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Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative

disorder associated with progressive impairment of spinal motor neurons.

Continuous research endeavor is underway to fully understand the molecular

mechanisms associating with this disorder. Although several studies have implied

the involvement of inositol pyrophosphate IP7 in ALS, there is no direct

experimental evidence proving this notion. In this study, we analyzed inositol

pyrophosphate IP7 and its precursor IP6 in the mouse and human ALS biological

samples to directly assess whether IP7 level and/or its metabolism are altered in

ALS disease state.

Methods: Weused a liquid chromatography-mass spectrometry (LC-MS) protocol

originally-designed for mammalian IP6 and IP7 analysis. We measured the

abundance of these molecules in the central nervous system (CNS) of ALS mouse

model SOD1(G93A) transgenic (TG) mice as well as postmortem spinal cord of

ALS patients. Cerebrospinal fluid (CSF) and peripheral blood mononuclear cells

(PBMCs) from ALS patients were also analyzed to assess if IP7 status in these

biofluids is associated with ALS disease state.

Results: SOD1(G93A) TG mice showed significant increase of IP7 level in the

spinal cord compared with control mice at the late stage of disease progression,

while its level in cerebrum and cerebellum remains constant. We also observed

significantly elevated IP7 level and its product-to-precursor ratio (IP7/IP6) in the

postmortem spinal cord of ALS patients, suggesting enhanced enzymatic activity

of IP7-synthesizing kinases in the human ALS spinal cord. In contrast, human

CSF did not contain detectable level of IP6 and IP7, and neither the IP7 level nor

the IP7/IP6 ratio in human PBMCs di�erentiated ALS patients from age-matched

healthy individuals.

Conclusion: By directly analyzing IP7 in the CNS of ALS mice and humans, the

findings of this study provide direct evidence that IP7 level and/or the enzymatic

activity of IP7-generating kinases IP6Ks are elevated in ALS spinal cord. On the

other hand, this study also showed that IP7 is not suitable for biofluid-based
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ALS diagnosis. Further investigation is required to elucidate a role of IP7 in ALS

pathology and utilize IP7 metabolism on the diagnostic application of ALS.

KEYWORDS

amyotrophic lateral sclerosis, inositol pyrophosphate, diphosphoinositol

pentakisphosphate, inositol hexakisphosphate, liquid chromatography-tandem mass

spectrometry

1 Introduction

Amyotrophic lateral sclerosis (ALS) is an incurable

neurodegenerative disorder categorized to the progressive

motor neuron disease, and its incident is most frequent in

sexagenarians and septuagenarians (1, 2). An epidemiological

study showed that 1.68 per 100,000 person-years suffered from

this disease in worldwide with substantial variations in region (3).

Sporadic ALS where the ALS onset is independently of hereditary

traits accounts for 70–80% of all of the ALS cases, confounding

the genetic prediction of future ALS onset (4). Due to the absence

of effective biomarkers for ALS, its diagnosis hinges on the

indirect approaches by checking clinical symptoms and measuring

muscle action potential amplitudes, which results in the delayed

therapeutic intervention with limited number of medical options

(5). To tackle these issues, a number of ALS-causative proteins

including C9orf72, TDP-43 and FUS have been identified and

studied for the development of ALS therapeutic agents selectively

targeting these molecules (6, 7). In addition, the discovery of

potentially diagnostic biomarkers for ALS such as Neurofilament

L (NfL) facilitates the biofluid-based noninvasive approaches

for ALS diagnosis (8–10). Yet, there is still a lack of molecular

information with regard to the ALS pathology, and thus its features

in molecular machinery should be elucidated more clearly for

liberating humanity from the agony of this disease.

Inositol pyrophosphate exists in a wide variety of organisms

from slime molds and fungi to mammals and is involved

in numerous cellular processes including intracellular signaling

(11–13). Diphosphoinositol pentakisphosphate (a.k.a. IP7), a

representative inositol pyrophosphate in mammals, is synthesized

from the precursor molecule inositol hexakisphosphate (a.k.a. IP6)

by inositol hexakisphosphate kinases (IP6Ks). So far, several lines

of evidence suggested pathological roles of IP6Ks and IP7 in stress

response and neurodegeneration. IP6K2, one of the major IP7-

synthesizing kinase in mammals, was characterized as a cell death

mediator (14) and IP7 facilitates cellular apoptosis by reactive

oxygen treatment (15). Considering our previous observations of

IP6K2 mRNA induction during presymptomatic disease state of

ALS (16) and IP6K2 modulatory role in TDP-43-mediated cellular

apoptosis (17), these facts collectively imply the notion that IP7
would be induced in aberrant motor neuron of ALS disease state.

However, none of the direct evidences has not been obtained

due to lack of technologies directly detecting and quantifying

IP7. Recently, we developed an analytical protocol directly and

selectively detecting IP7 in mammalian tissues (18, 19), unlocking

the direct evaluation of this molecule in various clinical biopsies.

In this study, we analyzed endogenous IP7 and its precursor

IP6 in ALS model mice as well as human ALS patients by

an originally-designed liquid chromatography mass spectrometry

(LC-MS) protocol and assessed if ALS disease state would be

accompanied by altered IP7 level.

2 Materials and methods

2.1 Human samples and peripheral blood
cell fractionation

Frozen postmortem spinal cords derived from 9 ALS patients

and five neurologically normal patients were obtained from Japan

Brain Bank Net (JBBN) and Brain Research Institute of Niigata

University. Each 3mL of cerebrospinal fluid (CSF) was collected

from 3 ALS patients by lumber puncture. Peripheral blood samples

(20mL) were collected from 25 ALS patients after the definitive

diagnosis by the El Escorial diagnostic criteria (20) and 22 age-

matched healthy controls in our hospital (Supplementary Tables 1,

2). Three out of 25 ALS patients were excluded as statistical

outliers, and therefore 22 ALS patients were used for the subsequent

analysis. After the isolation using a Lymphocyte Separation

Solution (Nacalai Tesque, Japan), peripheral blood mononuclear

cells (PBMCs) were lysed by Lysis buffer (0.01% Triton X-

100, 1mM EDTA, 20mM Tris-HCl). After centrifugation, the

supernatant was further processed to isolate IP6 and IP7 for the

subsequent LC-MS analysis. All participants before passing away

or their families provided written informed consent. Experiments

using human samples were performed with institutional approval

and guidelines from the Clinical Investigation Committee at Tokai

University School of Medicine (institutional review board No. 10R-

010).

2.2 Mouse samples

All experiments involving animals were performed in

accordance with protocols approved by institutional animal care

guidelines (Tokai University School of Medicine). SOD1(G93A)

transgenic (TG) mice and littermate wild-type (WT) mice were

obtained from Clea Japan (Tokyo, Japan) and maintained at an

ambient temperature of 23 ± 2◦C and humidity of 55 ± 15% with

a 12 h light-dark cycle. Food (CE-2; Clea Japan) and water were

fed ad libitum. The behavioral performance of the TG mice was

regularly monitored by rotarod test. These mice were anesthetized

using isoflurane and then sacrificed to collect the central nervous

system (CNS; cerebrum, cerebellum, spinal cord). The harvested

organs were frozen until further use.
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2.3 Extraction of IP6 and IP7 from human
and mouse samples

Human and mouse frozen tissues were homogenized using

a Shake Master Neo (Bio Medical Science). The crude lysates

were centrifuged to collect the supernatants. The supernatants

from tissues and cells were mixed with an equal volume of

2M perchloric acid and further centrifuged to remove insoluble

protein fraction. After adding 3 nmol of hexadeutero-myo-inositol

trispyrophosphate (ITPP-d6, Toronto Research Chemicals) as a

surrogate internal standard, IP6 and IP7 were purified using

titanium dioxide beads (GL Sciences) as described previously (21).

2.4 Measurements of IP6 and IP7 by liquid
chromatography–tandem mass
spectrometry (LC-MS)

Quantitative measurement of IP6 and IP7 in human and mouse

samples were performed using an originally-designed LC-MS

protocol (18, 19). Briefly, chromatographic separation of IP6,

IP7, and internal standard ITPP-d6 is achieved by hydrophilic

interaction liquid chromatography (HILIC) mode with a polymer-

based bioinert column (HILICpak VG-50 2D; Shodex, Tokyo,

Japan). The aqueous mobile phase was 300mM ammonium

bicarbonate buffer (pH 10.5) containing 0.1% InfinityLab

deactivator additive (Agilent Technologies) and the organic

mobile phase was 90% acetonitrile containing 10mM ammonium

bicarbonate buffer (pH 10.5) and 0.1% InfinityLab deactivator

additive. The total flow rate of the mobile phase was 0.4 ml/min.

Linear gradient separation was achieved as follows: 0–2min, 75%

B; 2–12min, 75%−2% B; 12–15min, 2% B. Mass spectrometric

detection of these molecules was performed by selected reaction

monitoring (SRM) using a LCMS-8050 triple quadrupole mass

analyzer (Shimadzu corporation, Kyoto, Japan).

2.5 ALSFRS-R scoring

The ALSFRS-R scores of 25 ALS patients whom the peripheral

blood was collected from were assessed by two neurologists.

ALSFRS-R consists of 12 categories including speaking, eating, and

respiratory ability, each of which is scored between 0 and 4 points.

Scores decrease along with increasing functional exacerbation, and

thus the total ALSFRS-R scores of ALS patients with normal and the

worst functional status sum up as 48 (maximum) and 0 (minimum)

points, respectively.

2.6 Statistical analysis

Statistical analysis was performed by SPSS software ver.26.

Data are expressed as the mean ± standard deviation. Differences

between two or more groups were analyzed using two-tailed

Student’s t-test. Statistical significance was set at p < 0.05. Variable

PBMC data of ALS patients were processed by SIMCA-P software

(Umetrics, Umeå, Sweden) for the evaluation of statistical outliers.

3 Results

3.1 Elevated IP7 level in the spinal cord of
ALS model mice

We previously showed that IP6K2 mRNA level was increased

in the spinal cord of ALS patients, implying elevated production

of IP7 in the ALS spinal cord (16, 17). To verify this hypothesis,

we analyzed IP7 and its precursor IP6 in the CNS of ALS mouse

model SOD1(G93A) transgenic (TG) mice at the three different

breeding points, namely 12-week age (before ALS onset), 15-week

age (early-middle stage of ALS), and 18-week age (late stage of

ALS; Figure 1A). These TG mice become impairing their motor

activity around 16-week age and almost completely lose lower limb

mobility with the moribund state around 18-week age, which is in

accordance with a previous report (22). LC-MS analysis showed

that IP7 level was significantly increased in the spinal cord of the

TG mice compared with that of littermate control mice at 18-week

age (late stage of ALS), while its level did not significantly change in

cerebrum and cerebellum of the same mice (Figures 1B, C). In the

spinal cord of TG mice at 18-week age, IP6 level was also increased

slightly but not significantly. Thus, we observed elevated IP7 level

in the spinal cord of a rodent ALS model at ALS progressive state.

3.2 Elevated IP7 level in the postmortem
spinal cord of ALS patients

To further confirm the elevated IP7 induction in the ALS

spinal cord, we prepared 9 and 5 biopsies of human postmortem

lumber cord from ALS patients and neurologically normal patients

(control), respectively (Figure 2A and Table 1). The average ages

of these two groups were 66.0 ± 9.96 for ALS patients and 70.8

± 1.79 for control patients. All ALS patients examined were

at the late stage of the disease and died by respiratory failure

manifested as ALS-related dysfunction. IP7 level and the product-

to-precursor (IP7/IP6) ratio were significantly increased in the

postmortem lumber cord of the ALS patients compared with that

of controls, while IP6 level was comparable between these two

groups (Figures 2B, C). Thus, we demonstrated that IP7 level and

its production rate are significantly elevated in the human spinal

cord during ALS disease state.

3.3 IP7 is not suitable for usage as
biofluid-based biomarker for ALS diagnosis

Certain ALS-associated proteins such as NfL and TDP-43

exist in biofluids and are considered as promising biofluid-based

biomarkers for ALS diagnosis (23). To assess the availability

of IP7 as a biofluid-based diagnostic marker, we first analyzed

CSF of 3 ALS patients. However, neither IP7 nor IP6 were

detected in CSF samples (Figure 3A). We next attempted to

analyze peripheral blood because our and other groups have

shown that certain amount of IP7 is present in the human

peripheral blood (18, 24, 25). By fractionation of human

peripheral blood into cell subsets and plasma, we found that
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FIGURE 1

Elevated IP7 level in the spinal cord of SOD1(G93A) TG mice in the ALS late stage. (A) Schematic illustration of the experimental workflow.

SOD1(G93A) TG and their littermate WT mice at 12-week (before ALS onset), 15-week (ALS early-middle stage) and 18-week (ALS late stage) were

sacrificed to harvest central nervous system (CNS) for LC-MS analysis. (B) The concentrations of IP6, IP7, and IP7/IP6 (product-to-precursor) ratio in

the cerebrum, cerebellum and spinal cord of SOD1(G93A) TG and their littermate WT mice. The values shown represent the mean ± SD of four

independent experiments and are expressed relative to the WT mice. P-values calculated by Student’s t-test are given in parenthesis. Asterisks

indicate statistical significance (p < 0.05) compared with WT mice. (C) Representative SRM chromatograms of IP6, IP7, and internal standard ITPP-d6

in the spinal cord of SOD1(G93A) TG and their littermate WT mice. The arrowheads indicate the SRM peaks of the corresponding analytes. IS, internal

standard.

TABLE 1 Details of deceased patients donated their spinal cord in this study.

Individual
no.

Sex Age (year) Duration of
illness (year)

Predominant clinical
feature of ALS

Cause of
death

Respirator

ALS #1 M 53 5 UL RF –

#2 M 59 4 LL RF +

#3 M 58 1 LL RF –

#4 F 80 2 LL RF +

#5 M 67 10 UL, LL RF +

#6 F 57 14 UL RF +

#7 M 74 2 UL RF –

#8 M 67 2 B RF –

#9 F 79 1 B RF –

Control #1 M 71 – – Pancreatic

cancer

–

#2 F 71 – – Sepsis +

#3 F 73 – – Pneumonia –

#4 M 71 – – Pneumonia –

#5 M 68 – – Pneumonia –

M, male; F, female; UL, upper limb; LL, lower limb; B, bulbar; RF, respiratory failure.

peripheral blood mononuclear cells (PBMCs) predominantly

possess both IP6 and IP7 among major fractions of peripheral

blood (Supplementary Figure 1). We analyzed the PBMCs of 25

ALS patients and excluded three of them as statistical outliers

based on IP6 and IP7 levels, IP7/IP6 ratio, and ALSFRS-R

values (Supplementary Figure 2). We next compared the levels

of IP6, IP7, and IP7/IP6 ratio in the PBMCs of ALS patients

(n = 22) with those in the age-matched healthy counterparts
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FIGURE 2

Elevation of IP7 level and its production rate in the postmortem lumber cord of ALS patients. (A) Schematic depiction of the experimental workflow.

Human postmortem lumber cords of ALS patients (n = 9) and neurologically normal patients (control; n = 5) obtained from Japan Brain Bank Net

were subjected to LC-MS analysis. (B) The concentration of IP6 (left panel), IP7 (middle panel), and IP7/IP6 (product-to-precursor) ratio (right panel) in

the postmortem lumber cords of ALS patients and neurologically normal patients (controls). The values shown represent the mean ± SD of nine (ALS)

and five (control) independent experiments. P-values calculated by Student’s t-test are given in parenthesis. Asterisks indicate statistical significance

(p < 0.05) compared with the controls. (C) Representative SRM chromatograms of IP6, IP7, and internal standard ITPP-d6 in the postmortem lumber

of ALS patients and controls. The arrowheads indicate the SRM peaks of the corresponding analytes. Ctrl, control; IS, internal standard.

(n = 22; Figure 3B). The level of IP6, IP7, and IP7/IP6
ratio in the PBMCs were comparable between ALS patients

and age-matched healthy counterparts (Figure 3C). Also, these

values did not show significant correlations with ALSFRS-R

(Supplementary Figure 3). Thus, we failed to suggest that IP7 can

be used as an ALS biomarker using biofluid such as CSF and

peripheral blood.

4 Discussion

While a number of studies have identified causative proteins

and potential biomarkers for ALS so far (6), such exploring

efforts still continue to understand the molecular machinery of

this disease more precisely. Several studies reported the implicit

findings that inositol pyrophosphate IP7 might be associated with

ALS pathogenesis (14–17), but there has been no direct evidence

proving this notion. In this study, we analyzed IP7 and its precursor

IP6 in ALS model mice and ALS patients by an originally-designed

LC-MS protocol (18, 19) to directly examine the relationship

between IP7 and ALS.

We used a canonical ALS mouse model SOD1(G93A) TG mice

to analyze IP7 level and metabolism before and after ALS onset and

found that IP7 level significantly increased in the spinal cord of the

TG mice at the late stage of the disease (Figures 1B, C). The spinal

cord of the TG mice showed slightly but not significantly elevated

IP7 metabolism (IP7/IP6 ratio) due to the up-regulation of IP6
level concomitantly with IP7 elevation, implying dysregulation of

the metabolic pathway in lower inositol phosphates (IPs). A recent

transcriptome analysis using the TG mice exhibited that mRNA

levels of certain genes involved in phosphatidyl inositol metabolic

process such as INPP5D (inositol polyphosphate-5-phosphatase

D) and INPPL1 (inositol polyphosphate phosphatase like 1) was

changed in the spinal cord at ALS disease state (26). Such alteration

in inositol phospholipid pathway might lead to the dysregulated

metabolism of IP7 and other lower inositol phosphates. Similar

with the results of this rodent ALS model, significant elevation

of IP7 level and metabolism was observed in the postmortem

lumber of human ALS patients (Figures 2B, C). Considering our

previous data that the transcript level of IP7-synthesizing enzyme

IP6K2 increased in the spinal cord of ALS disease state (16),

transcriptional activation of this enzyme is likely to contributes to

IP7 elevation in the spinal cord of ALS.

The molecular mechanism underlying IP7 induction in the

ALS condition is still elusive, but IP7 and its synthesizing kinase

IP6Ks has been shown to associate with several neurodegeneration-

related proteins. In our previous report, IP6K2 interacts with

TDP-43 and promotes TDP-43-inducing cell death (17). A

recent study identified IP7 kinase PPIP5K as an α-synuclein

neurotoxicity modulator by functional RNAi screening using

nematode Perkinson’s disease model (27). Moreover, IP6K and

IP7 facilitate the formation of aberrant protein-RNA aggregates

inducing neurotoxicity in various neurodegenerative disorders (28)

at least via promoting the interaction of RNA-binding proteins (for

IP6K) and inhibiting the 5′-decapping reaction of non-translated

mRNAs (for IP7) (29, 30). In addition, IP7 competitively binds

to AKT and inhibits its downstream signaling including mTOR,

a key regulator of cell survival (31, 32) (Information of proteins

associating with IP6 was summarized in Supplementary Figure 4).

These pieces of knowledge suggest that IP7 could regulate various

neurodegenerative-related proteins in a multifaceted manner.

However, we did not investigate pathobiological role of IP7 in the
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FIGURE 3

IP7 level in human CSF and PBMCs do not di�erentiate ALS patients from healthy controls. (A) Representative SRM chromatogram of IP6 (left panels),

IP7 (middle panels), and internal standard (IS) ITPP-d6 (right panels) in the CSF of ALS patients. Three mL of CSF was used for this analysis. SRM peaks

of these molecules obtained by analyzing these standards were shown as reference. The arrowheads indicate the SRM peaks of the corresponding

analytes. Neither IP6 nor IP7 were detected in any of the human CSF collected in this study. (B) Schematic illustration of the experimental workflow.

Twenty milliliters of peripheral blood was collected from ALS patients (n = 25) and age-matched volunteers without any neurological disorder

(control; n = 22). Harvested PBMCs were processed to isolate IP6 and IP7, which were analyzed by LC-MS. (C) The concentration of IP6 (left panel),

IP7 (middle panel), and IP7/IP6 (product-to-precursor) ratio (right panel) in the PBMCs of ALS patients and controls. The values shown represent the

mean ± SD of each 22 independent experiments. P-values calculated by Student’s t-test are given in parenthesis. Ref, reference; Ctrl, control; IS,

internal standard; n.s., not significant.

CNS of ALS model mice because the major barrier for studying

IP7 functions in mouse models is the difficulty to efficiently

inhibit IP7 production in vivo. Two genes IP6K1 and IP6K2

are responsible for IP7 production, but the deletion of both

genes results in embryonic death and the deletion of single gene

partially inhibits its production in the CNS as shown in our recent

report (19). Recent report showed that a novel IP6K inhibitor

efficiently blocks IP7 production in vivo (24), which will enable to

investigate the role of IP7 in ALS using disease model mice. Further

investigation will be warranted to prove the notion that elevated IP7
is associated with progressive degeneration of spinal motor neurons

during ALS.

Since several ALS-associated molecules such as NfL and TDP-

43 are promising for applying biofluid-based ALS diagnostic

markers (23), we examined the applicability of IP7 in such

diagnostic approach using peripheral blood and CSF. Among

human peripheral blood fractions, PBMCs possessed most

abundant IP6 and IP7 (Supplementary Figure 1), but the levels of

these molecules in PBMCs could not differentiate ALS patients

from age-matched healthy individuals (Figure 3C), suggesting the

unfeasibility of peripheral blood IP7 for usage as an ALS diagnostic

marker. In addition, our LC-MS analysis could not detect IP7
and IP6 in human CSF, suggesting that the abundances of these

molecules in CSF are less than 0.3 µM considering the lower

limit of detection in our LC-MS protocol (18, 19). It would be

necessary to evaluate CSF IP7 level by more sensitive protocol such

as capillary electrophoresis-mass spectrometry (CE-MS) (33) or

develop a technology whereby spinal cord IP7 is measured non-

invasively for considering the application of IP7 for ALS diagnosis.

Although this study focused at the relationship between IP7
and ALS in this study, it is meaningful to elucidate if IP7 level

and its metabolism would be altered in other neurodegenerative

disorders. So far, IP7 has been implied to be associated with certain

neurodegenerative diseases such as Huntington’s disease (34) and

Alzheimer’s disease (35). Sensitive mass spectrometric analysis of

IP7 using clinical biopsies as well as mouse disease models would

unveil a pathobiological role of IP7 in such diseases in future.

Recently, CE-MS analysis clarified that several IP7 isotypes such

as 4/6-IP7 and 1/3-IP7 constitute mammalian IP7 in addition to 5-

IP7, an already-known isotype of mammalian IP7 (25). Due to the

technical limitation of LC-MS, we could not determine if the IP7
status would be affected during ALS at the level of isotype. Further

investigation is required which isotypes of IP7 is elevated in the

spinal cord of ALS disease state.

We demonstrate for the first time that IP7 level and/or its

metabolism (IP7/IP6 ratio) were significantly elevated in mouse

and/or human ALS spinal cord compared with neurologically

normal counterparts in a direct way. On the other hand, this

study showed several limitations. First, the sample number of

postmortem ALS spinal cord isn’t necessarily sufficient for the

statistical analysis. Secondly, we failed to demonstrate IP7 level

and its metabolism as biofluid-based diagnostic parameters for

ALS. Lastly, we could not clarify the molecular basis and

pathophysiological significance of IP7 elevation during ALS disease

state. We believe that further investigation of IP7 function in ALS

pathology will lead to the development of novel diagnostic and

therapeutic approach for this incurable disease.
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