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Objective: In this study, we  were aimed to identify important variables via 
machine learning algorithms and predict postoperative delirium (POD) 
occurrence in older patients.

Methods: This study was to make the secondary analysis of data from a 
randomized controlled trial. The Boruta function was used to screen relevant 
basic characteristic variables. Four models including Logistic Regression (LR), 
K-Nearest Neighbor (KNN), the Classification and Regression Tree (CART), and 
Random Forest (RF) were established from the data set using repeated cross 
validation, hyper-parameter optimization, and Smote technique (Synthetic 
minority over-sampling technique, Smote), with the calculation of confusion 
matrix parameters and the plotting of Receiver operating characteristic curve 
(ROC), Precision recall curve (PRC), and partial dependence graph for further 
analysis and evaluation.

Results: The basic characteristic variables resulting from Boruta screening 
included grouping, preoperative Mini-Mental State Examination(MMSE), 
CHARLSON score, preoperative HCT, preoperative serum creatinine, 
intraoperative bleeding volume, intraoperative urine volume, anesthesia duration, 
operation duration, postoperative morphine dosage, intensive care unit (ICU) 
duration, tracheal intubation duration, and 7-day postoperative rest and move 
pain score (median and max; VAS-Rest-M, VAS-Move-M, VAS-Rest-Max, and 
VAS-Move-Max). And Random Forest (RF) showed the best performance in the 
testing set among the 4 models with Accuracy: 0.9878; Matthews correlation 
coefficient (MCC): 0.8763; Area under ROC curve (AUC-ROC): 1.0; Area under 
the PRC Curve (AUC-PRC): 1.0.

Conclusion: A high-performance algorithm was established and verified in this 
study demonstrating the degree of POD risk changes in perioperative elderly 
patients. And the major risk factors for the development of POD were CREA and 
VAS-Move-Max.
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1 Background

Postoperative delirium (POD) refers to delirium that occurs after 
surgery and is defined as an acute mental disorder characterized by 
disturbances of consciousness, attention, and cognition. The reported 
incidence ranges from 5 to 52% in elderly patients (1). The mechanism 
of delirium is not totally clear, but is generally believed to be a result 
of co-action of predisposing factors and external stress. However, its 
highly preventable nature determines that early and effective 
intervention would reduce its occurrence and related treatment costs 
which are estimated to exceed 100 billion US dollars (2) annually 
across the globe. Studies have shown that early preventive measures 
decreased the odds of POD by about 30% in high risk patients (3, 4). 
Therefore, it is crucial to identify and control the relevant factors 
contributing to the POD development.

As a major branch of artificial intelligence (AI), machine learning 
has the advantages in establishing models with more stable and 
accurate prediction, and is therefore increasing used for such purposes 
as clinical prediction. The use of artificial intelligence to solve clinical 
problems and the construction of a precision medical research model 
based on complex data acquisition and integration utilization will 
drive innovation and development in clinical medicine. In this study, 
based on the reviewed database of elderly patients, we used machine 
learning algorithms to screen risk factors and to predict the risk of 
POD, in order to assist clinicians in developing personalized 
management plans for patients in a timely manner.

2 Materials and methods

2.1 Study design and subjects

The data in this article came from delirium in Older Patients after 
Combined Epidural-General Anesthesia or General Anesthesia for 
Major Surgery: a Randomized Trial (5). This was a secondary analysis 
of database from a previous trial. The trial protocol was approved by 
the Institutional Review Committee of Peking University (Approval 
No. 00001052-11048) and the ethics committees of five participating 
centers, and was registered with the Chinese Clinical Trial Registry 
(www.chictr.org.cn; identifier: ChiCTR-TRC-09000543) and 
ClinicalTrials.gov (identifier: NCT01661907). The original trial was 
conducted in five tertiary hospitals in Beijing, China. All participants 
provided written informed consent.

During the original trial, we enrolled patients aged 60–90 years 
who underwent elective non-cardiac thoracic or abdominal surgery 
for at least 2 h and required patient-controlled analgesia after surgery. 
We excluded those who had severe nervous system disease, acute 
myocardial infarction or stroke, severe cardiac insufficiency, severe 

hepatic insufficiency or renal failure within 3 months, or any 
contraindication to epidural anesthesia.

2.2 Anesthesia and perioperative care

No premedication was given. Patients were randomized to receive 
either general anesthesia or combined epidural-general anesthesia in 
the original trial. For those assigned to general anesthesia alone, 
patient-controlled intravenous analgesia was provided after surgery. 
For those assigned to combined anesthesia, epidural block was 
performed during surgery, followed by patient-controlled epidural 
analgesia after surgery. Other perioperative care including adverse 
events were managed per routine.

2.3 Data collection and outcome 
assessment

Baseline data included demographic characteristics, preoperative 
comorbidity, surgical diagnosis, and main laboratory test results. 
General health status was evaluated with the Charlson Comorbidity 
Index and ASA physical status classification. Cognitive function was 
evaluated with the Mini-Mental State Examination (MMSE). Anxiety 
and depression were evaluated with the Hospital Anxiety and 
Depression Scale (HAD). Intraoperative data included type and 
duration of anesthesia, type and dose of medications, circulation 
parameters, and type and duration of surgery.

After surgery, patients were followed up twice daily during the 
first 7 days, and then weekly until 30 days. Pain severity was assessed 
with the Numeric Rating Scale during the first 7 postoperative days. 
Delirium assessment: delirium for patients in ICU was assessed by 
the Confusion Assessment Method for the ICU (CAM-ICU) (6), 
which has been validated in Chinese patients in the ICU setting (7) 
and the feasibility of which had been established in our prior studies 
(8, 9). For patients did not admitted to ICU, delirium was 
assessed by CAM.

Fifty-eight potentially useful characteristics considered in this 
study included the followings: basic personal information including 
age and gender; preoperative comorbidities; Charlson Comorbidities 
Index scores; MMSE and Hospital Anxiety and Depression Scale 
(HAD) score; preoperative laboratory examination results; 
intraoperative anesthesia medication, circulation parameters and 
grouping (simple general anesthesia group and general anesthesia 
combined with epidural anesthesia group); postoperative NRS, worst 
APACHE II score, etc.

2.4 Statistical analysis and sample size

R (version 4.2.2) and RStudio (version 2023.06.0 + 421) were used 
for data statistical analysis. The normal distribution of numeric 
variables was tested by the Shapiro–Wilk test. Continuous variables 
with a normal distribution were presented as mean ± standard 
deviation (SD) and compared using the independent-sample t-test. 
Continuous variables with non-normal distribution were presented as 
median (IQR) and compared using Mann–Whitney U test. Categorical 
data were expressed as number (%) and analyzed using the chi-square 

Abbreviations: MMSE, Mini-mental state examination; Charlson, Charlson 

comorbidity index; HCT, Hematocrit; ALB, Albumin; Glu, Blood glucose; CREA, 

Serum creatinine; BUN, Blood urea nitrogen; MAP, Mean arterial pressure; MHR, 

Mean heart rate; APACHE II, Acute Physiology and Chronic Health Evaluation II; 

VAS, Visual analogous scale; TIA, Transient ischemic attack; COPD, Chronic 

obstructive pulmonary disease; CHD, Coronary heart disease; HT, Hypertension; 

NYHA, New York Heart Association; DM, Diabetes mellitus; HLP, Hyperlipidemia; 

NSAIDs, Non-steroid anti-inflammatory drugs.
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test or Fisher’s exact probability test. Parameters with missing data of 
more than 20% were excluded from the final dataset. Parameters with 
missing data of less than 20% were interpolated using the missForest 
package. MissForest package is a non-parametric method that utilizes 
random forests to impute missing values, suitable for both continuous 
and categorical variables. Its core algorithm is to use known variables 
as independent variables and variables containing missing values as 
dependent variables to establish a random forest to predict missing 
values. It yields an out-of-bag (OOB) imputation error estimate.

Independent influencing factors were derived from POD related 
important characteristic variables used for Boruta screening. Creates 
possibly balanced samples by Smote technique (the synthetic minority 
over-sampling technique, Smote) (10–12). The basic idea of Smote 
technique is to analyze minority samples and manually synthesize new 
samples based on minority samples to add to the dataset.

The selection of model hyperparameter optimization used 
repeated k-fold cross validation (folds = 10, repeats = 10) on data set. 
Repetitive k-fold cross validation is an extension of k-fold cross 
validation. In this article, it divides the dataset into 10 mutually 
exclusive subsets of the same size. Each subset is used as a validation 
dataset to validate the model, while the other nine subsets are used as 
training datasets to train the model. The appeal process is repeated 10 
times. Meanwhile, the performance of the machine model is directly 
related to hyperparameters. The better the hyperparameter tuning, the 
better the resulting model.

The mlr3verse package was used to successively build models 
from the data set via repeated k-fold cross-validation, hyperparameter 
optimization, and Smote technique 4 machine learning prediction 
models (LR, KNN, CART, and RF) were included and analyzed, with 
RF proven better than the other 3 in terms of misclassification rate. RF 
as the optimal model is further analyzed and evaluated by calculating 
the parameters of confusion matrix and drawing ROC and PRC. The 
iml and DALEX package was used to draw importance ranking for 
important characteristic variables, partial dependence graph, and 
break down profile to interpret the optimal model.

Basic Principles of Random Forest:

 
Y H x I h x yy

k

n
k= ( ) = ( ) =( )

=
∑argmax

1

H(x) is a combination classification model; Y is the final 
classification result; hk (x) is a single decision tree classifier; y is the 
classification result of a single decision tree classifier; I (·) is an 
indicative function.

For the binary classification prediction model, the calculated final 
sample size obtained through the pmsampsize function of RStudio 
was 1,459, less than the sample size 1,720 included in this study, with 
function parameters set as follows: the adjusted maximum R2: 0.327; 
The number of independent variable parameters to be included: 30; 
Incidence of postoperative delirium: 0.05 (13–15).

3 Results

3.1 Flow chart and baseline of clinical data

A total of 1720 patients were included in the original data. The 
process of data inclusion, model establishment, and evaluation were 

presented in Figure 1. First, Boruta was applied to filter characteristic 
variables in the original data. Then, Smote technology was used to 
establish a balanced-data (n = 1720, non-POD = 896, POD = 824) on 
top of the original data. Finally, repeated k-fold cross-validation and 
hyperparameter optimization were used to obtain the optimal model 
in balance-data, and to perform validation and interpretation.

Among the included patients, 58 (3.372%) developed delirium 
within the first 7 postoperative days. Comparison of preoperative, 
intraoperative, and postoperative variables between POD and 
non-POD patients were listed in Supplementary Table 1. The CREA 
was significantly lower in POD group than non-POD group [73.50 
(61.00–93.00) vs. 86.00 (76.00–99.00), p < 0.001]. The depression score 
was significantly higher in patients with POD. The patients with POD 
had lower nitrosoxide (%), postoperative morphine (mg), GEA-PCEA 
(%) and higher seveflurance (%), midazolam (mg), urine (mL), 
bleeding (mL), MAP (mmHg), MHR (times/min), perioperative 
morphine (mg), ICU duration (min), intubation duration (min), 
APACHE-II, VAS-Rest-M, VAS-Move-M, VAS-Rest-Max, 
VAS-Move-Max, VAS-Rest-Min, VAS-Move-Min, GA-PCIA (%), and 
intraoperative hypotension (%).

3.2 Screening of characteristic variables 
using Boruta

Boruta analysis showed that grouping, preoperative MMSE, 
CHARLSON, preoperative HCT, preoperative serum creatinine, 
intraoperative bleeding volume, intraoperative urine volume, 
anesthesia duration, operation duration, postoperative morphine 
dosage, ICU admission, VAS-Rest-M, VAS-Move-M, VAS-Rest-Max, 
and VAS-Move-Max were 16 characteristic variables included in the 
model in Figure 2.

3.3 Model establishment, selection, and 
evaluation

After identifying these 16 variables, machine learning models 
were used to predict POD. CE, AU-ROC, and AUC-PRC were 

FIGURE 1

Flow chart of clinical data.
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important indicators used to evaluate prediction models. Among the 
four models established, RF showed the best performance in error rate 
(Ce), ROC, and PRC from Figure  3. From Figure  3A, it can 
be determined that Ce of RF is the lowest among the four models. 
From Figures 3B,C, it can be determined that the AUC-ROC and 
AUC-PRC of RF are the highest among the four models. Finally, 
we calculated the parameters of confusion matrix in RF: Accuracy 
0.998, MCC 0.997, AUC-ROC 1.0, and AUC-PRC 1.0. The above data 
showed that the random forest model had excellent performance in 
accuracy, overall performance, overall discrimination, and positive 
result discrimination.

3.4 Importance ranking and partial 
dependency graph of characteristic 
variables

Ranking and partial dependency graphs of 16 characteristic 
variables were established through RF model in Figures 4, 5. In 
importance ranking, it could be intuitively seen how much each 
characteristic variable contributes to the predicted variable. In our 
study, the level of CREA and VAS-Move-Max ranked first and 
second in importance. Partial dependency graph was used to 
analyze RF model, showing the reflect the influence of each feature 

in the sample and also showing the positive and negative influences. 
At the same time, when the characteristic variable was above or 
below the cutoff value, the predictive variable would undergo a 
qualitative transformation.

3.5 Break down profile to explain a single 
sample in RF

The Breakdown profile visualizes the contribution of each variable 
to the prediction for a single sample in Figure 6. The model predicts 
that the value of a sample (delirium as an outcome variable) is 0.915, 
and the red or blue bars display the impact of each variable on the 
prediction. The predicted value is equal to the sum of the contributions 
of each feature.

4 Discussion

In importance ranking, it can be intuitively seen that Creatinine, 
as a feature variable, has the greatest contribution to the predictive 
variable. Furthermore, through partial dependency graphs, POD 
occurrence probability was increased no matter when preoperative 
creatinine levels were lower or higher than normal, which is consistent 

FIGURE 2

Screening of characteristic variables using Boruta.
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with the published results (16), demonstrating that kidney function 
has an impact on brain cognitive ability. The possible reason is that 
metabolic disorders of renal function (abnormal levels of creatinine, 
etc.) affect the cognitive function.

As the influencing factors before surgery, the partial dependence 
graph of preoperative MMSE used for cognitive function assessment 
showed that patients with MMSE<20 and diagnosed with moderate 
to severe cognitive impairment before surgery would have the 
significantly increased probability of POD occurrence, confirming 
studies reporting the correlation between preoperative MMSE and 
POD (17) and identifying the preexisting cognitive impairment as the 
important basis of POD. This study showed that CHARLSON score 
was positively correlated with postoperative cognitive impairment, 
with the cutoff value of 100 in the partial dependence graph, which is 
consistent with former literature reports (18) and possibly related to 
the stress state caused by the existing physical illness of patients.

As POD predictors (19, 20) directly related to cerebral hypoxia, 
when preoperative HCT < 30, the risk of POD increased with the 
decrease of HCT, and when the intraoperative blood loss was less than 
500 mL, the curve of the partial dependence graph rose sharply, and 
then at a gentle pace. The model also predicted that the increased 
probability of POD would come with the increase of urine volume, 
with the volume of 500 mL as the visible cutoff value of the curve 

which rose sharply when urine volume was between 500 and 1,000 mL 
and fell slowly when urine volume was over 1,000 mL. The common 
cause for urine output increase is excessive perioperative fluid load 
which leads to complications such as heart failure, pulmonary edema, 
and postoperative cognitive dysfunction (21) and the wide application 
of goal-oriented fluid therapy (GDFT) in clinical practice would 
effectively prevent it from happening. The partial dependence graphs 
showed that either a prolonged anesthesia duration or surgery 
duration would result in POD risk increase, with the latter’s partial 
dependence graph curve (the cutoff value at about 180 min) steeper 
than the former’s. The impact caused by anesthesia duration could 
be attributed to the inhibition of sedation and analgesic drugs on the 
central nervous system, whereas surgery trauma could increase the 
release of peripheral and central inflammatory factors and cause 
neuroinflammation and changes in cognitive function (22).

Among the postoperative influencing factors, the risk of POD 
would be minimized when the postoperative opioid dosage was less 
than 50 mg (converted to equivalent morphine dosage), but when the 
dosage was greater than 120 mg, the probability of POD occurrence 
increased significantly. In order to reduce the side effects of opioid 
overdose, general anesthesia combined with epidural or nerve block 
could be given preference during operation for its obvious advantages 
in perioperative cognitive improvement and POD prevention 

FIGURE 3

The Ce, ROC, and PRC of the clinical data (A represented Ce of four models; B represented ROC of four models; C represented PRC of four models).
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compared with simple general anesthesia (23). The increased 
incidence of POD caused by prolonged postoperative ICU treatment 
and tracheal intubation time could be  explained by the ICU 
environment, stress state during tracheal intubation and the severity 
of patients’ disease per se (24). There is a clear correlation between the 
incidence of postoperative delirium and the degree of postoperative 
pain. Incomplete postoperative analgesia can enhance the patient’s 
stress response and alter the transmission of neurotransmitters. When 
postoperative analgesia is insufficient, patients may experience 
anxiety, irritability, resistance to communication, decreased motor 
function, slow recovery of gastrointestinal function, and changes in 
sleep cycle, all of which are factors leading to the occurrence of 
POD. Studies suggested that postoperative pain management may 
help reduce the risk of postoperative delirium in the elderly patients 
(25). In importance ranking, the maximum VAS value of exercise pain 
within 7 days after surgery, as a characteristic variable, ranks second 
in contribution to the predictive variable. In addition, this study 
showed that the median and maximum VAS values of resting pain and 
exercise pain within 7 days after surgery were the most closely 
correlated with POD occurrence, and when the pain was controlled 
within the mild range, the risk of POD was lowered, the risk rising 
with VAS values. Finally, as reported by Bilotta et al. (26), type of 
surgery was strong predictor of POD and for some surgical 
procedures-including orthopedic, abdominal aortic aneurysm, and 
cardiac thoracic surgery-it links to an increased risk. Compared 
between cardiac surgery and non-cardiac surgeries, the Odd Ratio of 
predictors for POD was: 3.5 (1.6–7.4). Therefore, we focus only on the 
non-cardiac thoracic and abdominal surgeries to reduce the influence 
of POD incidence by surgery type.

For classification of the imbalanced data in this study caused by 
the extremely low positive sample number in the data set, the cross 
validation and Smote technique (Synthetic minority over-sampling 
technique, Smote) were used to balance the data set and ensure 
excellent classification results in minority classes during model 
sampling, via retaining the majority class units and synthesizing new 
minority class units linearly from those that were set close (27, 28). In 
RF modeling, the selected ensemble algorithms adopted the data 
classification strategy of constructing multiple weaker classifiers, 
combining them into classifiers with strong classifier generalization 
performance, and forcing the classifiers to focus on minority class 
samples in the algorithmic level, which is advantageous over the 
regular approach of establishing a single strong classifier with excellent 
generalization ability in the training set in terms of unbalanced data 
modeling (29, 30). Besides, accuracy was not used as the single 
evaluation indicator in this study, because the overall accuracy of the 
imbalanced data classification would not accurately reflect the 
classification situation in minority classes. Instead, confusion matrix 
parameters (accuracy, AUC-ROC, AUC-PRC, and MMC scores) were 
adopted to comprehensively evaluate the model (31).

In this study, Boruta was used to screen and include 16 
characteristic variables into the prediction model RF where 
importance ranking and univariate partial dependence graph were 
made to enhance its intelligibility, visibility, and potential applicability 
in clinical practice (32). Boruta algorithm generated “shadow 
attribute” for each variable and calculated the Z-score value for each 
of them through RF model. When the Z-score value was significantly 
higher than the highest shadow attribute value, the input variable was 
viewed and retained as dependent variable related one (33). Boruta 

FIGURE 4

Importance ranking of characteristic variables.
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follows all relevant feature selection methods and can capture all 
features related to the result variable. In contrast, most traditional 
feature selection algorithms follow a minimum optimization method, 
relying on a small subset of features and resulting in minimal errors 
in selecting classification. This method minimizes the error of the 
model to the greatest extent possible, which will ultimately form a 
minimum optimal feature subset. This occurs by selecting an overly 
condensed version of the input dataset, which in turn may result in 
the loss of some relevant features. On the other hand, Boruta finds all 
features, regardless of their correlation with the decision variable. This 
makes it very suitable for application in the field of biomedicine. In 
this article, POD related risk factors were screened and identified 
using Boruta, offering guidance for clinicians to take timely 
intervention measures for high-risk patients and reduce 
POD occurrence.

The challenges of applying machine learning lie primarily in the 
lack of interpretability and repeatability of machine learning-
generated results, which may limit their application. Interpretable 
machine learning can effectively open the “black box” of machine 
learning (32, 34). In this study, the degree of contribution of each 
feature variable was explained through an importance sorting chart, 
and the trend of the result variable changing with the feature variable 
was explained through a univariate partial dependency profile and 
visualization prediction of random individual samples through a 

breakdown profile. This solves the problem of lack of interpretability 
in predictive models.

The following are the weaknesses of the present study that may 
have affected our results. Firstly, we included multiple risk factors, but 
did not include laboratory data. Secondly, POD subtypes can 
be divided into low, high, and mixed types, which we will continue to 
explore in subsequent studies. Thirdly, this article uses SMOTE 
technique to process imbalanced datasets, improving model 
performance while also potentially generating noise. Finally, this 
model requires an independent dataset to test its extrapolation and 
generalization capabilities. In the future, we  will collect sufficient 
external validation datasets to further improve this model.

In this study, the major risk factors for the development of 
postoperative delirium are CREA and VAS-Move-Max. Machine 
learning algorithm can be established to predict the occurrence of 
postoperative delirium for older patients who underwent non-cardiac 
thoracic or abdominal surgery with general anesthesia.
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FIGURE 5

Partial dependency graph of characteristic variables.
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Break down profile of RF.
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