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Introduction: Parkinson’s disease (PD) is a neurodegenerative disorder 
commonly characterized by motor impairments. The development of mobile 
health (m-health) technologies, such as wearable and smart devices, presents an 
opportunity for the implementation of clinical tools that can support tasks such 
as early diagnosis and objective quantification of symptoms.

Objective: This study evaluates a framework to monitor motor symptoms of 
PD patients based on the performance of standardized exercises such as those 
performed during clinic evaluation. To implement this framework, an m-health 
tool named Monipar was developed that uses off-the-shelf smart devices.

Methods: An experimental protocol was conducted with the participation of 21 
early-stage PD patients and 7 healthy controls who used Monipar installed in 
off-the-shelf smartwatches and smartphones. Movement data collected using 
the built-in acceleration sensors were used to extract relevant digital indicators 
(features). These indicators were then compared with clinical evaluations 
performed using the MDS-UPDRS scale.

Results: The results showed moderate to strong (significant) correlations 
between the clinical evaluations (MDS-UPDRS scale) and features extracted from 
the movement data used to assess resting tremor (i.e., the standard deviation of 
the time series: r  =  0.772, p  <  0.001) and data from the pronation and supination 
movements (i.e., power in the band of 1–4  Hz: r  =  −0.662, p  <  0.001).

Conclusion: These results suggest that the proposed framework could be used 
as a complementary tool for the evaluation of motor symptoms in early-stage 
PD patients, providing a feasible and cost-effective solution for remote and 
ambulatory monitoring of specific motor symptoms such as resting tremor or 
bradykinesia.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder caused 
by the deterioration of the nerve centers in the brain responsible for 
movement control (1). PD affects more than 1% of people over 
60 years (2). However, due to the aging population, the global 
prevalence of PD is projected to increase significantly from 6.9 million 
people in 2015 to approximately 12 million in 2040 (3). PD manifests 
with a variety of movement-related symptoms, known as motor 
symptoms, and mental health-related symptoms, known as non-motor 
symptoms (4, 5).

Currently, there is no cure for PD, and drugs such as levodopa and 
dopamine agonists remain the most effective treatments to control 
symptoms (5, 6). The most widely used scale to measure the 
progression of PD is the Movement Disorder Society-Sponsored 
Revision of the Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS) (7). This scale assesses activities of daily living and 
psychiatric health using questionnaires and a set of physical tests 
scored by observation. Although scales such as MDS-UPDRS are 
commonly used in clinical practice, it is difficult for neuroscientists to 
assess short-term changes in patients’ symptoms, because PD 
assessments are usually performed scarcely a year in prescheduled 
medical appointments. For this reason, clinical visits provide only a 
brief overview of the patient’s condition, and the subjective nature of 
clinical tests can lead to biased evaluations (8).

The need for objective evaluation mechanisms in PD has led to 
the use of technological tools to facilitate management and optimize 
long-term monitoring (9–12). These tools can improve access to 
medical care by reducing costs and minimizing physical barriers 
between patients and medical facilities (13, 14). In specific, mobile 
health (m-health) technologies, such as wearable and smart devices, 
present an opportunity to develop clinical tools to support tasks such 
as early diagnosis, remote monitoring, and objective quantification of 
symptoms over time (14–17). These technologies can reduce the 
burden on the patient and provide organized information on the 
evolution of symptoms (18). Furthermore, data collected by m-health 
technologies can allow the development of digital biomarkers for the 
objective quantification of the progression of symptoms and the effects 
of treatment or therapeutic interventions (19).

The most promising trends in monitoring motor symptoms 
involve the use of wearable devices (wearables) to capture data from 
different sensors (i.e., inertial, bioelectrical) (14, 16, 17, 20). 
Furthermore, recent trends in PD monitoring include the use of 
research-grade wrist devices (21–23), and smart technologies such as 
smartphones (SP) (15), and commodity smartwatches (SW) (24, 25) 
to present promising cost-effective solutions for data collection 
and monitoring.

Several studies have introduced platforms to detect and monitor 
motor symptoms. For example, PD_manager (26), utilizes a 
smartphone (SP) in combination with watch-like sensors and insoles 
to collect data. Similarly, mPower (27) employs a smartphone for 
extensive remote data collection, focusing on a range of motor, 
memory, and voice activities. Another initiative, CloudUPDRS (28), 
uses a smartphone application to evaluate motor function through gait 
analysis and physical exercises. Furthermore, i-PROGNOSIS (29) 
implements several tests for PD early detection through the daily 
interaction of the patient with his or her SP, collecting data on mood, 
motor competence, and speech.

Despite the potential of wearables in the monitoring of PD, the 
implementation of these technologies in clinical practice faces several 
challenges, such as the lack of standardization on technological 
platforms, the type of data acquired, and how they are managed (30). 
Furthermore, there is no clear consensus on the number of sensors or 
the best place to place them on the body, as it is convenient to use the 
minimum number of units to facilitate usability, portability, and 
comfort, without affecting the quality of the information collected (31, 
32). Additionally, few studies have reported evidence on the capability 
of off-the-shelf SW to collect accelerometer data remotely to assess 
specific motor symptoms.

In this context, this study evaluates the potential of a monitoring 
framework to derive useful data to monitor motor symptoms. The 
proposed framework uses an ad-hoc m-health tool named Monipar to 
acquire movement data in combination with a monitoring protocol 
based on the performance of a set of standardized exercises. In 
specific, Monipar uses off-the-shelf smart devices (i.e., SW and SP) to 
collect accelerometer data during the execution of guided movement 
tasks. Furthermore, to identify the potential of the framework, a 
database was collected, curated, and used to extract relevant indicators 
to assess some motor symptoms. Finally, these indicators were 
compared with clinical evaluation.

2 Materials and methods

2.1 Overview

The proposed framework is described in Figure 1. This framework 
employs the Monipar m-health tool to collect data using the built-in 
accelerometer of an SW during the execution of a set of eight exercises, 
most of them selected from MDS-UPDRS part III. Data from each SW 
are stored in a local database and then transferred to a central database 
for offline analysis. This analysis consists of three stages, namely: data 
curation, feature extraction, and correlation analysis. The last stage 
compares the extracted features with the severity rating performed by 
the MDS-UPDRS scale.

Monipar was developed collaboratively with neurologists and 
therapists of PD associations and tested in a 4-month study involving 
21 early-stage PD patients and 7 healthy control (HC) subjects within 
the TECAPARK project (33). Participants completed weekly remote 
motor assessments using Monipar over a 16-week period, starting on 
different dates. The data collected were then analyzed to assess its 
potential in monitoring symptoms such as tremors and bradykinesia.

2.2 Monipar tool

The Monipar tool was developed to facilitate the implementation 
of the proposed protocol. The application consists of a handheld 
module (HM) and a wearable module (WM), as shown in Figure 1, 
which were developed in Android Studio® and installed in the SP and 
SW, respectively. The HM provides a user interface to guide the patient 
or caregiver in how and when to perform the proposed exercises using 
animated images and audio instructions, as shown in Figure 2.

The wearable module (WM) acquires the signals from the built-in 
accelerometers during the execution of each exercise and then transfers 
all data to the HM once all exercises have been completed for 
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subsequent analysis. This module was implemented using simple 
interfaces as shown in Figure 3. Figure 3A indicates that communication 
with the smartwatch module was established, while Figure 3B indicates 
that the data recording is activated. Data were first stored in a local 
database on each smartphone, which was periodically synchronized 
with a central database using an Internet connection for later processing.

During Monipar execution, the HM sends activation and status 
indicators to the WM module to automatically label the captured 

signals with exercise and rest periods tags. In this study, the 
accelerometer was selected because it is a type of sensor widely used 
in different smart devices (31). The suitability and accuracy of this 
sensor for the evaluation of motor symptoms were analyzed in a 
previous study (34), identifying that the frequency and amplitude 
configuration allows the collection of voluntary human movement 
data (<10 Hz) (35), and can analyze the typical frequency range 
attributed to PD tremors (3.5–7.5 Hz) (36).

FIGURE 1

Diagram of the proposed monitoring framework.

FIGURE 2

Dynamics (A) of the handheld module which guides the user in performing each of the eight exercises proposed (B).
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For data collection, the accelerometer sampling rate was set at 
50 Hz, allowing the analysis of signals with a frequency content of up 
to 25 Hz according to Nyquist’s Theorem (37). To ensure data 
consistency, a single-consumer SW model (Tickwatch S2, Mobvoi) 
and SP (Honor 9 Lite, Huawei) were used in the experimental data 
collection stage. More in detail, the application was co-designed with 
5 therapists from Asociación Parkinson Madrid and a neurologist 
specialized in PD mainly through discussion meetings and focus 
groups where we used mock-ups and working prototypes to define the 
desired functionalities and usability requirements. The interaction 
with the therapists’ led to improvements in the interface (i.e., the size 
and shape of the buttons, icons, and legends), the implementation of 
guidance methods through animated images and voice messages, and 
the adjustment of the time assigned to the execution of the exercises. 
The neurologist’s contributions focused mainly on the selection, 
timing, and sequencing of exercises, the adjustment of resting time 
intervals, and the setting of the environmental requirements to 
perform the exercises appropriately. The final working prototype was 

validated at MIT’s AGELAB with 9 PD subjects to assess its usability 
and improve its functionality.

2.3 Movement exercises

A set of seven exercises was selected from part III of the 
MDS-UPDRS scale (7), which refers to the “Examination of motor 
aspects.” An exercise corresponding to repetitive movement 
performed by stretching the arms and bringing the hands to the chest 
was included, conforming a set of 8 exercises. Although MDS-UPDRS 
Part III considers the evaluation of motor competence on each side of 
the body, in this study, the SW was placed on the patient’s wrist where 
the greatest presence of motor symptoms was identified according to 
the clinical indication of the physician who accompanied the 
participant. For HC subjects, the device was placed on their dominant 
hand. Also, a rest period was included between each exercise to allow 
users to relax before the execution of the next task.

The set of exercises was performed weekly and movement data 
were continuously recorded during each exercise and rest periods. 
Table  1 shows a summary of the exercises proposed in the 
experimental protocol and their corresponding section on the 
MDS-UPDRS scale.

For the execution of the set of exercises, patients were asked to sit in 
a comfortable chair and performed the set of exercises assisted by a 
specialist. For one of the experimental groups named supervised group, 
the execution of the exercises was recorded with a video camera with the 
permission of the patients for subsequent labeling of the recorded data.

2.4 Recruitment

The study was approved by the Ethics Committee of the 
Universidad Politécnica de Madrid. All participants gave their 

FIGURE 3

Smartwatch module interfaces: (A) Main window; (B) Data collection 
window.

TABLE 1 Selected exercises for the experimental protocol.

Exercise
MDS-UPDRS 
correspondence

Description

(1) Resting tremor in the 

upper limbs.

3.17 Rest tremor amplitude. The patient, while sitting, rests his hands on the arms of the chair and must maintain the posture for 30 s.

(2) Postural tremor of the 

hands.

3.15 Postural tremor of the 

hands.

The patient, while sitting, extends his arms in front of him at chest level and holds the posture for 30 s.

(3) Movement of the hands 

to the chest.

Does not apply (proposed 

exercise).

The patient, while sitting, stretches his arms and then touches his chest; this exercise is repeated 10 times.

(4) Tapping of the thumb 

and index fingers.

3.4 Finger-tapping. The patient, while sitting, should tap the index finger with the thumb 10 times, as fast and wide as possible. 

The duration of the exercise is 10 s.

(5) Rapid movements of the 

hands.

3.5 Hand movements. The patient closes his fist tightly with his arm bent at the elbow so that the palm is shown to the evaluator. 

The patient should open and close the hand 10 times, as fast and as wide as possible. The maximum 

duration of the exercise is 10 s.

(6) Pronation and 

supination movements of 

the upper limbs.

3.6 Pronation-supination 

movements of hands.

The patient extends the arm to the front with the palm downward. Then, rotate the palm upward and 

downward alternately 10 times, as quickly and completely as possible. The maximum duration of the 

exercise is 5 s.

(7) Arising from a chair. 3.9 Arising from a chair. The patient, seated in the chair, should cross his arms over his chest and touch his shoulders with his 

hands; in this position, he proceeds to stand up without separating his arms.

(8) Gait evaluation. 3.10 Gait The patient must walk at least 7 meters, then turn around and return to the evaluator.
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written consent before participating in the experiment and 
provided sociodemographic and clinical data related to 
their condition.

Initially, 25 participants with PD and 8 HC were recruited. 
However, at the beginning of the data collection, 5 participants (4 PD 
and 1 HC) withdrew from the study, citing personal reasons. The 
experimental protocol was carried out with the participation of 21 PD 
subjects recruited from PD associations in the cities of Burgos, 
Valladolid, Oviedo (Spain), and Guimarães (Portugal). The inclusion 
criteria aimed at patients clinically diagnosed with PD in early stages 
of the diseases (1 to 2.5; average 1.5) according to the Hoehn & Yahr 
scale (H&Y) (38). Exclusion criteria focused on those with mental 
illnesses, including dementia, or who had health problems other than 
PD, which prevented physical activity.

The HC group consists of 7 healthy individuals with similar 
demographics and gender distribution was recruited in the city of 
Madrid (Spain). Although the implementation of the experimental 
protocol for the collection of movement data was similar for all 
participants, in practical terms, three experimental subgroups were 
established based on the human and technical capabilities of each 
association. A detailed overview of the experimental subgroups 
created for this study is presented below.

 (1) Remote group: patients diagnosed with PD who completed the 
experimental protocol in the PD association they regularly 
attended. The protocol was carried out under the supervision 
of a specialist from their PD association who was previously 
trained by the members of the research team.

 (2) Supervised group: patients diagnosed with PD who completed 
the experimental protocol under the same circumstances as 
the remote group, but who also allowed video recording of 
exercise performance for subsequent clinical scoring and 
data labeling.

 (3) Healthy control group: healthy participants who performed 
exercises supervised by team members of the research project. 
The protocol for this group was carried out at the facilities of 
the Universidad Politécnica de Madrid.

Table 2 shows a summary of the demographic characteristics of 
the study population of the three experimental groups.

2.5 Data collection and labeling

The data set collected during the experimental campaign consists 
of the raw data from the acceleration sensor for each exercise and 

resting period for each of the 21 patients with PD and 7 HC subjects. 
During the experimentation, each participant performed the 
complete set of exercises once a week, preferable on the same day and 
at a similar time. This will be referred to as a single trial. PD subjects 
were evaluated in their best ON state, when the medication effectively 
controls motor symptoms, based on clinical assessments and patient 
history. Furthermore, throughout the duration of the study, all 
patients maintained their usual medication regimen.

The data collected was labeled using the annotations generated by 
the Monipar application for the eight exercises and the resting 
intervals. To ensure accuracy, a meticulous review of these labels was 
conducted using MATLAB software (version 2021b), aimed at 
rectifying any discrepancies or offsets present in the automated 
labeling of the proposed exercises and the corresponding rest periods.

Furthermore, the clinical scoring of the Supervised group’s data 
was performed for a trained specialist who meticulously reviewed 
video recordings from weekly single trial to label the corresponding 
exercises. For tremor, bradykinesia, and gait scoring, the specialist 
assessed the severity of six specific tasks following the MDS-UPDRS 
guidelines. Specifically, the specialist assigned scores ranging from 0 
(no impairment) and 4 (severe impairment) to Monipar exercises 1,2, 
4, 5, 6, and 8 (see Table 1) corresponding to the MDS-UPDRS tasks 
3.17 (Rest tremor amplitude), 3.15 (Postural tremor of the hands), 3.4 
(Finger tapping), 3.5 (Hand movements), 3.6 (Pronation and 
supination movements), and 3.10 (Gait), respectively.

In addition, a continuous labeling strategy was implemented in 
the resting tremor data. In specific, these data were initially labeled 
using a method that relied on the analysis of the magnitude within the 
tremor band (3.5–7.5 Hz). During this analysis, empirical thresholds 
were set to detect the presence of tremors. Subsequently, the specialist 
reviewed and corrected these labels by comparing them with the 
reference video recording for each single trial.

2.6 Signal pre-processing and feature 
extraction

Accelerometer signals collected during the study were pre-processed 
using a third-order Butterworth high-pass filter with a cutoff frequency 
of 0.5 Hz to reduce the effect of gravity. From these signals, two sets of 
features were extracted from the time and frequency domains. Although 
the time domain features provide high discrimination capabilities 
without introducing significant increases in computation processing 
(39), the frequency domain features can describe body movements and 
represent important characteristics of repetitive movements (40).

The two sets of features extracted from these signals are 
outlined below.

(1) A set of eight features extracted from the time domain and 
seven representing the power of specific frequency bands commonly 
used for the analysis of PD symptoms. These features were extracted 
from the Euclidean norm (Equation 1) obtained from the triaxial 
signals of the accelerometer. To compute these features, the entire signal 
segment that corresponds to each of the proposed exercises was used.

 a i a i a i a ix y z( ) = ( ) + ( ) + ( )2 2 2
 (1)

Where a a ax y z, ,  are the acceleration values corresponding to the 
x, y, and z axes, respectively.

TABLE 2 Demographic characteristics of the study population.

Remote 
group 
(n  =  15)

Supervised 
group 
(n  =  6)

Healthy 
control 

group (n  =  7)

Males/Females 8/7 3/3 3/4

Mean age (SD), years 63.6 (±7.5) 64.2 (±8.2) 64.0 (±5.4)

Hoehn y Yahr 

(stage = n)

1-stage = 5;

1.5-stage = 1;

2-stage = 8;

2.5-stage = 1

1-stage = 6 –

SD, standard deviation.
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Table 3 shows a summary of the 15 extracted features, including 
8 time- and 7 frequency-domain features to evaluate freezing of 
gait (41), tremors (42, 43), bradykinesia (43), gait (44), dyskinesia 
(45) and the band associated with human movements (41). This set 
of features was extracted only from the supervised group data (6 
PD subjects, 46 single trials) that have the MDS-UPDRS evaluation 
of specific motor task. Furthermore, this feature set was used to 
perform a correlation analysis with the MDS-UPDRS assessment.

(2) A set of 290 features commonly used for automatic human 
activity recognition (39). These features are frequently used to identify 
activities of daily living (i.e., sitting, standing, walking), however, in this 
study, they were used to perform an exploratory visual analysis. This set 
of features includes time and frequency domain features that were 
extracted from the raw triaxial signals, the Euclidean norm of the triaxial 
signals, and the jerk of all previous signals. The reader can refer to (39) 
for more details on the extracted features. Furthermore, to extract these 
features, a sliding window of 2.56 s (128 samples) with 50% overlap was 
used. In specific, this set of features was extracted from the supervised 
group data (6 PD subjects, 46 single trials with MDS-UPDRS evaluation) 
and the HC group data (7 subjects, 56 single trials). The resulting feature 
vectors were labeled with their respective exercise identification and the 
corresponding MDS-UPDRS score for subsequent selection and analysis. 
For HC, the data was labeled with the value 0, indicating that there was 
no impairment in the MDS-UPDRS score. Finally, this set of features was 
used to perform an exploratory analysis using data visualizations.

2.7 Data visualizations

After feature extraction, the set of 290 features was reduced to two 
features (dimensions) using the t-distributed stochastic neighbour 
embedding technique (t-SNE) (46). The t-SNE technique is an 
unsupervised dimensionality reduction tool used to visualize high-
dimensional data that have non-linear relationships. In this study, the 
t-SNE technique was used to perform a visual data analysis to identify 

any underlying pattern in the data. In specific, two visualizations were 
generated by applying the brushing technique to highlight the 
corresponding clinical score performed with the MDS-UPDRS. These 
visualizations enabled to identify some kind of relationship or trend in 
the feature set that could be further exploited for the implementation 
of algorithmic approaches for the detection of specific motor symptoms.

2.8 Statistical analysis

A Pearson correlation analysis was performed using the first 
group of features extracted from the weekly assessment data from the 
supervised group. The Pearson correlation was chosen in this analysis 
due to its effectiveness in detecting linear relationships between 
variables and considers both the magnitude and direction of 
relationships. These features were compared with the score obtained 
using the corresponding sections of the MDS-UPDRS. This analysis 
was performed to identify the features that show the best correlations 
with the assessment of specific motor symptoms such as tremor and 
bradykinesia. For this analysis, only data from the supervised group 
were used, since these data have clinical evaluations carried out 
through video recordings acquired during the data collection process.

3 Results

3.1 Data set collected in the experimental 
stage

Table 4 shows a summary of the number of trials carried out 
during the experimental stage, as well as how many were collected and 
lost. The number of individual trials collected for each participant 
ranges from 2 to 9 weeks (average trials = 6.2). The database collected 
for this study is publicly available in a Zenodo repository and the data 
structure can be consulted in (47).

TABLE 3 Features extracted from time and frequency domains.

Domain Features Description

Time

Standard deviation Standard deviation of the raw time series

Mean Mean value of the raw time series

Median Median of the raw time series

Percentile 25 25th percentile of the raw time series

Percentile 75 75th percentile of the raw time series

Skewness Skewness of the raw time series

Maximum value Maximum value of the raw time series

Minimum value Minimum value of the raw time series

Frequency

Freezing of gait band Freezing of gait band (3–8 Hz) (41)

Tremor band (4–6) Tremors band (4–6 Hz) (42)

Tremor band (3–8) Extended tremors band (3–8 Hz) (43)

Bradykinesia and dyskinesia Bradykinesia and dyskinesia band (0–3 Hz) (43)

Gait band Gait detection band (1–3 Hz) (44)

Dyskinesia (1–4) Dyskinesia band (1–4 Hz) (45)

Band power (0–20) Full band power (0–20 Hz) (41)
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As shown in Table 4 the experimental campaign carried out remotely 
in the associations of Burgos, Valladolid, and Asturias presented the 
highest amount of data lost (from 15 to 30%). These data were lost due 
to storage and communication errors in the prototype of the Monipar 
application. However, the results of the experiment conducted in 
Guimarães and the control group show no missing data. This is because 
the experiment in Guimarães was carried out with an updated version of 
Monipar, which included redundant data saving to reduce data loss.

3.2 Quantitative analysis of the database

The data collected during the experimental stage presents a total 
of 22 h. These data are divided according to experimental groups, as 
summarized in Table 5.

Figure 4 illustrates the distribution of data for various activities 
and postural transitions. 50% of these data correspond to resting 
intervals, used to evaluate resting tremors (label 1); while 30% 
correspond to the execution of the exercises (labels 2–8). Furthermore, 
20% of the data were identified as postural transitions (label 0) 
performed between exercises. The exercise with the least amount of 
data was the exercise to get up from the chair (1%) (label 7).

3.3 Correlation analysis between 
movement data and the assessment using 
the MDS-UPDRS scale

A Pearson correlation analysis was performed using the set of 
features indicated in Table  2 and the clinical evaluation that was 
performed with the corresponding sections of the MDS-UPDRS part 
III. In this analysis, the data from Exercise 3 (arm movement) were 
discarded because it does not have a standardized clinical assessment 
and data from Exercise 7 were also discarded due to the limited 
amount of data (e.g., 2 s accelerometer signal for each single trial). The 

selected exercises and their average MDS-UPDRS scores are shown in 
Table 6. The results of the absolute Pearson correlations are shown in 
Figure 5 using a correlation matrix.

According to Figure  5, the highest absolute correlations were 
achieved with data from exercise 1 (resting tremor) and with most of 
the time and frequency features. Furthermore, data from exercise 6 
(pronation and supination) showed high correlations with the power 
of specific frequency bands such as bradykinesia, dyskinesia, and gait 
bands. Furthermore, the gait and postural tremor data showed 
moderate correlations with specific frequency bands (e.g., Gait band, 
freeze band, Bradykinesia and dyskinesia, and tremors bands); these 
results are expected because gait patterns are commonly used in the 
evaluation of bradykinesia (48), while the increase in the power of 
tremors bands have been recognized as clear indicators of the presence 
of resting, postural, and action tremor (42, 43). The remaining 
exercises included in the Monipar framework presented a weak 
correlation with clinical evaluation, probably due to the location of the 
sensors on the body, which might not be suitable for detecting certain 
movement patterns, for example, finger tapping.

This correlation analysis shows the potential of data collected 
using Monipar for the analysis of specific symptoms, including resting 
tremors and bradykinesia of the upper extremities. For further 
analysis of data from exercises 1 and 6, Table 7 shows the correlations 
obtained between the extracted features described in Table 3 and the 
corresponding clinical scoring (i.e., MDS-UPDRS 3.17 resting tremor; 
MDS-UPDRS 3.6 pronation and supination movements).

The results in Table 7 indicate significant and strong correlations 
between the clinical score of resting tremor and features extracted 
from the time domain, including features such as the standard 
deviation (r = 0.772, p < 0.001), percentile 25 (r = −0.792, p < 0.001) 
and the percentile 75 (r = 0.804, p < 0.001). Furthermore, significant 
and moderate correlations (r  > 0.5) with several frequency bands 
described in the related literature were also found. Although no 
clinical explanation can be  reported for the high and moderate 
correlation between the extracted time domain features (standard 
deviation, percentile 25, and percentile 75) and the clinical evaluation 
of resting tremors, the authors hypothesize that for this behavior is the 
result of the absence of movement captured by the sensors during rest 
periods in the resting tremor data. This absence contrasts with the 
presence of tremors, leading to signal variations that elevate the values 
of these time domain features.

For pronation and supination data, significant negative moderate 
correlations were found between the clinical scoring and time 
features including standard deviation (r  = −0.515, p  < 0.001), 
percentile 75 (r = −0.512, p < 0.001), and low-frequency bands such 
as bradykinesia and dyskinesia (r = −0.622, p < 0.001), dyskinesia 

TABLE 4 Summary of the number of trials conducted and data collected.

Group
PD association or 
location

Performed trials Collected trials Lost trials
Percentage of 

trials lost

Remote

Burgos 20 17 3 15%

Valladolid 23 16 7 30%

Asturias 46 39 7 15%

Supervised Guimarães 46 46 0 0%

Healthy controls Universidad Politécnica de Madrid 56 56 0 0%

TOTAL 191 174 17 8.9%

TABLE 5 Amount of movement data collected according to the 
experimental groups.

Experimental 
group

Number 
of trials

Hours
Percentage 

of data

Remote 72 9.1 41.4%

Supervised 46 5.8 26.4%

Control 56 7.1 32.2%

Total 174 22 100%
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TABLE 6 Average MDS-UPDRS scores of the selected exercises in the supervised group.

Monipar exercise MDS-UPDRS item Average MDS-UPDRS (standard deviation)

1 3.17 Rest tremor amplitude 0.2 (0.49)

2 3.15 Postural tremor of the hands 0.9 (0.68)

4 3.4 Finger tapping 2.4 (0.71)

5 3.5 Hand movements 2.1 (1.04)

6 3.6 Pronation-supination movements of hands 2.5 (0.88)

8 3.10 Gait 1.5 (0.75)

FIGURE 5

Heat map of the Pearson correlation coefficient of the inter-feature analysis and the UPDRS part III assessment. The values in square grids represent 
the absolute magnitude of the r value of the correlation analysis.

FIGURE 4

Percentage of data corresponding to the proposed exercises and the postural transition times.
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(r = −0.655, p < 0.001), gait band (r = −0.620, p < 0.001) and the 
power band of 0–20 Hz (r = −0.507, p < 0.001). Furthermore, the 
moderate correlation between the time domain features (standard 
deviation and percentile 75) can be attributed to the relationship 
between the variations in the amplitude and pattern of the 
movements observed between individuals with motor impairment 
and those without motor impairment. Although there is no explicit 
clinical rationale for these time domain features, the findings imply 
that these features could serve as complementary indicators for 
implementing multivariate analysis or as a basis for the development 
of automatic classifiers based on machine learning techniques.

3.4 Visualizations generated with the 
movement data

Visualizations were generated for the resting tremor data (exercise 1) 
and the pronation and supination movements data (exercise 6). These 
data were chosen because they presented the highest Pearson correlations 
with the clinical evaluation in the previous subsection. Figure 6 shows 
scatter plots of the two components obtained from the data of resting 
tremor, and pronation and supination movements. In Figure 6A, the 
tremor rating performed according to Section 3.17 of the MDS-UPDRS 
scale was used as the mapping variable. In Figure 6A only data from the 
Supervised group were used corresponding to 46 single trials from 6 
subjects with PD. Moreover, in Figure  6B, the bradykinesia rating 
performed according to Section 3.6 of the MDS-UPDRS scale was used 
as the mapping variable. In this visualization data from the Supervised 
and HC groups were used that correspond to 102 single trials from 13 
subjects (6 PD and 7 HC).

Figure 6A shows three clusters corresponding to the MDS-UPDRS 
scoring with a slight degree of overlap. These overlaps are expected, as 
the severity of symptoms is continuous, rather than the discrete 
scoring system proposed on the MDS-UPDRS scale (49). Figure 6B 
shows two clusters of data belonging to healthy control patients 
(bradykinesia: 0) and patients with PD (bradykinesia: 1–4). However, 
a high overlap between MDS-UPDRS scores is identified.

Overall results of the visualizations generated using data from 
resting tremor and supination movements suggest the feasibility of 
implementing automatic classifiers. Moreover, the visualization shown 
in Figure 6B suggests that it is viable to implement automatic classifiers 
for discrimination between healthy subjects and PD patients. However, 
more data should be needed to determine whether it is feasible to 
detect different degrees of bradykinesia using the proposed framework.

4 Discussion

4.1 Main results

The results indicate that the proposed framework based on the 
execution of standardized exercises monitored using off-the-shelf devices 
can provide useful data to derive digital indicators to monitor motor 

TABLE 7 Results of correlations for the evaluation of bradykinesia and 
resting tremors.

Feature

Resting tremor 
(Evaluated 

using MDS-
UPDRS 3.17)

Pronation and 
supination 

(Evaluated using 
MDS-UPDRS 3.6)

r (p value) r (p value)

Standard deviation (Time) 0.772 (p < 0.001) −0.515 (p < 0.001)

Mean (Time) 0.201 (p = 0.18) −0.005 (p = 0.97)

Median (Time) −0.372 (p = 0.01) −0.197 (p = 0.19)

Percentile 25 (Time) −0.792 (p < 0.001) 0.461 (p = 0.001)

Percentile 75 (Time) 0.804 (p < 0.001) −0.512 (p < 0.001)

Skewness (Time) 0.197 (p = 0.19) −0.002 (p = 0.99)

Min (Time) 0.644 (p < 0.001) −0.374 (p = 0.01)

Max (Time) −0.424 (p = 0.003) 0.450 (p = 0.002)

Freeze band 0.653 (p < 0.001) −0.388 (p = 0.008)

Tremor band 4–6 0.616 (p < 0.001) −0.315 (p = 0.03)

Tremor band 3–8 0.653 (p < 0.001) −0.388 (p = 0.008)

Bradykinesia and dyskinesia 0.205 (p = 0.17) −0.622 (p < 0.001)

Gait band 0.230 (p = 0.12) −0.620 (p < 0.001)

Dyskinesia band 1–4 0.655 (p < 0.001) −0.662 (p < 0.001)

Power band 0–20 0.648 (p < 0.001) −0.507 (p < 0.001)

FIGURE 6

Scatter plots with the data obtained with Monipar: (A) Scatter plot of resting tremor data using the MDS-UPDRS 3.17 rating as mapping variable; 
(B) Scatter plot using data of pronation and supination movements using the MDS-UPDRS 3.6 rating as mapping variable.
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symptoms in the upper extremities. In particular, data collected from 
exercises used to assess tremors and bradykinesia allowed the extraction 
of indicators that show high correlations with clinical evaluation. 
Although indicators extracted from exercises such as gait, finger tapping, 
and hand movements (i.e., open and close hands), presented weak and 
moderate correlations, which may be attributed to the location of the 
sensors on the wrist that difficult the acquisition of specific movement 
patterns, for example, those mainly produced for the fingers or those 
produced when opening and closing the palms of the hands.

Along with these results, the data collected during the 
experimental stage presented different percentages of data loss 
depending on the experimental group. In specific, the remote group 
presents the higher data loss rate, ranging from 15 to 30%, while the 
supervised group and the HC (both performed in a completely 
supervised setting) do not show any data lost. Despite this behavior, 
the null lost rate in the Supervised and HC group was also influenced 
by the implementation of security actions, such as redundant data 
saving in both devices (i.e., SP and SW). Furthermore, guidance in the 
performance of standardized exercises, through images and voice 
prompts, seems to be a feasible method to ease the implementation of 
movement data collection protocols performed remotely.

The overall results suggest that consumer SW in conjunction with 
SPs can be used as an economic and ergonomic solution to acquire useful 
data to monitor bradykinesia and resting tremors using two specific tasks 
proposed in the MDS-UPDRS scale. Despite these results, the remaining 
proposed exercises exhibit moderate (e.g., postural tremor and gait) and 
weak (e.g., finger tapping and hand movements) correlations with the 
clinical assessment. This situation highlights the need to develop novel 
data collection methodologies and data processing strategies to enable 
remote monitoring of relevant symptoms such as gait, stiffness, and 
postural stability. Specifically, to improve gait and sit-to-stand assessment, 
the results suggest the importance of incorporating complementary 
sensors strategically positioned on the body parts such as the waist or 
legs. In addition, specific activities, such as finger tapping, may require 
the use of specific sensors to provide a more accurate representation of 
specific movements that are considered in the clinical evaluation.

4.2 Comparison with previous work

This study provides evidence of the feasibility of off-the-shelf SW 
and SP to provide a cost-effective, convenient, and unobtrusive solution 
for data collection aimed at monitoring cardinal motor symptoms such 
as tremors and bradykinesia. These findings complement the results 
reported in the related literature in which the use of commodity SW (24, 
25), research-grade wrist devices (21, 22), and SP as part of multimodal 
systems (26, 29) have reported feasible solutions for collecting data to 
monitor motor aspects in laboratory, in-clinic and unsupervised settings.

Furthermore, the correlation analysis based on data collected by 
Monipar and the clinical assessment reveals moderate to strong 
correlation; in specific, higher correlations were identified using data 
from resting times and pronation and supination movements. These 
findings suggest that an accurate selection of specific and representative 
tasks can be the basis for the development of abbreviated and robust 
motor monitoring protocols aimed at improving patient adherence, 
such as the one proposed in (22, 24), where wrist rotation movements 
and arms resting captured with SW were used to detect short-term 
motor fluctuations and long-term responses to therapies. In specific, 

the results reported in (22) using a commercial SW (Verily Study 
Watch) present a similar correlation with the MDS-UPDRS Part III 
ratings to those obtained in this study (i.e., Spearman rank correlation 
for rest tremor ρ = 0.70; bradykinesia ρ = −0.62).

Additionally, this study shows the potential of off-the-shelf SW for 
the acquisition of movement data in patients in the early stages of PD 
(H&Y ≤ 2.5), where the presence of motor manifestations is generally 
mild and, therefore, an accurate monitoring of digital variables such 
as the frequency and amplitude of tremors can require a high sensor 
sensitivity (50, 51).

Finally, the visualizations generated using the data collected by 
Monipar show the potential of these data for the development of 
different algorithms that can be  used to monitor tremors or 
bradykinesia. Examples of these applications were described in 
previous studies using the same database (34, 52).

4.3 Limitations

This study has some limitations that provide directions for future 
research. These limitations include the small sample size of healthy 
controls compared to participants with PD (21 PD and 7 HC). Also, 
the fact that this study considers only PD subjects in the early stages 
of the disease, therefore conducting a larger-scale longitudinal data 
collection may provide a better representation of the broad spectrum 
of motor symptoms and manifestations. Moreover, conducting 
larger-scale experiments can allow the evaluation of the cost-
effectiveness and scalability of these technologies to support their 
adoption in clinical management (14).

Additionally, other relevant cardinal motor symptoms such as 
rigidity and postural instability were not assessed in this study due to 
the inherent difficulty in monitoring this symptom using a single 
accelerometer. However, the inclusion of specific task and 
complementary sensors can support the development of monitoring 
solutions to assess multiple motor manifestations.

Finally, this study focused only on evaluating the ability of the 
Monipar tool to acquire data intended for the assessment of motor 
competence. Including other modules to assess non-motor symptoms 
can contribute to providing a broader overview of the health state of 
a PD subject.

5 Conclusion

The implementation of the proposed framework to monitor 
motor symptoms has generated a database that presents a high 
capability for the detection of specific motor symptoms such as resting 
tremors and bradykinesia. This framework was implemented through 
the development of an ad-hoc tool named Monipar that uses 
commodity SW for the acquisition of motion signals during the 
execution of standardized exercises.

During the data collection stage, the use of Monipar simplified data 
collection tasks and the implementation of experimental protocols such 
as the one proposed in this study, which was based on the performance 
of selected MDS-UPDRS exercises. The use of guides to perform the 
set of exercises supported by a graphical interface with animated 
images and voice instructions has shown a feasible method to facilitate 
the understanding of the assigned motor tasks and improve usability.
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The correlation analysis performed using the data collected 
by Monipar shows moderate to strong correlations between 
several indicators and two specific MDS-UPDRS exercises 
designed to evaluate resting tremors and bradykinesia in the 
upper extremities. These correlations revealed the most 
representative features for the analysis of specific symptoms such 
as tremor and bradykinesia. Additionally, visualizations created 
using the t-SNE method and tremor and bradykinesia show the 
generation of clusters with a small (yet expected) amount of 
overlap between the MDS-UPDRS scores.

Overall results of this study suggest that Monipar can be used as 
a complementary tool for data collection and follow-up of specific 
motor disorders in PD, at least in early-stage patients, providing a 
feasible and cost-effective solution for remote and continuous 
monitoring of the evolution of cardinal motor symptoms. In future 
applications, the information generated by this kind of monitoring 
system can be  used to improve disease management, support 
decision-making, and become part of integrated telemedicine and 
digital health systems. Future work should address the development 
of novel algorithms and feature extraction strategies to develop 
robust methods to monitor specific motor manifestations. 
Furthermore, standardization of data collection methodologies is 
important to facilitate the comparability and integration of digital 
outcomes to provide a comprehensive overview of the disease to 
allow better clinical care, assessment, and monitoring of PD 
according to the roadmaps proposed in (14, 30).
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