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Introduction: Myasthenia gravis (MG) is a chronic autoimmune neuromuscular 
disorder. Coronavirus disease 2019 (COVID-19) has a significant impact on the 
health and quality of life of MG patients and may even trigger the onset of MG 
in some cases. With the worldwide development of the COVID-19 vaccination, 
several new-onset MG cases and exacerbations following the COVID-19 
vaccines have been acknowledged. The potential link between myasthenia 
gravis (MG) and COVID-19 has prompted the need for further investigation into 
the underlying molecular mechanism.

Methods and results: The differential expression analysis identified six 
differentially expressed genes (DEGs) shared by myasthenia gravis (MG) and 
COVID-19, namely SAMD9, PLEK, GZMB, JUNB, NR4A1, and NR1D1. The 
relationship between the six common genes and immune cells was investigated 
in the COVID-19 dataset. The predictive value of the shared genes was assessed 
and a nomogram was constructed using machine learning algorithms. The 
regulatory miRNAs, transcription factors and small molecular drugs were 
predicted, and the molecular docking was carried out by AutoDock.

Discussion: We have identified six common DEGs of MG and COVID-19 and 
explored their immunological effects and regulatory mechanisms. The result 
may provide new insights for further mechanism research.
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Introduction

Myasthenia gravis (MG) is a rare autoimmune neuromuscular disorder characterized by 
fatigable weakness. The incidence of MG is approximately 30 cases per million individuals 
annually (1). The condition arises due to the presence of antibodies targeting the nicotinic 
acetylcholine receptors (AChR) or other components at the neuromuscular junction (NMJ), 
such as muscle-specific tyrosine kinase (MuSK), low-density lipoprotein receptor-related 
protein 4 (LRP4), and ryanodine receptor (RyR), which consequently leads to the destruction 
and dysfunction of the NMJ.
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Most early-onset myasthenia gravis (EOMG) patients exhibit thymic 
hyperplasia with ectopic germinal centers. The hyperplastic thymus of 
MG has been widely recognized as the central location for pathological 
alterations in MG. Within the inflamed thymus, germinal centers serve 
as sites where B cells undergo somatic hypermutation, class switching, 
and subsequent differentiation into plasma cells that produce AChR 
antibodies. These processes were facilitated by autoreactive T cells. 
Furthermore, the removal of the inflammatory thymus usually leads to 
an improvement in the progression of the disease (2).

Viral infection, such as Epstein–Barr virus (EBV), human 
immunodeficiency virus (HIV), poliomyelitis virus, human T 
lymphocyte oncovirus, viral pharyngitis, hepatitis C and B viruses, 
herpes simplex virus, West Nile virus, varicella, and Zika virus, was 
one of the possible triggers of MG due to molecular mimicry between 
AChR and viral antigen (3–7). Antibodies against the virus in 
inflammation may cross-react with the AChR and thus break self-
tolerance. While there is yet to be a consensus regarding the causes of 
MG, the risk factors for MG exacerbation have been well identified, 
including viral or bacterial infections. When affecting respiratory 
muscles, exacerbation can lead to myasthenic crisis, which is the main 
cause of death in MG.

Coronavirus disease 2019 (COVID-19) is a highly contagious type 
of pneumonia that is attributed to the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). Although the major manifestations of 
COVID-19 are respiratory complications, the symptoms affecting the 
cardiovascular, hematological, and nervous systems have also been 
recognized (8, 9). The neurological symptoms of COVID-19 usually 
affect the central nervous system and manifest as encephalitis, 
encephalomyelitis, multiple sclerosis, and MOGAD (10). COVID-19 can 
also induce peripheral neuropathies such as Guillain–Barré syndrome 
(11–13). As a neuromuscular junction disease, MG has been reported to 
be associated with COVID-19 as well. Especially noteworthy is a case in 
which MG manifested as the primary symptom of COVID-19 (14–16). 
Most patients had elevated serum AChR antibody, except for rare cases 
with anti-MuSK antibody (17, 18). Despite the fact that the evidence for 
the link between new-onset MG and COVID-19 infection is rare with 
only 18 reported cases to date, it is important to note that other 
coronaviruses, such as Middle East respiratory syndrome coronavirus 
and SARS, which share structural similarities with SARS-CoV-2, have 
been widely recognized for their association with neuropathies, 
myopathies, and neuromuscular disorders (19, 20).

In addition to causing new-onset MG, COVID-19 has also been 
supposed to induce myasthenia exacerbation and myasthenic crisis 
(21, 22). The occurrence of MG exacerbation in patients with 
COVID-19 infection ranges from 10 to 15% (23). Reciprocally, MG 
may affect oropharyngeal muscles and respiratory muscles, thus 
worsening swallowing and breathing, which predisposes patients to a 
more severe infection. Several studies have identified MG as an 
independent risk factor associated with a poorer prognosis in 
individuals with COVID-19 (24).

With the widespread implementation of vaccination against 
COVID-19, numerous cases of MG onset or exacerbation due to the 
COVID-19 vaccines have been documented (25, 26). To date, it has 
been reported that some vaccines can induce a new onset or 
exacerbation of MG, including influenza, Bacillus Calmette-Guérin, 
human papilloma virus (HPV), and hepatitis B vaccines (27–31). Thus 
far, there have been a total of 27 recorded cases of MG onset 
subsequent to receiving the COVID-19 vaccination. MG exacerbation 

after COVID-19 vaccination occurred in approximately 8% of the 
patients (32).

Given the potential link between MG and COVID-19, which 
requires further clarification, identifying the shared molecules 
involved in both diseases can enhance our comprehension of the 
underlying pathological mechanism governing their association. In 
the current study, we  aimed to identify the common differential 
expression genes in MG and COVID-19 and further explore the 
possible function and the corresponding regulatory miRNAs, 
transcription factors, and small molecule drugs.

Methods

Microarray data reprocessing

The workflows are shown in Figure  1. The gene expression 
profiling datasets GSE103974 of myasthenia gravis and GSE157103 of 
COVID-19 were obtained from the Gene Expression Omnibus 
(GEO).1 The dataset GSE103974 utilized the GPL17586 Affymetrix 
Human Transcriptome Array 2.0 platform and GSE157103 utilized 
the GPL24676 Illumina NovaSeq  6000 platform. GSE103974 
contained 7 Grades 1–4 thymus samples from MG patients and 6 
Grade 0 thymus samples from MG patients. GSE157103 contained 
128 peripheral blood samples from human subjects, consisting of 100 
samples from COVID-19 patients and 26 samples from healthy 
individuals. The selected COVID-19 patients tested positive for the 
COVID-19 virus and were suffering from moderate to severe 
respiratory symptoms. The age and sex distribution of the COVID-19 
patients is shown in Table 1. The gene expression matrix was annotated 
using the annotation file downloaded from GEO, and probes lacking 
gene symbols were excluded. The expression matrix was log2 
transformed and normalized using the limma package in R software 
(version 4.3.0). The boxplot of the data after normalization is shown 
in Figure 2B. For genes containing multiple probes, the maximum 
expression level was selected. The difference between groups is 
displayed by three-dimensional principal component analysis (PCA; 
Figure 2A).

Differential expression analysis

Differential expression analysis between groups in each dataset 
was performed using the limma package. Differentially expressed 
genes (DEGs) were defined with cutoff criteria of a p < 0.05 and |Log2 
fold-change|(logFC) > 0.5. The heatmap and volcano plot of DEGs 
were created using the pheatmap and ggplot2 packages.

Functional enrichment analysis

To obtain the biological functions and signaling pathways of 
DEGs, a functional enrichment analysis was conducted using Gene 
Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes 

1 https://www.ncbi.nlm.nih.gov/geo/
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(KEGG). DEGs were uploaded to the online tool Metascape 
v3.5.20230501.2 Terms with a value of p < 0.05, a min overlap of ≥3, 
and an enrichment of ≥1.5 were considered statistically significant. 
The three categories of GO, namely, biological process (BP), cellular 
component (CC), and molecular function (MF), were depicted 
separately. In addition, the ClueGO plugin of Cytoscape was utilized 
to construct the function enrichment network of DEGs.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is a computational approach 
employed to assess whether a specified set of genes demonstrates 
different types of enrichment in two distinct biological states. A value 
of p below the threshold of 0.05 was considered statistically significant. 

2 https://metascape.org/

The R packages “clusterProfiler” and “org.Hs.eg.db” were employed to 
conduct GSEA of genes.

DO analysis

To identify the relevant diseases of DEGs, DO analysis was conducted 
by the clusterProfiler package. A value of p cutoff was set at 0.05.

Protein–protein interaction network 
analysis

The protein–protein interaction (PPI) network was constructed 
using STRING.3 Co-expression networks, automated text mining, 

3 https://string-db.org/

FIGURE 1

Workflows of the bioinformatic analysis.

TABLE 1 The demographic characteristics of patients admitted to intensive care units (ICU) and non-ICU settings with or without COVID-19.

COVID-19 Non-COVID-19

Total Non-ICU ICU Total Non-ICU ICU

Case 100 50 50 26 10 16

Sex n (%)

Male 62 (62%) 29 (58%) 33 (66%) 13 (50%) 4 (40%) 9 (56%)

Female 38 (38%) 21 (42%) 17 (34%) 13 (50%) 6 (60%) 7 (44%)

Age

Mean (IQR) 61.1 (50.5–74) 59.6 (49–77) 62.6 (55–72.8) 63.8 (53.2–75) 60.4 (50.2–69) 66 (59.8–76.8)
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high-throughput tests, and computational predictions are the main 
sources of interactions involving both functional and physical 
relationships. A threshold value of >0.4 for the interaction score was 
established. The PPI network was designed and visualized using the 
software Cytoscape v3.10.0. The top 10 genes with the highest degrees 
were determined using the CytoHubba plugin.

Machine learning models

The random forest and least absolute shrinkage and selection 
operator (LASSO) regression algorithms were employed to conduct the 
additional screening of predictive genes from the pool of six common 

genes using the random forest and glmnet packages. To detect the 
diagnostic performance, the receiver operating characteristic (ROC) 
curves for combined genes were depicted using the pROC package.

Nomogram construction and validation

The nomogram was developed to assess the incidence of 
COVID-19 using the rms R package. Each gene contributes to a score. 
By adding up the individual scores given to the predictors, the 
cumulative points were obtained for risk assessment. The calibration 
curve, decision curve analysis (DCA), and clinical impact curve (CIC) 
were utilized to assess the predictive accuracy of the nomogram.

FIGURE 2

(A) PCA of genes from grades 1–4 thymus samples and grade 0 thymus samples of MG patients. (B) Boxplot of gene expression in individual MG 
patients. (C) Heatmap shows different gene expression profiles between thymus samples of grades 1–4 and grade 0. (D) Volcano plot shows DEGs 
between thymus samples of grades 1–4 and grade 0.
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Gene regulatory networks

To clarify the associations between common genes and 
microRNAs (miRNAs), the gene regulatory network was constructed. 
miRNAs targeting shared genes were predicted by the miRWalk, 
miRDB, and Targetscan databases. In miRWalk, the filter condition is 
based on a binding probability value of above 0.95 and a binding site 
position of 3’UTR. The results of the three databases were intersected 
and depicted by Cytoscape.

The ChIP-X Enrichment Analysis 3 (ChEA3) database4 was used 
to predict TFs targeting shared genes. The top 10 TFs were identified 
by average score, and the gene regulatory network was constructed 
using Cytoscape.

Drug prediction and molecular docking

The drug prediction was performed using the DsigDB database 
on the Enrichr web portal.5 The 3D structures of small-molecule drugs 
were obtained from the PubChem database.6 The protein crystal 
structures of targets were obtained from the UniProt database.7 
Molecular docking was conducted between drug candidates and 
protein targets using AutoDock software V4.2.6. Docking results were 
visualized with PyMOL V2.6.0.

Immune cell infiltration

The gene expression data from the GSE157103 dataset were 
formatted according to the established guidelines of CIBERSORTx 
and subsequently uploaded to CIBERSORTx.8 We utilized the LM22 
gene signature file obtained from CIBERSORTx to examine the blood 
samples from COVID-19 patients and healthy individuals. This gene 
signature file allows for the identification of 22 unique subtypes of 
immune cells. Only samples with a value of p < 0.05 were considered 
to possess precise estimations of immune cell fractions. To further 
understand the interplay among various types of immune cell 
infiltration and the relationship between shared genes and immune 
cells, the Pearson’s correlation analysis was conducted using the 
corrplot R package.

Results

Identification of differentially expressed 
genes

The gene expression dataset GSE103974 was downloaded from 
the GEO database. Compared with samples from the Grade 0 group, 
a total of 83 DEGs were identified in samples from the Grades 1–4 
group, with 50 DEGs upregulated and 33 DEGs downregulated. The 

4 https://maayanlab.cloud/chea3/

5 https://maayanlab.cloud/Enrichr/

6 https://pubchem.ncbi.nlm.nih.gov/

7 https://www.uniprot.org/

8 http://cibersort.stanford.edu/

heatmap visualized the expression pattern of DEGs as well as the level 
of consistency within the respective groups (Figure  2C). The 
expression of DEGs is also shown in the volcano plot labeled with the 
top 10 genes with the highest |logFC| (Figure 2D, upper). Similarly, 
the volcano plot of DEGs in GSE157103 of COVID-19 is depicted in 
Figure 2D.

Functional and pathway enrichment 
analysis of DEGs

To explore potential biological mechanisms, the enrichment 
analysis of DEGs in MG was conducted using Metascape. The 
significant GO function terms for BP associated with inflammation 
are shown in Figure 3A. Other terms of BP along with terms of CC 
and MF are illustrated in Figure  3B. The result showed that the 
hyperplastic thymus exhibited evidence of inflammation with T cell 
and B cell proliferation, differentiation and activation, 
immunoglobulin production, cellular response to interleukin-1 and 
TNF-α, positive regulation of cell adhesion and migration, positive 
regulation of the apoptotic process, and phagocytosis. Other GO-BP 
terms included cellular response to ROS, hypoxia, VEGF stimulus, 
and mineralocorticoid, regulation of ERK1/2 cascade and PI3K 
activity, integrated stress response signaling, positive regulation of 
miRNA transcription, positive regulation of lipid metabolic processes 
and lipid biosynthetic processes, regulation of actin polymerization 
or depolymerization, and the circadian rhythm. The pathways 
enriched by GO-MF were related to DNA-binding transcription 
activator activity, transcription coregulator binding, DNA-binding 
transcription repressor activity, kinase binding, protein kinase 
regulator activity, GTPase activity, and serine-type endopeptidase 
activity. GO-CC analysis indicated that the proteins of DEGs were 
primarily enriched in the side of the membrane, transcription 
regulator complex, extracellular matrix, external side of the plasma 
membrane, external encapsulating structure, collagen-containing 
extracellular matrix, transcription factor AP-1 complex, membrane 
raft, membrane microdomain, and immunoglobulin complex. The 
KEGG analysis showed that DEGs were associated with Th1, Th2, and 
Th17 cell differentiation, IL-17 signaling pathway, T cell receptor 
signaling pathway, leukocyte transendothelial migration, cell 
adhesion molecules, circadian entrainment, endocrine resistance, 
AGE-RAGE signaling pathway in diabetic complications, NF-κB 
signaling pathway, relaxin signaling pathway, MAPK signaling 
pathway, estrogen signaling pathway, and apoptosis, which might 
resemble the pathological process of rheumatoid arthritis (Figure 3C). 
The DO analysis of the DEGs indicated that MG is associated with 
multiple autoimmune disorders and inflammatory diseases 
(Figure 3D).

GSEA analysis

We further performed the GSEA analysis of DEGs to find 
mildly changed biological processes in the MG hyperplastic thymus. 
The result showed that the pathological process might resemble 
mildly changed biological processes in other autoimmune diseases 
such as autoimmune thyroid disease, rheumatoid arthritis (RA), 
systemic lupus erythematosus (SLE), type 1 diabetes mellitus and 
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allograft rejection (Figure  3E upper). The immunologic process 
included upregulated natural killer cell-mediated cytotoxicity, 
neutrophil extracellular trap formation, T cell receptor signaling 
pathway, viral protein interaction with cytokines and cytokine 
receptors, IL-17 signaling pathway, TNF signaling pathway, Toll-
like receptor signaling pathway, NOD-like receptor signaling 
pathway, C-type lection receptor signaling pathway, NF-κB 

signaling pathway, and downregulated TGF-β signaling pathway 
(Figure  3E middle). Other cellular pathways included the 
upregulated HIF-1 signaling pathway, downregulated AMPK 
signaling pathway, MAPK signaling pathway, PI3K-Ark signaling 
pathway, PPAR signaling pathway, adipocytokine signaling pathway, 
insulin signaling pathway, apelin signaling pathway, and hedgehog 
signaling pathway (Figure 3E lower).

FIGURE 3

Function analysis of DEGs in the MG dataset. (A) Inflammation-associated BP terms by GO analysis of DEGs. (B) GO analysis in the BP, CC, and MP 
categories. (C) KEGG analysis of DEGs. (D) DO analysis of DEGs. (E) GSEA analysis of total genes from grades 1–4 thymus samples and grade 0 thymus 
samples.
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Protein–protein interaction network 
analysis

To further explore the interaction among DEGs, the PPI network 
was constructed by the STRING database and visualized by Cytoscape. 
The network has 43 nodes and 123 edges (Figure 4A). The top 10 
genes with the highest degrees were identified by CytoHubba, which 
suggests their potential significance in the progression of MG 
(Figure 4B). The functional enrichment network generated by ClueGO 
is illustrated in Figure 4C.

Identification of common genes

The intersection of DEGs from the MG and COVID-19 datasets 
is shown in Figure  4D. The shared upregulated genes included 
SAMD9, PLEK, and GZMB. The shared downregulated genes were 
JUNB, NR4A1, and NR1D1. These six genes were selected as key 
genes that may play an important role both in MG and COVID-19. 
The correlation of the six common genes is displayed in 
Figure  4E. The significant pairs were labeled with a 
correlation coefficient.

Next, the GO function analysis of the common genes was 
conducted. As shown in Figure 5, NR4A1 and NR1D1 were both 
ligand-activated transcription factors involved in response to LPS and 
cellular response to hormone stimulus. JUNB and NR1D1 were 
associated with the regulation of leukocyte activation. The genes 
JUNB and PLEK were implicated in hemopoiesis. NR4A1 and PLEK 
were linked to secretion by cells. GZMB and SAMD9 were involved 
in the innate immune response.

Immunological infiltration in COVID-19

The immune infiltration distribution of 22 immune cells in 126 
samples of GSE157103 was characterized based on the CIBERSORT 
algorithm (Figure 6A). The abundance of plasma cells, CD4+ naïve T 
cells, CD4+ memory-activated T cells, γδT cells, and resting dendritic 
cells was significantly higher in the COVID-19 group compared to the 
control group. The abundance of CD8+ T cells, CD4+ memory resting 
T cells, follicular helper T cells, regulatory T cells, and monocytes was 
lower in the COVID-19 group than in the control group (Figure 6B). 
The correlation between the 22 immune cell types is depicted in 
Figure 6C, where Tregs and CD8+ T cells exhibited the strongest 
correlation (r = 0.58). Next, the correlations between six common 
genes and significant immune cells were examined (Figure 6D). The 
results indicated that the three upregulated genes SAMD9, PLEK, and 
GZMB were positively correlated with CD4+ memory-activated T 
cells. In addition, SAMD9 and PLEK exhibited a positive correlation 
with CD4+ naïve T cells, γδT cells, and resting dendritic cells but 
showed a negative correlation with CD8+ T cells and Tregs. Moreover, 
GZMB was positively correlated with CD8+ T cells and plasma cells. 
PLEK was negatively correlated with plasma cells. The downregulated 
genes JUNB, NR4A1, and NR1D1 were positively correlated with 
memory-resting CD4+ T cells and Tregs and negatively correlated 
with naïve CD4+ T cells and γδT cells. In addition, NR4A1 and 

NR1D1 were positively correlated with CD8+ T cells and monocytes 
and negatively correlated with resting dendritic cells. JUNB and 
NR1D1 exhibited a negative correlation with memory-activated CD4+ 
T cells.

Machine learning models

To mitigate overfitting, the random forest algorithm, least 
absolute shrinkage, and selection operator (LASSO) regression 
algorithms were employed. This approach allowed us to identify 
the most informative genes that possess the most effective 
diagnostic features among the common genes. The common 
genes that are considered significant in random forest, as 
determined by their mean decrease accuracy and mean decrease 
gini rankings, are visualized in Figures 7A,B. As different log 
lambdas were taken in LASSO regression, the relative coefficients 
of shared genes were progressively compressed and approached 
zero (Figure 7C). Four genes exhibiting non-zero coefficients at 
the optimal lambda value (lambda.min) were selected, including 
SAMD9, GZMB, JUNB, and NR4A1 (Figure  7D), which was 
consistent with the random forest result. The receiver operating 
characteristic (ROC) curve demonstrated that the combination 
of the four genes exhibited favorable predictive performance, as 
indicated by an area under the curve (AUC) value of 0.875 (95% 
confidence interval [CI]: 0.8026–0.9474). This suggests that the 
diagnostic model effectively discriminates between COVID-19 
patients and control cases (Figure  7E). The specificity and 
sensitivity were 76.9% and 87%, respectively, at an optimal cutoff 
value of 0.71.

Establishment of the predictive nomogram

The nomogram was established to evaluate the risk of COVID-19 
occurrence using the four genes from the LASSO model (Figure 7F). 
The predictive efficiency of the nomogram was evaluated through the 
analysis of the calibration curve, DCA, and CIC (Figures 7G–I). The 
calibration curve exhibited a high level of concordance between the 
predicted and observed values. The DCA curve indicated that the 
nomogram had high accuracy and could provide evidence for clinical 
decisions. The CIC curve further indicated that the nomogram could 
provide a robust clinical benefit for patients.

The regulatory networks

We built regulatory networks with miRNA- and TF-genes to 
learn more about the transcriptional and posttranscriptional 
mechanisms that control the genes that are shared by MG and 
COVID-19 patients (Figures 8A,B). A total of 51 miRNAs were 
obtained by intersecting the predicting results of the miRDB, 
miRWalk, and TargetScan databases. Among them, hsa-miR-
4728-5p simultaneously targets PLEK and JUNB. The top  10 
gene-TF interactions were retrieved from ChEA3 by average 
integrated rank and were illustrated by Cytoscape.
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The relevant autoimmune disorders

The diseases associated with the shared genes of MG and 
COVID-19 were retrieved from the DisGeNET network9 and checked 
manually (Table 2). All six genes were related to autoimmune diseases, 
and some were involved in influenza or virus diseases such as GZMB, 
JUNB, and NR4A1. Of note, GZMB was directly associated with 
MG. The result suggested an important role for these genes in 
autoimmune disorders and virus-related diseases.

9 www.disgenet.org/

Drugs prediction

Small molecular drugs regulating the shared six genes were 
retrieved from the DsigDB database and ordered by p-value. 
Ouabain, felodipine, pimozide, luteolin, and emetine were selected 
from the top 10 drugs through evidence assessment on PubMed 
(Table 3). AutoDock software was used to forecast the free energy 
of binding as well as binding modes. The binding energy matrix of 
the genes and drugs is displayed in Figure 8C. Negative binding 
energy is indicative of a spontaneous chemical reaction, with the 
magnitude of the value reflecting the strength of the interaction 
between the drug and the protein. The binding modes of luteolin 

FIGURE 4

(A) The PPI network of DEGs from the MG dataset. The red and green nodes indicate upregulated and downregulated genes, respectively. Color 
gradients represent the value of |logFC|, and the size of nodes represented the calculated degrees. The width of the edges increases with combined 
scores. (B) The top 10 genes with the greatest degrees were identified by the CytoHubba plugin. The importance of these genes grows as the nodes 
get redder. (C) The function analysis of DEGs from the MG dataset by ClueGO. (D) The intersection of DEGs from the MG and COVID-19 datasets. 
(E) Correlation of the six shared genes. The significant relation is labeled with a correlation coefficient.
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and ouabain to the proteins expressed by common genes are 
depicted in Figure 9.

Discussion

It has long been acknowledged that viral infection can lead to 
autoantibody production. The mechanisms of virus-induced 
autoimmunity include molecular mimicry, epitope spreading, B-cell 
clonal activation, and bystander activation (82). Some studies have 
reported the cross-reactivity between AChR and Escherichia coli, 
Proteus vulgaris, Klebsiella pneumonia, and the herpes simplex virus 
(83, 84). In addition, viruses can also affect innate immunity by 
activating Toll-like receptors (TLRs). High levels of TLR3, TRL4, 
TRL7, and TRL9 have been detected in the thymus of MG patients. 
TLR3 activation has been proven to upregulate AChR expression and 
accelerate apoptosis of thymic epithelial cells, which is considered a 
pivotal upstream event of self-tolerance breakdown in MG. This 
suggests a strong link between viral infections and MG. SARS-CoV-2 
has recently been recognized as a trigger for autoimmune diseases due 
to molecular mimicry, epitope spreading, immune system 
overactivation, elevated cytokines, and neutrophil extracellular trap 
(NET) formation. As for molecular mimicry, it has been established 
that the more similar peptides the host mammals possess, the more 
severe the infection of SARS-CoV-2 is (85). In addition, the decreased 
number and impaired function of Treg cells, along with the elevated 
levels of IL-17A in COVID-19, have also been considered crucial 
pathological features of MG (86, 87).

In the present study, we discovered six common genes shared by 
MG and COVID-19. Among them, NR4A1 and JUNB were also the 
genes with the highest degrees in the PPI network of MG, indicating 
their vital function in MG pathogenesis. The functional enrichment 

analysis that exhibited the typical features of autoimmunity added to 
the reliability of the DEGs from MG. The correlation of the six shared 
genes in the two diseases also favored their expression trend. The 
common genes were associated with the significant immune cells in 
COVID-19, which implied their crucial roles in immune disorders. In 
addition, the combination of SAMD9, GZMB, JUNB, and NR4A1 
presented excellent diagnostic value in COVID-19. This not only 
provided an optional diagnostic method for patients suffering from 
COVID-19 and MG but also emphasized the involvement of these 
genes in the pathogenesis. Further investigation is warranted to 
elucidate the connection among these common genes in order to 
identify the key pathways shared by MG and COVID-19. Due to the 
limited data, the specific effects of these pivotal genes in MG need to 
be  further explored. Another limitation is the drawbacks of 
microarrays, including relatively low accuracy, precision, and 
specificity. Additionally, the experimental setup is susceptible to 
various factors such as hybridization temperature, genetic material 
purity, and the amplification process, all of which may influence the 
assessments of gene expression (88).

SAMD9, known as a potent tumor suppressor gene, encodes 
a cytoplasmic protein modulating both cell proliferation and 
apoptosis. SAMD9 expression has been found to be elevated in 
the Peripheral blood mononuclear cells (PBMCs) of RA patients 
and PHA-activated Jurkat cells. SAMD9 silencing could enhance 
Jurkat T cell proliferation and upregulate TNF-α, IL-8, and IFN-γ 
expression, which indicates mutual regulation between SAMD9 
and TNF-α, as SAMD9 is a downstream target of TNF-α signaling 
(33). The published data to date suggest a compensatory increase 
of SAMD9  in inflammation, which plays an anti-
inflammatory role.

The activation of PLEK results in the production of pleckstrin, 
which is a PKC substrate expressed by all cells of the hemopoietic 

FIGURE 5

GO function analysis of shared genes. The inner semicircle on the left indicates the logFC of shared genes in the COVID-19 dataset. The outer 
semicircle indicates the logFC in the MG dataset.
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system (89). Pleckstrin plays a crucial role in various cellular processes, 
including cytoskeletal reorganization, cell–cell adhesion, migration, 
and potentially phagocytosis. It can be upregulated under LPS, IL-1β, 
or IFN-γ stimulation. Meanwhile, it is important for pro-inflammatory 
TNF-α and IL-1β production and activation pathways (35). To date, 
pleckstrin has been implicated in a range of autoimmune and 

inflammatory diseases such as rheumatoid arthritis, ulcerative colitis, 
atherosclerosis, T2DM, periodontitis, and CVD (90).

Granzyme B, which is a protease encoded by GZMB in 
cytotoxic lymphocytes (CTL) and NK cells, is implicated in virus 
infections and many autoimmune disorders including 
MG. Consistent with our result, another study also found the 

FIGURE 6

Immunological infiltration in the COVID-19 dataset and its relationship with common genes. (A) Immune infiltration distribution of 22 immune cells in 
126 samples of GSE157103. (B) Abundance of the immune cells in the COVID-19 group and the control group. (C) The correlation between the 
significant immune cells. (D) Correlations between common genes and significant immune cells.
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FIGURE 7

Predictive genes selected by the machine learning model and the predictive nomogram construction. (A,B) Importance of common genes in the 
COVID-19 dataset by random forest. (C,D) predictive genes selected by LASSO including SAMD9, GZMB, JUNB, and NR4A1. (E) The ROC curve of the 
four common genes selected by LASSO. (F) Nomogram constructed by the selected key genes. (G) Calibration curve of the nomogram. (H) DCA curve. 
(I) CIC curve.
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presence of granzyme B in the thymus in MG patients but not in 
normal individuals (36). A hypothesis concerning autoimmunity 
suggests that the proteolytic cleavage by granzyme B can convert 
a tolerized self-antigen to novel fragments with newly exposed 
cryptic determinants, thus triggering the autoimmune response. 
Diseases with presumptive autoantigens cleaved by granzyme B 
include lupus erythematosus, rheumatoid arthritis, scleroderma, 
myositis, and Sjögren’s syndrome, of which more than 20 
autoantigens have been identified.

JunB belongs to the AP-1 transcription factor family that assumes 
a pivotal role in the regulation of cell proliferation, differentiation, 
apoptosis and inflammation. The crucial involvement of JunB in 
inflammatory skin diseases has been well documented in the literature. 
The deletion or reduction of JunB in the epithelial cells of mice led to 
psoriasis, systemic lupus erythematosus like disease, and 
myeloproliferative disease, which could probably be  explained by 
elevated cytokines G-CSF and lL-6. Consistent with this report, the 
skin biopsy specimens of SLE patients also displayed reduced JunB 

FIGURE 8

Regulatory networks of common genes. (A) miRNA regulatory network. (B) The transcription factor regulatory network. (C) Binding energy between 
the proteins expressed by common genes and drug candidates. The bold numbers denote the pairs identified by the DsigDB database on the Enrichr 
web portal.
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levels and increased IL-6 levels (91). A study revealed that JunB could 
directly bind to the promotors of IL-6 and G-GSM and inhibit 
their expression.

NR4A1, also known as Nur77, is a nuclear receptor that can trans-
repress other transcription factors, such as NF-κB. The knockdown of 
NR4A1 leads to the expression of multiple pro-inflammatory 
cytokines, including IL-1β, IL-6, IL-8, IL-12, IL-17, IFN-γ, TNF-α, 
GM-CSF, and MCP-1. In addition, the deficiency of NR4A1 also 
elevates the level of ROS. The absence of NR4A1 can shift macrophages 
to a M1-dominant phenotype and enhance pro-inflammatory Th1/
Th17 differentiation, probably by influencing cell proliferation, 
apoptosis, and metabolism (92). NR4A1 expression has been observed 
to be altered in various inflammatory experimental models, including 
inflammatory bowel disease (IBD), multiple sclerosis (MS), and 
rheumatoid arthritis.

REV-ERBα, encoded by NR1D1, functions as a ligand-regulated 
transcription factor that exerts a negative regulatory effect on the 
expression of core clock proteins. REV-ERBα is primarily expressed in 
Th17 cells compared with other T cell subtypes. Th17 cells deficient in 
REV-ERBα result in the elevated expression of Th17-specific genes, 
including Il17a, Il17f, and Il23r. This phenomenon could be elucidated 
by the rivalry between REV-ERBα and RORγt, the master regulatory 
transcription factor of Th17 cells, as they compete for binding to 
regulatory elements within Th17-specific genes. A GWAS study 
identified NR1D1 as a multiple sclerosis susceptibility gene. Moreover, 
REV-ERBα deficiency exacerbated disease severity in a mouse model 
of multiple sclerosis (93). These studies indicate that REV-ERBα plays 
a pivotal role in regulating autoimmunity mediated by Th17 cells and 
is a promising therapeutic target.

In addition to the regulatory miRNA and TF, we also predicted 
small molecule drugs targeting the proteins expressed by common 
genes. Ouabain is not only a drug used for the treatment of cardiac 
insufficiency but also an endogenous hormone with recognized 

immunomodulatory properties. It has an anti-inflammatory effect by 
suppressing the expression of IL-6 and TNF-α. Ouabain can restrain 
the elevated glycolysis by reducing the metabolic regulator HIF1α in 
the inflammatory process (94).

Felodipine is a pharmacological agent classified as a calcium channel 
blocker known for its notable antioxidant and anti-inflammatory 
properties. Felodipine can downregulate the pro-inflammatory cytokine 
IL-18. IL-18 exerts an important influence on inflammation, partly by 
inducing TNF-α, IL-1α, IL-1β, and IL-6 production (95). A study using 
a SARS-CoV-2-specific CAR-T-cell model identified several 
FDA-approved drugs including felodipine as effective in mitigating 
COVID-19, possibly by modulating the NF-κB pathway (96).

Pimozide is a dopamine D2 antagonist. D3 and D2 receptor 
activation induces the adhesion of T cells to fibronectin, a key constituent 
of the extracellular matrix, mediated by β1 integrin. This adhesion is a 
characteristic feature observed in activated T cells, facilitating their 
migration across blood vessels and tissue barriers (97). This evidence 
suggests that pimozide may have an anti-inflammatory function.

Luteolin is a member of the flavonoid family with antiviral and 
anti-inflammatory capabilities. Luteolin can block the entrance of 
SARS-CoV-2 into the host cells and inhibit the cytokine storm caused 
by SARS-CoV-2 (98). It is also effective in the treatment of experimental 
autoimmune thyroiditis, adjuvant-induced arthritis, the ulcerative 
colitis model, the psoriasis model, and PBMC from MS patients. 
Luteolin’s anti-inflammatory effect involves reducing the proportion of 
Th1/Th2 and Th17/Treg, promoting the polarization of M2 
macrophages, blocking NF-κB, JAK–STAT, AP-1, and TLR signaling 
pathways, inhibiting NLRP3 inflammasome activation, suppressing 
pro-inflammatory mediators, and decreasing the intracellular levels of 
reactive oxygen species (ROS).

Emetine is a natural alkaloid with antiviral activity. Emetine has 
shown a satisfactory inhibitory effect against both DNA and RNA viruses. 
This compound has been recognized for its potent anti-SARS-CoV-2 

TABLE 2 Autoimmune diseases associated with the common genes.

Gene symbol Description Disease

SAMD9 Sterile alpha motif domain containing 9 Rheumatoid arthritis (33)

PLEK Pleckstrin Multiple sclerosis (34), Ulcerative colitis (35)

GZMB Granzyme B Myasthenia gravis (36), rheumatoid arthritis (37, 38), systemic lupus erythematosus (39, 40), multiple 

sclerosis (41), inflammatory bowel diseases (42, 43), type 1 diabetes (44), scleroderma (45, 46), 

Hashimoto’s thyroiditis (47), influenza (48, 49), virus diseases (50, 51)

JUNB Jun B proto-oncogene Systemic lupus erythematosus (52, 53), rheumatoid arthritis (54, 55), psoriasis (56, 57), inflammatory 

bowel diseases (58–60), systemic sclerosis (61), autoimmune diseases (62, 63), influenza A (64, 65), 

virus diseases (66), pneumonia (67)

NR4A1 Nuclear receptor subfamily 4 Multiple sclerosis (68, 69), inflammatory bowel diseases (70, 71), rheumatoid arthritis (72), autoimmune 

diseases (73, 74), influenza (75), pneumonia (76), lung diseases (77, 78)

NR1D1 Nuclear receptor subfamily 1 Inflammatory bowel diseases (79, 80), multiple sclerosis (81)

TABLE 3 List of drug candidates.

Drug Molecular formula p-value Adjusted p-value Combined score Genes

Ouabain C29H44O12 <0.001 0.017 411.370 NR4A1; NR1D1; and JUNB

Felodipine C18H19Cl2NO4 <0.001 0.017 959.145 NR4A1 and JUNB

Pimozide C28H29F2N3O <0.001 0.017 905.802 NR4A1 and JUNB

Luteolin C15H10O6 <0.001 0.017 635.699 NR1D1 and JUNB

Emetine C29H40N2O4 <0.001 0.017 226.613 NR4A1; NR1D1; and JUNB
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activity, which exhibited sub-micromolar EC50 value. Emetine also exerts 
an immunomodulatory effect by inhibiting NF-κB, which leads to 
reduced pro-inflammatory cytokines, including TNF-α, IL-1β, and 
IL-6 (99).

Conclusion

In the present study, we  identified six shared genes (SAMD9, 
PLEK, GZMB, JUNB, NR4A1, and NR1D1) of MG and COVID-19 
patients through bioinformatic analysis. This study may offer 
innovative perspectives on the pathogenesis and theoretical foundation 
for the targeted therapy of the two related diseases.
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FIGURE 9

Molecular docking patterns of drugs with proteins expressed by common genes. The left illustrators show luteolin complexed with proteins expressed 
by (A) GZMB, (B) SAMD9, (C) NR4A1, and (D) PLEK. The right illustrators show ouabain complexed with proteins expressed by (E) NR1D1, (F) PLEK, 
(G) SAMD9, and (H) NR4A1.
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