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Introduction: Altered functional connectivity of resting-state functional

magnetic resonance imaging (rs-fMRI) within default mode network (DMN)

regions has been verified to be closely associated with cognitive decline in

patients with Type 2 diabetes mellitus (T2DM), but most studies neglected the

fluctuations of brain activities—the dynamic e�ective connectivity (DEC) within

DMN of T2DM is still unknown.

Methods: For the current investigation, 40 healthy controls (HC) and 36

T2DM patients have been recruited as participants. To examine the variation of

DEC between T2DM and HC, we utilized the methodologies of independent

components analysis (ICA) and multivariate granger causality analysis (mGCA).

Results: We found altered DEC within DMN only show decrease in state 1.

In addition, the causal information flow of diabetic patients major a�ected

areas which are closely associated with food craving and metabolic regulation,

and T2DM patients stayed longer in low activity level and exhibited decreased

transition rate between states. Moreover, these changes related negatively with

the MoCA scores and positively with HbA1C level.

Conclusion: Our study may o�er a fresh perspective on brain dynamic activities

to understand the mechanisms underlying T2DM-related cognitive deficits.

KEYWORDS

type 2 diabetes mellitus, dynamic e�ective connectivity, default mode network,

independent components analysis, multivariate granger causality analysis

1 Introduction

Type 2 diabetes mellitus (T2DM) is the most prevalent chronic metabolic disease

in the world, with the main trait of glucose metabolism dysregulation (1). Under the

effect of long-term hyperglycemia and blood glucose fluctuations, diabetes can cause

multiple systemic macrovascular and microvascular lesions and eventually may lead to

severe comorbidities in multiple organs (2, 3). Findings from lots of epidemiological

studies suggested that people with diabetes have a higher risk of developing dementia

and demonstrated inferior performance compared to non-diabetes in a variety of

neural and cognitive processes, primarily including information-processing speed,

memory, attention, executive function, verbal fluency and so on (4). However, the
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neuropathophysiological mechanisms underpinning cognitive

impairment caused by T2DM are not fully understood.

As indicated by the results of a meta-analysis, the increase

and decrease of functional connectivity in T2DM patients was

mostly concentrated within and between the default mode

network, and these DMN-centered impairments are bound up

with cognitive decline (5). One of the more developed parts

of the brain, the DMN has the highest functional connectivity,

making it a potential candidate for early cognitive impairment

in T2DM patients. The main components of DMN involved

the precuneus/posterior cingulate cortex (PCC), medial prefrontal

cortex (MPFC), lateral temporal cortex (LTC), inferior parietal

lobule (IPL) and hippocampus, and this network mainly undertake

the functions of self-referencing, emotional processing, memory,

spontaneous cognition, and awareness (6). Therefore, exploring

the early functional alterations of DMN may offer potential

imaging markers on cognitive changes in T2DM patients. Previous

study has indicated that cognitive function was associated with

lower connectivity within the DMN in patients with T2DM (7).

And functional connectivity between the anterior and posterior

areas of the DMN and the local efficiency of the DMN were

significantly decreased in T2DM, which was closely related to

memory and executive functions, the early manifestation of

cognitive impairment in T2DM (8–10).

In normal living and during sleeping, studies have

demonstrated that the FC within DMN areas is continually

changing, and different network states can be seen even within a

minute (11–15). However, the majority of the studies discussed

above only examined the static functional connectivity within

the DMN, and only a few concentrated on dynamic and effective

functional connectivity, which can track changes in the strength

of the connections between various regions of interest over

time and capture spontaneously recurring patterns of functional

connectivity (16). According to the available results of casual

analysis, patients with T2DM showed altered DEC between the left

fusiform gyrus and bilateral lingual gyrus and right medial frontal

gyrus (MFG), the right SFG and bilateral frontal regions, as well as

between left hippocampus (LHIP) and right hippocampus (RHIP),

occipital cortex and cerebellum (17, 18). Effective connectivity

network is a graph model consisting of nodes and directed edges,

where the nodes represent brain regions and the directed edges

portray the causal effect of neural activity exerted by one brain

region on another brain region, and the edge-related connection

parameter indicates the connection strength of the edge (19, 20).

mGCA is one of the methods which used a factor model to

downscale the high-dimensional fMRI data, then a multivariate

autoregressive model was built in the low-dimensional subspace,

and a biased directed coherence algorithm was used to identify the

granger causality between brain regions, finally, the identification

results were mapped to the high-dimensional state space to

obtain the brain effect connectivity network (21). The research

methodology has been used in disorders including Alzheimer’s,

moderate cognitive impairment (MCI), mental illness, and others,

and it was verified that the alterations of effective connections were

strongly related to the cognitive states of our brain (22–24).

However, we still know so little about how DEC changes within

DMN for T2DM patients. According to our hypothesis, abnormal

DEC within DMN is related to T2DM’s cognitive impairment and

is caused by glucose imbalances. In order to identify neuroimaging

markers for cognitive deficits in T2DM and how disturbance of

glucose metabolism affects this relationship, we investigated DEC

differences between T2DM and HCs using mGCA.

2 Methods

2.1 Participants

A total of 76 participants were enrolled in this study, which

consisted of 36 diabetics and 40 healthy controls. T2DM diagnosis

adhered to WHO criteria, defined by either a random plasma

glucose level ≥11.1 mmol/L with typical diabetes symptoms or a

fasting plasma glucose ≥7.0 mmol/L, or an oral glucose tolerance

test (OGTT) ≥11.1 mmol/L, the OGTT performing in non-

pregnant adults by using a 75-g oral glucose load with examination

of the 2-h plasma glucose. Patients were excluded if they had

any of the following characteristics: (1) with magnetic resonance

contraindications, (2) had or with neurological or psychiatric

illness, (3) with macrovascular or microvascular complications

(e.g., retinopathy, nephropathy, and neuropathy), and (4) with

head injury, alcoholism and mass lesions (e.g., cancer, anemia, and

thyroid dysfunction).

2.2 Clinical data and neuropsychological
test information

The clinical and demographic data of all subjects were

gathered. The demographic indices mainly incorporated sex, age,

level of education and body mass index (BMI). Blood samples

were obtained at 8A.M., via venipuncture to assess the levels

of fasting blood glucose, glycosylated hemoglobin type A1C

(HbA1c), and blood lipid content [including cholesterol (CHO),

triglycerides (TG), high-density lipoprotein (HDL)]. Additionally,

we measured blood pressure [including systolic blood pressure

(SBP) and diastolic blood pressure (DBP)] and postprandial blood

glucose (PBG). We used the Mini Mental State Examination

(MMSE) and the Montreal Cognitive Assessment (MoCA) as

two straightforward neuropsychological tests to evaluate the

individuals’ overall cognitive abilities.

2.3 MRI acquisition

MRI data were acquired on a Siemens Verio 3.0T scanner

(Siemens, Erlangen, Germany) with 8 head-coil at the Department

of Magnetic Resonance of Lanzhou University Second Hospital.

During the scan, patients were asked to close their eyes and stay

awake. To minimize head movement and isolate noise, earbuds

and foam pads were used. Resting-state functional images were

obtained employing an axial echo planar imaging (EPI) sequence

with the following parameters: repetition time (TR) = 2000ms;

echo time (TE) = 20ms; flip angle = 90◦; slice thickness = 3mm;

in-plane matrix resolution= 64× 64; field of view (FOV)= 192×

192 mm2; slices = 36; number of total volumes = 180; resolution

= 3 × 3 mm2; total duration = 6min. High-resolution 3D T1w
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images were acquired by employing a magnetization-prepared

rapid gradient-echo sequence (MPRAGE) with the following

parameters: TR = 1900ms; TE = 2.93ms; flip angle = 9◦; slice

thickness = 1mm; acquisition matrix = 256 × 256; FOV = 256

× 256 mm2; resolution= 1× 1 mm2.

2.4 Preprocessing

Anatomical images and resting-state fMRI dataset were

preprocessed by applying the pipeline fMRIPrep Version 20.2.0

(25). The intensity non-uniformity correction and skull-stripping

of T1w images were performed on the platform ANTs. The brain

extraction made an auto-coregistration to the OASIS template and

acquired the reference, brain-extracted T1w image. Then, spatial

normalization of the T1W and standard template (the Montreal

Neurosciences Institute 152 Non-linear Asymmetrical template in

version 2009c with the resolution of 2 mm3) was manipulated

through the ANTs’ Registration, and meanwhile, generated the

brain mask and cost function mask. The brain mask then went

through refinement for mediating the ANTs-derived and Free

Surfer-derived segmentation. Segmentation of different tissues -

cerebrospinal fluid (CSF), white matter (WM) and gray matter

(GM) were all segmented using the FSL method.

Preprocessing of the resting-state fMRI data included the

following steps: (1) removing the first 10 time points; (2) creating

a reference and brain mask; (3) realignment and estimation

of head motion; (4) slice-timing correction; (5) susceptibility

distortion estimation; (6) alignment to segmented-T1w image; (7)

normalization to the standard template (the MNI 152 Non-linear

Asymmetrical template in version 2009c); and (8) smoothing with

the Gaussian kernel of with the Gaussian kernel of 6mm full width

at half maximum. Every participant’s frame had translational or

rotational motion parameters <3mm and 2◦.

2.5 Independent component analysis

The Spatial-temporal group ICA was performed in order to

the selection of ROIs of DMN by the GIFT software Version 4.0c

(University of New Mexico, Albuquerque, NM) implemented in

Matlab R2022b, which consist of the following two data-reduction

procedures: (1) Firstly, the principal component analysis (PCA),

provided an orthonormal space to reduce the group functional

images into 150-dimensional subspaces and generate 150 time

courses and 100 corresponding spatial maps (ICA components)

in accordance with the infomax algorithm which can minimize

mutual information to enhance the reliability and validity of

outputs; (2) Reconstructing individual-subject spatial maps and

associated time courses in reverse is the second step. Twelve ICs

were isolated and used as the areas of interest (ROI) of the DMN

in the definition of ROIs for the neurocognitive networks under

previous research (26). Components were also appraised using the

following standards: Peak activation coordinates were largely found

in gray matter, there was little spatial overlap with recognized

vascular, ventricular, motion, and susceptibility artifacts, and low-

frequency fluctuations predominated the time courses.

2.6 Dynamic e�ective connectivity

Then, we investigated DEC between DMN areas in DynamicBC

Version 2.1 (27) program using the mGCA module. To obtain

the 76 causal impact matrices, the time courses were first divided

using the sliding windows method, whose rectangle window size

was 18 TRs and step length was 2 TRs. In order to categorize

different clusters (corresponding to different states) based on

the similarity between matrices and cluster centroids, a k-means

clustering method was applied to the windowed EC matrices. And

then, we measured the discrepancy of DEC between patients with

T2DM and HC in different states using the two-sample t-test by

using NBS Version 1.2 (FDR; p < 0.05).

2.7 Causal influence flows analysis and
temporal properties analysis

In order to explore the state-directed communications among

DM components, we compared the results of two weighted

degree measures—the in-weighted degree and the out-weighted

degree (28), which are the most widely used parameters of causal

influence flows—between T2DMs and controls in each state. The

total influence strength from one component to others is the

in-weighted degree of that component, and the total influence

strength from that component to others is the out-weighted

degree. Generally speaking, the component with a high in-

weighted degree/out-weighted degree was considered as the hub

receptor/generator of the network and was essential to functional

integration.We additionally computed the in-out-weighted degree,

which is defined as the subtraction of in-weighted degree and

out-weighted degree, in order to evaluate net influence for

each component. Additionally, we calculated the DEC’s temporal

properties [including fractional windows (F), mean dwell time

(MDT), and number of transitions (NT)] to assess the temporal

characteristics of two states (29). To be more precise, MDT was

defined as the average number of consecutive windows that belong

to each state and indicates the amount of time stay in particular

state; F was defined as the percentage of windows that belong to

each state; and NT was defined as the transition times between

states and implied the stability over time.

2.8 Statistical analysis

The connections between altered DEC parameters and

clinical characteristics were examined using Spearman’s correlation

analysis. False discovery rate (FDR; p < 0.05) was used to

adjust the results for multiple comparisons after statistical analyses

were carried out using SPSS Version 26.0. See Figure 1 for

illustration. Besides, in order to investigate the consistency of DEC

clusters/states with varied processing sliding window parameters,

we reset the rectangle windows of the sliding windows method

to 30 TRs and 12 TRs and the step lengths of that to 1 TRs

and 3 TRs respectively in Dynamic BC, and calculated their

temporal properties. Then, we measured the difference of intraclass

correlation coefficient (ICC) between the setups of sliding windows
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FIGURE 1

Flow chart of analysis in the study. fMRI, functional magnetic resonance imaging. (1) The DM components acquired from independent components

analysis. (2) Sliding windows method with the rectangle window size of 18 TRs and step length of 2 TRs was used to obtain causal impact matrices.

(3) K-means clustering categorized all matrices to di�erent clusters. (4) Measuring the di�erence of dynamic e�ective connectivity, casual

information flow and temporal properties between T2DM and HCs. DM components, default mode components.

described above and covered in our paper by applying two-way

random effects model, and the ICC’s single measures of fractional

windows were 0.903 and 0.887 respectively (p < 0.0001).

3 Result

3.1 Demographic, clinical, and cognitive
characteristics

As shown in Table 1, we can see that the T2DM group consists

of 20 males and 16 females, these patients with the average age of

55.94± 7.69 years, average years of education of 13.31± 2.48 years,

average disease duration of 6.56 ± 5.09 years and average body

mass index (BMI) of 21.67 ± 1.51 kg/m2. The HC group included

19 males and 21 females, and the average age, years of education

and BMI were 54.30 ± 6.76 years, 13.60 ± 2.96 years, 21.01 ± 2.73

kg/m2 respectively. By the means of two-sample t-test, we were

unable to identify any statistically significant differences between

the two groups in terms of sex, age, education and BMI.

Additionally, indicator values such as fasting blood glucose

(FBG), 2-h postprandial blood glucose, HbA1c, and triglycerides

(TG) were significantly higher in the T2DM group compared to the

HC group (p < 0.05), but there was no difference in CHO, HDL,

blood pressure and cognitive scores between two groups (p> 0.05),

details shown in Table 1.

3.2 ICA results

Through the ICA, we obtained 12 components in the DMN,

including the bilateral posterior cingulate cortex (PCC; IC17),

medial prefrontal cortex (mPFC; IC20), hippocampus (Hip; IC25),

fusiform gyrus (FFG; IC34), angular gyrus (Ang; IC35, IC44),

precuneus (PCU; IC41), middle occipital gyrus (MOG; IC77),

middle frontal gyrus (MFG; IC81), middle cingulate cortex (MCC;

IC99), and the left inferior parietal lobule (IPL; IC51) and temporal

lobe (TL; IC64). The detailed information of these regions are

shown in Figure 2 and Table 2.
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TABLE 1 Demographic, clinical and cognitive characteristics.

Characteristics T2DM patients Healthy controls P-value T-value

(n = 36) (n = 40)

Age (years) 55.94± 7.69 54.30± 6.76 0.33 −0.992

Sex (male) 20 (36) 19 (40) 0.37 −0.912

Education (years) 13.31± 2.48 13.60± 2.96 0.64 0.467

Disease duration (years) 6.56± 5.09 —- <0.01∗∗ −8.157

Body mass index (kg/m2) 21.67± 1.51 21.01± 2.73 0.2 −1.295

Fasting glucose (mmol/L) 10.98± 3.56 4.27± 0.39 <0.01∗∗ −11.829

2h-postprandial glucose (mmol/L) 15.72± 5.74 8.74± 0.70 <0.01∗∗ −7.975

HbA1c (%) (mmol/mol) 10.58± 3.17 4.92± 0.50 <0.01∗∗ −11.151

Total cholesterol (mmol/L) 4.18± 0.78 4.03± 0.59 0.37 −0.903

Triglycerides (mmol/L) 1.79± 0.92 1.40± 0.74 0.02∗ −2.372

High-density lipoprotein (mmol/L) 1.12± 0.28 1.16± 0.37 0.52 0.644

Systolic blood pressure (mmHg) 117.64± 8.72 120.95± 9.51 0.12 1.577

Diastolic blood pressure (mmHg) 73.08± 12.0 68.35± 11.03 0.08 −1.794

MoCA 27.44± 1.87 27.83± 1.50 0.33 0.982

MMSE 28.78± 1.46 29.13± 0.94 0.22 1.248

∗p < 0.05 and ∗∗p < 0.01. HbA1c, glycosylated hemoglobin type A1C; MoCA, the Montreal Cognitive Assessment; and MMSE, the Mini Mental State Examination.

FIGURE 2

The distribution of DM components. DM components, default mode components.

3.3 DEC results

The sliding window approach was used to collect a total of 5,776

EC matrices from 76 participants. K-means clustering analysis

then separated all of the matrices into two states, as seen in

Figure 3. State 1 occupied 69.53% of the matrices, whereas state

2 took up 30.46% of them all. Compared to State 1, State 2

exhibited significantly more active inter-regional communication.

Notably, State 1 demonstrated pronounced differences in DEC

between T2DM patients and healthy individuals. We discovered

that T2DM had lower EC from IC20 to IC51 and IC99

in state1 compared to non-diabetic controls by using NBS.
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TABLE 2 Detailed information of DM components.

Independent
component

Anatomical regions Cluster size MNI coordinates T-value

X Y Z

IC17 Cingulum_Post_L&_R 331 0 −54 30 36.2187

IC20 Frontal_Sup_Medial_L&_R 1,015 0 48 12 26.4431

IC25 Hippocampus_L&_R 833 4 −34 −32 22.9179

IC34 Fusiform_L&_R 1,910 10 −100 −26 22.8899

IC35 Angular_L 736 −6 −70 32 29.1449

IC41 Precuneus_L&_R 1,897 0 −54 30 26.5415

IC44 Angular_R 1,153 46 −66 42 30.1579

IC51 Parietal_Inf_L 1,810 54 −54 20 29.1449

IC64 Temporal_L 2,155 −50 −60 22 20.6183

IC77 Occipital_Mid_L&_R 1,360 4 −160 62 30.9279

IC81 Frontal_Mid_L&_R 1,793 0 26 116 20.7429

IC99 Cingulum_Mid_L&_R 1,726 −4 22 30 22.2497

DM components, default mode components.

In state 2, there was no discernible difference between the

two groups.

3.4 Causal information flows and temporal
properties

By comparing the causal information flow among the two

groups, it conveyed significant distinctions. In state 1, T2DM

patients demonstrated reduction in the in-weighted degree of IC34

and IC81 and the out-weighted degree of IC41 and IC51. In state

2, there was no discernible difference in the in-weighted degree

and in-out-weighted degree between the two groups, but the out-

weighted degree of IC17 and IC44 increased in T2DM patients

than HCs (p < 0.05). We also noticed a substantial variation in

the temporal properties, with the T2DM showing larger fractional

windows in state 1 and smaller in state 2, whereas the HCs showed

the opposite (p < 0.05). As opposed to healthy subjects, the T2DM

also showed an increase of mean dwell time in state 1 (p < 0.001), a

decrease in state 2 (p < 0.05), and lower frequency of transitions (p

< 0.05). Details in Figures 4, 5.

3.5 Relationship with clinical disease
severity

The casual information flow of T2DM patients reflected

downward in state 1 than healthy controls, but there was no

significant difference between them in state 2. By exploring the

relationships between the casual information flow and temporal

properties and clinical indicators, we found that MoCA scores are

negatively correlated with the out-weighted degree of IC99 (r =

−0.492, p = 0.002) and IC25 (r = −0.577, p < 0.0001) in state

1. In state 2, we discovered that there is a positive correlation

between diastolic blood pressure and the in-out-weighted of IC51

(r = 0.480, p = 0.002), and that HbA1C is significantly positively

correlated with the out-weighted degree of IC81 (r = 0.497, p

= 0.002). The education years also have a negative relationship

with the in-out-weighted degree of IC81 (r = −0.468, p =

0.002). In addition, MoCA scores showed a significant correlation

with fractional windows, and this correlation revealed a divergent

tendency between the two states (r = ±0.497, p = 0.002). Details

show in Figure 5 and Table 3.

4 Discussions

In the current study, we classified the effective connectivity

patterns of DMN regions into two states (the state1 shows higher

frequency but lower connectivity, and the state2 shows lower

frequency but higher connectivity), and observed that T2DM

patients represent decreased directional effective connectivity from

bilateral medial prefrontal cortex (mPFC) to middle cingulate

cortex (MCC) and left inferior parietal lobule (LIPL) in state1,

otherwise, these alterations are related to the impaired cognitive

function in T2DM patients. To our knowledge, this study is the

first to examine the effective connectivity within DMN of the group

with T2DM.

ThemPFC is a critical component of the default mode network,

interconnecting with numerous brain areas and involved in a

number of crucial processes, such as motivation, emotional control,

and social behavior. As a result, it serves as a key node in

the neural circuitry that mediates a variety of neurological and

psychiatric disorders (30, 31). In humans, the LIPL is one of

important nodes of DMN and contribute to many brain functions,

especially in terms of language processing and recognitionmemory.

Furthermore, recent neuroimaging studies have revealed that the

existence of additional functions of LIPL, including attention,

action and salience processing (32–36). Available literatures found
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FIGURE 3

(A) The averaged static e�ective connectivity (EC) between DM component pairs was computed using an entire scan. (B) Decreased dynamic EC

from IC20 to IC51 and IC99. (C) Centroid matrices for two states and the occurrences and the percentage of the two states. (D) Di�erences of mean

e�ective connectivity between two states and between two groups in each state. **p < 0.01 and ****p < 0.0001.

that bilateral mPFC and LIPL jointly participant in the functions

of emotional regulation, memory and executive function (37–

39). Based on this discovery, it is reasonable to speculate that

the decreased connectivity from mPFC to LIPL may be related

to the injury of emotion, memory and executive function in

T2DM patients and ultimately leading to the onset of cognitive

disorders, but further investigation will be required. Furthermore,

we discovered that the out-weighted degree of LIPL decreases

in state 1 as well as the in-out-weighted degree of LIPL is

positively correlated with DBP in state 2. Combining the above

results, we can observe that the abnormality of causal influence

flows of LIPL is more prominent in state 1, however, in the
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FIGURE 4

Causal influence flows of dynamic e�ective connectivity. The in-weighted degree (A), out-weighted degree (B), and in-out weighted degree (C) in

two states for T2DM patients (red) and HCs (blue). Horizontal solid and dashed lines indicate group means and interquartile range respectively. **p <

0.01 and *p < 0.05 with FDR corrected.

correlation analysis, the abnormality is mainly reflected in state

2, which may be due to the fact that the abnormality is more

prominent in state 1 because of the lower level of activity in

state1, whereas state 2 is more likely to be affected by the clinical

factors due to the higher activity. In conclusion, we can speculate

that T2DM patients have greater damage in the LIPL node, and

that this damage may be linked to abnormal blood pressure.

Additionally, although the difference between T2DM patients’ DBP

and that of healthy individuals was not statistically significant,

but T2DM subjects’ DBP was slightly lower indeed. A number

of studies have examined the relationship between blood pressure

and cognitive functioning in T2DM and have yielded significant

results (40–42), therefore, future research is necessary to determine

the precise mechanisms within T2DM patients’ brain activity and

blood pressure.

The middle cingulate cortex (MCC) is a hub for dynamic

switching between emotion and cognition, where motions with

potentially punitive implications, such as suffering and menace,

can be integrated into regulatory areas to express dread and

agitation, facilitating goal-directed behaviors, and inclining the

focus of selective attention. Neuroimaging findings suggested that

the neural circuit of the MCC/mPFC was significantly activated

by pains and then regulated the expression of dread and agitation

(43). The decreased DEC frommPFC toMCC in T2DM potentially

be associated with nerve demyelination and peripheral neuropathy

and lead to the reduced response to pain and the impaired

cognition, yet this connection remains to be explored. Additionally,

we discovered a negative relationship between MoCA scores and

the out-weighted degree of MCC in state 1. It may be inferred that

as the out-weighted degree of MCC increase, there is a subsequent
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FIGURE 5

(A) The relationship within the casual information flow and clinical and cognitive characteristics. (B) The di�erence of temporal properties between

two groups and the association of temporal properties and clinical index. HbA1c, glycosylated hemoglobin type A1C; MoCA, the Montreal Cognitive

Assessment; DBP, diastolic blood pressure; F, fractional windows; MDT, mean dwell time; and NT, number of transitions. ***p < 0.001 and *p < 0.05.

decrease in cognitive function of T2DM, which could potentially

be accompanied by a drop in the in-weighted degree. This would

exacerbate the impairment of MCC. Given the two findings, it

becomes sense to speculate that cognitive dysfunction and MCC

node damage are intimately associated in T2DM patients.

According to previous research findings, the causal information

flows among the DMN regions were correlated with their neuronal

activity levels (44). The causal information flows of diabetic patients

revealed a trend of decreasing in state1 and increasing in state2,

suggesting that neuronal activity turned to be weakened in state1
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TABLE 3 The di�erences of temporal properties between two groups.

Group Fractional windows Mean dwell time Number of transitions

State1 State2 State1 State2

T2DM patients 0.77± 0.17 0.23± 0.17 15.47± 14.77 3.67± 2.24 9.03± 4.05

Healthy controls 0.63± 0.20 0.38± 0.20 8.86± 6.31 4.84± 2.76 11.35± 3.57

P-value <0.01∗∗ <0.01∗∗ 0.012∗ 0.047∗ 0.014∗

∗p < 0.05 and ∗∗p < 0.01.

and enhanced in state2 in T2DM compared with healthy controls.

Although there was no difference in the cognitive function of

the two groups, this change may be the potential mechanism of

early cognitive decline of T2DM. During the analysis of causal

information flows, we found that the in-weighted degree of bilateral

fusiform gyrus (FFG, IC34) and middle frontal gyrus (MFG, IC81)

and the out-weighted degree of bilateral precuneus (PCU, IC41)

and LIPL (IC51) all declined in state 1, meanwhile, the out-

weighted degree of bilateral posterior cingulate cortex (PCC, IC17)

and right angular gyrus (Ang, IC44) increased in state 2, which

possibly represented that the dynamic activity of these areas may

be most susceptible to be damaged within DMN regions in patients

with T2DM.

As the brain region with the strongest metabolic activity and

functional connectivity, the PCC has been argued to be the core

hub of DMN. Previous T2DM studies have found hypoconnectivity

reaching peak in the PCC, relating with the cognitive impairment

of recall memory, transient memory executive function (5, 45).

The fusiform gyrus (FFG) is crucial for advanced-level object

recognition and is associated with various neural pathways involved

in processing visual food cues. The middle frontal gyrus (MFG)

is a part of the dorsolateral prefrontal cortex and plays a key

role in dietary control, food craving, and metabolic regulation

(18, 46). The PCU is also a core node of the DMN, exhibiting

a remarkably high metabolic rate and serving as a linchpin in

facilitating the synthesis of external information and internal

representations (like episodic memories, self-relevant information,

and subjective value processed by other DMN regions) (47). The

right Ang has been shown to be a highly consistent cluster that

is most likely to be involved in attention reorienting processes,

semantic processes and memory (48). To summarize, the majority

of the previously mentioned brain regions are intimately linked to

metabolic functions. Therefore, our research findings are consistent

with the previously mentioned results, diabetes as a metabolic

disease that impacts these regions’ neural activity and ultimately

resulting in altered cognitive function. Furthermore, we found a

strong association between HbA1C and education level with the

out-weighted degree and in-out-weighted of MFG in state 2 in our

correlation analysis. As HbA1C increased, the out-weighted degree

of MFG also increased; however, as the education level increased,

the in-out-weighted of MFG decreased, illustrating that impaired

blood glucose will affect the function of MFG and that this effect

will be more severe as the level of education decreases. Significantly,

this effect is more prominent in state 2 with higher levels of brain

activity than state 1, which may strengthen the conclusion that

patients with diabetesmay have reduced cognitive performance due

to dysregulation of glucose metabolism. It might be conjectured

that this impact is particularly severe in MFG.

Moreover, we found that the out-weighted degree of bilateral

hippocampus (Hip, IC25) in state1 is negatively correlated with

MoCA scores of T2DM. Early cognitive decline of diabetes

was mainly manifested in memory, as we all know that the

key responsibility of the hippocampus, therefore, our study

further confirmed that the reduced activity of brain regions

will correspondingly influence cognitive functions of T2DM. In

addition, from the perspective of temporal properties, we can

saw that T2DM patients stay in state1 longer than in state 2

compared to HCs, and show a decreased rate of transitions between

two states, which indicates the lower level of brain activity in

diabetic patients. And by calculating the relationship between

temporal properties and clinical features, the fractional windows

showed a negative correlation with MoCA scores in state2 and the

opposite in state1, which further conveys that lower activity of our

brain may be the early manifestations of cognitive impairments

in diabetes. Existing research has identified closely relationships

between abnormalities in the temporal properties of DEC and

cognitive impairment (49, 50). In summary, there is a strong

association between abnormal glucose metabolism, reduced brain

activity and cognitive impairment in patients with T2DM.

5 Limitation

There are still some restrictions on our investigation. First,

the sample size of our study still remained too small with a total

of 36 T2DMs and 40 HCs were included. As a common disease,

diabetes was generally studied in a large scale of subjects. Second,

the EPI sequence in our investigation scanned 180 volumes within

6min, however, more sophisticated sequences, like the multi echo

technique, can scan more volumes in a shorter time. Third, the

current study was still a cross-sectional study, and in the future

longitudinal studies should be designed to explore the temporal

variation of DEC in T2DM patients.

6 Conclusion

By using the techniques of ICA and mGCA, our study

discovered that patients with T2DM show decreased DEC, lower

brain activity and abnormalities of causal information flows

within DMN regions compared to HCs. Additionally, there is a

strong correlation between low brain activity status and clinical
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characteristics and cognitive impairment in diabetes, which may

serve as early image markers for further predicting cognitive

decline in this patient population. Notably, there were crossovers

of these results in some brain regions within DMN which are most

severely impaired in T2DM with early cognitive decline in our

hypothesis and need to be further explored in the future.
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