and brain parenchyma, including general paresis
and tabes dorsalis, manifested as ataxia, impaired memory,
disorientation, depression, hallucinations, and mania (102, 103).
Furthermore, as a great imitator, neurosyphilis can mimic a wide
range of neurological and psychiatric diseases (104), including
but not limited to autoimmune encephalitis (105), acute ischemic

stroke (106), status epilepticus (107), posterior uveitis (108),
asymptomatic optic perineuritis (109). These phenotypes suggest
that T. pallidum can invade and affect one or more components of
the CNS.

Among the diagnostic criteria, CSF examination is necessary.
Research on susceptibility to neurosyphilis provides key insights
into the pathogenesis and clinical strategies, though many
questions still remain, particularly regarding when patients should
undergo CSF testing to screen for neurosyphilis. Based on a
general survey of relevant guidelines, scholars pay great emphasis
to neurological symptoms, syphilis stages, and HIV infection
in lumbar puncture (Table 2). As mentioned above, there is
a consensus that syphilis patients with neurological symptoms
require CSF examination. Additionally, there is limited support for
routine lumbar puncture among HIV-positive and HIV-negative
persons without neurologic symptoms owing to a lack of evidence
that routine lumbar puncture improves clinical outcomes (79). It
is necessary to supplement the probability of ANS developing into
symptomatic neurosyphilis and the risks and cost-effectiveness of
lumbar puncture must be weighed.

A positive CSF venereal disease research laboratory (VDRL)
test is considered highly specific for neurosyphilis, whereas
a nonreactive CSF fluorescent treponemal antibody absorption
(FTA-ABS) test is likely to exclude neurosyphilis (112). The
occurrence of false positive results can be attributed to the ability
of anti-T. pallidum IgG antibodies to traverse the BBB and access
the CSF. Consequently, in comparison to non-treponemal tests, the
specificity of treponemal tests for CSF examination are lower (57).

Currently, there is no gold standard for diagnosing
neurosyphilis, making it difficult to evaluate the diagnostic
efficiency of new methods (113). The key to indirect detection lies
in distinguishing the specific antibodies synthesized intrathecally,
and the antibody index of specific anti-Treponema IgG is a
promising new tool (114). PCR lacks sensitivity as a direct
detection method (115). At present, there have been no successful
development of T. pallidum antigen detection kits. The prevailing
situations may indicate that T. pallidum has the ability to conceal
or attach itself to the human body, and the widespread use
of antibiotics in other diseases, thus posing a challenge for
conventional techniques to detect nucleic acids or antigens in
the blood. Overall, application of new technologies with higher
sensitivity, such as nested PCR (nPCR) and loop-mediated
isothermal amplification (LAMP) assay, may pave the way for the
detection of T. pallidum in CSF. T. pallidumDNA detection rate by
LAMP assay was 87.5% in secondary syphilis, which is higher than
that in a nPCR study, which achieved T. pallidum DNA detection
rate respectively in 47.5%, 60.7% of urine sediment and plasma
samples from patients with secondary syphilis (116, 117). Actually,
researchers have also made many efforts, such as improving sample
preprocessing methods and seeking inspiration from case reports
to find new sample types (such as saliva) (118, 119).

Treatment and antibiotic resistance of
neurosyphilis

In treatment of neurosyphilis, it is crucial to consider the BBB
penetration and effective drug concentrations in CSF (120). The
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TABLE 2 Insights on lumbar puncture in the guidelines of neurosyphilis.

Guideline Continent/Country Suggestions about lumbar puncture

Guidelines for diagnosis and treatment of
syphilis, gonorrhea, and genital Chlamydia

trachomatis infection (2020) (110)

China Lumbar puncture should be performed on all individuals with syphilis and HIV
infection to exclude neurosyphilis.

Asian guidelines for syphilis (2022) (99) Asia There is no consensus about the need for lumbar puncture in patients with syphilis
without any neurological, ocular, or otological symptoms, except for those with
tertiary syphilis.

2020 European guideline on the management
of syphilis (57)

Europe CSF assessment is indicated in patients with: -clinical evidence of neurological,
ocular, and auricular involvement, whatever the stage of the disease; tertiary syphilis
(cardiovascular, gummatous).
Some experts still recommend CSF assessment in ANS patients: HIV-positive patients
with late syphilis and CD4 cells ≤ 350/mm3 and/or a serum VDRL/RPR titer >1:32;
in those who have serological failure or are serofast; in those given alternative
treatment for late syphilis.

German guidelines on the diagnosis and
treatment of neurosyphilis (102)

German Lumbar puncture is indicated in patients with (at least two out of four are met): CD4
cell count ≤ 200 cells/µl; untreated HIV infection; detectable HIV load; high VDRL
titer (>1:64).

UK national guidelines on the management
of syphilis 2015 (111)

UK Routine CSF examination of patients with latent syphilis is not recommended.

ANS, asymptomatic neurosyphilis; CSF, cerebrospinal fluid; HIV, human immunodeficiency virus; RPR, rapid plasma reagin; VDRL, venereal disease research laborator.

recommended treatment for neurosyphilis is intravenous aqueous
crystalline penicillin G (18–24 million units per day, continuous
infusion for 10–14 days) (14). Doxycycline and ceftriaxone are
considered viable alternatives for penicillin-allergic patients with
great BBB penetration ability (121, 122). Doxycycline can be
administered orally and can also treat other sexually transmitted
infections simultaneously (123). Similar outcomes have been
observed in patients with neurosyphilis treated with procaine G
penicillin vs. doxycycline (124). Ceftriaxone, by contrast, requires
parenteral administration, and its therapeutic effect appears to
be controversial (123, 125). A follow-up study suggested that
ceftriaxone was associated with a 23% failure rate of treatment
for HIV-infected patients with ANS (125). However, another
prospective pilot study of HIV-infected patients with ANS has
shown no difference in the serologic response to treatment
with ceftriaxone vs. procaine penicillin plus probenecid (126).
Probenecid can reduce renal tubular secretion and inhibit the
active transport of intracranial penicillin by inhibiting Oat3,
thereby increasing the bioavailability of penicillin G (127).
An enhanced regimen consisting of benzathine penicillin G,
ceftriaxone, and doxycycline has demonstrated greater efficacy
than the recommended regimen (128). Additionally, a preclinical
study has demonstrated linezolid as a promising clinical treatment
for syphilis (129). Linezolid is low-cost, safe, and generally well
tolerated during short course oral administration, with sufficient
concentration in CSF (130). The recent breakthrough in in

vitro cultivation of T. pallidum has facilitated identification
of potential candidates for syphilis treatment, as determined
by the minimum inhibitory concentration (MIC) (131). Future
studies involving neurosyphilis-related strains will provide more
convincing evidence for the selection of drugs for the treatment
of neurosyphilis.

To date, no clinical manifestations of penicillin resistance
have been found in T. pallidum, despite reports of increased
gene mutations associated with penicillin resistance and that
treatment may fail over time (132). Molecular epidemiology

study has revealed a growing prevalence of macrolide resistance
in T. pallidum, which coincides with the increased usage of
macrolides due to guideline recommendations (133). In fact, the
2020 European guideline excluded azithromycin as an alternative
treatment for syphilis at any stage (57). To tackle the potential crisis
of drug resistance, subtractive genomics approaches have been
employed to identify salvicine as a potential therapeutic molecule
against T. pallidum (134).

Prevention of neurosyphilis

Although penicillin treatment is effective in patients diagnosed
with early-stage neurosyphilis, early diagnosis of neurosyphilis
is rather difficult, and prevention is particularly important
considering the poor prognosis of late-stage patients (135). In
addition, given the fatal consequences of congenital syphilis,
development of syphilis vaccines is of utmost importance for
enhancing public health (136).

The specific significance of the syphilis vaccine for
neurosyphilis is to prevent transmission of T. pallidum from
the infected site and progression to neurosyphilis (137). However,
development of a syphilis vaccine is hindered by challenges,
including the difficulty of culturing T. pallidum in vitro, antigenic
mutation in TprK, and the low content and vulnerability of the
outer membrane proteins (OMPs); thus, no syphilis vaccine
has yet progressed to clinical trials (17, 138). Despite these
hurdles, researchers have shown positive responses to this pursuit.
To evaluate the efficacy of a syphilis vaccine, a heterologous
antigen presentation system (noninfectious Borrelia burgdorferi)
was designed to express T. pallidum antigens (139). Recent
advancements in long-term culture systems (by cocultivation with
rabbit epithelial cells in a microaerophilic atmosphere) and in vitro

drug sensitivity testing provide potential solutions for the culture
of T. pallidum (138). In addition, enrichment techniques that do
not rely on culture, or high sensitivity methods, have also been
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TABLE 3 Important unanswered questions in neurosyphilis.

Area Questions

Epidemiology • How high is the authentic incidence and mortality
of neurosyphilis?

• What is the probability of the ANS patients
progressing to symptomatic neurosyphilis?

Pathogenesis • What is the mechanism of T. pallidum invading the
CNS?

• What is the mechanism of the CNS damage mediated
by neurosyphilis?

• Will HIV infection affect the susceptibility
to neurosyphilis?

• What genetic factors make humans susceptible
to neurosyphilis?

Diagnosis • When do syphilis patients need lumbar puncture to
evaluate neurosyphilis?

• How are specific antibodies produced in CSF of
patients with neurosyphilis? How to
accurately detect?

• How to early identify neurosyphilis?

Administration • What tests can be used to monitor the treatment
response of patients with neurosyphilis?

• Can standard penicillin treatment improve the
long-term prognosis of neurosyphilis?

• Will the increase in gene mutations related to
penicillin resistance gradually accumulate, leading to
the emergence of penicillin-resistant T. pallidum?

• What are the indications for stopping treatment
for neurosyphilis?

• How to develop a vaccine against neurosyphilis?

ANS, asymptomatic neurosyphilis; CNS, central nervous system; CSF, cerebrospinal fluid.

introduced for assays or genetic analyses (140). Vulnerability to
outer membrane extraction can be minimized through the use
of gel microdroplet techniques, while bioinformatics methods
aid in predicting OMPs without the performance of fragile
outer membrane (141). Additionally, antigenic variation can be
addressed by designing strains that impair the ability to alter TprK
(41). The latest field of molecular biology and bioinformatics
provides unprecedented opportunities for the identification of new
vaccine targets. Several adhesins, such as TP0136 (142), TP0751
(143), and TP0954 (144), have been identified as major vaccine
candidates, highlighting their role in invasion and dissemination
of T. pallidum. Current limitations of these candidates include
the requirement of extremely high doses, lack of cross-protection
and potential side effects of adjuvants (142, 144). Although some
scientists have attempted multicomponent vaccines, complete
protection against infection has not yet been achieved (137).
Undeniably, inducing partial protection vaccines contributes to the
attenuation of transmission and, hence, blockade of progression to
neurosyphilis (145). The general topic of vaccines for T. pallidum
has been thoroughly addressed elsewhere and here will not go into
more detail (136, 146).

T. pallidum is primarily transmitted through skin-to-skin or
mucosal contact during sexual encounters, as well as through
vertical transmission (147). Over the past three decades, public

attention to sexually transmitted infections has focused primarily
on HIV infection, while other infections such as syphilis have
gradually beenmarginalized (148). Preexposure prophylaxis (PrEP)
has been, extensively studied as a crucial intervention to prevent
HIV transmission but has not been applied to syphilis (149).
Interestingly, the incidence of syphilis is higher amongMSM taking
HIV PrEP than among those who do not in Australia (150). This
causal relationship may be attributed to a phenomenon called “risk
compensation,” whereby a reduction in HIV risk may cause lax
thinking and increased risky behavior (151). However, a German
study believes that HIV PrEP was associated with no impact on
the prevalence of syphilis among MSM and concerns about risk
compensation should not be the barrier to PrEP use in men with
behavioral risk for HIV acquisition (152). It is necessary to carry
out more studies on the impact of HIV PrEP on the prevalence of
syphilis in other countries or regions. These findings underscore
the significance of employing combination prevention strategies or
developing a syphilis-specific PrEP.

Treatment as prevention (TasP) is an additional method that
is effective in controlling the source of infection (153). For
HIV-positive patients, it refers to taking HIV medications to
prevent sexual transmission of HIV. The proportion of infants
born to syphilis mothers suffering from neurosyphilis is higher
than expected. For syphilis patients, antenatal treatment has
demonstrated high efficacy in reducing the risk of congenital
syphilis with the dose of at least 2.4 MU penicillin given at least 28
days before delivery (154). However, a case-control study revealed
that treatment of neurosyphilis remains difficult, even if most
pregnant women with syphilis are treated with penicillin, and that
this is related to inadequate treatment of sexual partners (155).
Effective management and control of neurosyphilis continues to
face significant obstacles.

Discussion

Taken together, neurosyphilis denotes an infection of the CNS
with a poor prognosis among individuals with syphilis. Although
neurosyphilis has been described for centuries, numerous aspects
remain unknown (as outlined in Table 3). To address the dearth
of epidemiological investigations on neurosyphilis, it is imperative
to conduct additional observational studies and consider the
implementation of comprehensive surveillance systems on
a national or regional scale. As discussed, recent literature
increasingly indicates the interrelation between neurosyphilis, the
immune response, and genetic factors. However, time is needed for
the specific implementation of these strategies in clinical practice.
In addition to focusing on the T. pallidum itself, pathogen-host
interactions should also be taken into account, especially the
pathogens with high neuroinvasion properties and host with high
susceptibility to infection.

Currently, clinical suspicion of neurosyphilis primarily arises in
patients with syphilis who exhibit neurological and/or psychiatric
symptoms. In such cases, it is appropriate to consider serum
non-treponemal test titer and serofast status. Accelerating the
development of potential serological predictors, standardizing their
use, and promptly introducing them into clinical practice would
greatly assist clinicians in determining the optimal timing for
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lumbar puncture. Furthermore, further clinical studies with higher
levels of evidence are necessary to explore the efficacy and long-
term prognosis of antibiotic therapy and prior to implementation,
both the BBB penetration ability and the potential neurotoxicity
must be meticulously evaluated.

Given the sustained sensitivity of T. pallidum to penicillin, the
prevalence of neurosyphilis signifies a disregard for prevention
and management, thus necessitating development of vaccines.
However, this endeavor faces significant challenges and lags behind
the development of vaccines for other bacteria. The latest field
of molecular biology and bioinformatics provides unprecedented
opportunities for the identification of new vaccine targets. In order
to effectively control neurosyphilis, it is also crucial to address the
stigma associated with the disease. This involves not only providing
proper care for the mental health of patients but also engaging in
scientific education. Moving forward, emphasis needs to be placed
on the most cost-effective strategies of prevention to mitigate the
global burden of neurosyphilis.
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