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The expert’s knowledge
combined with AI outperforms AI
alone in seizure onset zone
localization using resting state
fMRI
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Sandeep K. S. Gupta1

1School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States,
2Department of Neurology, Division of Child Neurology, University of North Carolina, Chapel Hill, NC,
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We evaluated whether integration of expert guidance on seizure onset zone

(SOZ) identification from resting state functional MRI (rs-fMRI) connectomics

combined with deep learning (DL) techniques enhances the SOZ delineation in

patients with refractory epilepsy (RE), compared to utilizing DL alone. Rs-fMRI

was collected from 52 children with RE who had subsequently undergone ic-

EEG and then, if indicated, surgery for seizure control (n = 25). The resting state

functional connectomics data were previously independently classified by two

expert epileptologists, as indicative of measurement noise, typical resting state

network connectivity, or SOZ. An expert knowledge integrated deep network

was trained on functional connectomics data to identify SOZ. Expert knowledge

integrated with DL showed a SOZ localization accuracy of 84.8 ± 4.5% and

F1 score, harmonic mean of positive predictive value and sensitivity, of 91.7 ±

2.6%. Conversely, a DL only model yielded an accuracy of <50% (F1 score 63%).

Activations that initiate in gray matter, extend through white matter, and end

in vascular regions are seen as the most discriminative expert-identified SOZ

characteristics. Integration of expert knowledge of functional connectomics can

not only enhance the performance of DL in localizing SOZ in RE but also lead

toward potentially useful explanations of prevalent co-activation patterns in SOZ.

RE with surgical outcomes and preoperative rs-fMRI studies can yield expert

knowledge most salient for SOZ identification.

KEYWORDS

seizure onset zone, preoperative evaluation, deep learning, rs-fMRI, expert knowledge,

focal pharmaco-resistant epilepsy, pre-surgical

1 Introduction

The World Health Organization estimates that ∼50 million individuals worldwide

are affected by epilepsy (1). Within this population, medically refractory epilepsy (RE)

constitutes about 30%, where patients have not achieved seizure control for at least 12

months despite adequate trials of two tolerated and appropriately chosen anti-epileptic

medications. RE significantly impacts the quality of life of those affected. The most

successful approach for addressing RE involves surgical ablation, resection, or disconnection
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of brain regions associated with seizure genesis, seizure onset

zone (SOZ) (2–4). Recent research emphasizes the importance of

early diagnosis and surgical intervention to mitigate developmental

complications and reduce the risk of sudden deaths (5). Despite

advances in surgical interventions, for focal onset RE such as mesial

temporal lobe epilepsy (TLE), a large number of patients (30–

40%) still suffer from continued debilitating seizures (6) and post-

surgery developmental impairments (7, 8). Achieving a seizure-

free surgical outcome is contingent upon accurately localizing the

SOZ (9).

The gold-standard technique for localization of SOZ uses

invasive intracranial electroencephalography (ic-EEG), which

requires implantation of depth electrodes (10). However,

concordance between ic-EEG spike density and the SOZ is

observed in only 56% of patients (11), due to sub-optimal lead

implantation. As such, ic-EEG lead placement must be guided by

determining the expected SOZ using non-invasive brain imaging

modalities (12, 13). One non-invasive method, resting state

functional magnetic resonance imaging (rs-fMRI), uses blood

oxygen level-dependent (BOLD) correlations measured at rest

to map functional connectomics (14). It is an effective measure

of the plasticity of large-scale networks induced by repeated

and synchronized co-activation of brain regions (15) caused by

debilitating seizures. Independent component analysis (ICA) of

rs-fMRI has been shown to have 90% agreement with ic-EEG

determined SOZs (6, 11), and the usage of rs-fMRI-guided ic-EEG

to locate and surgically alter the SOZ has shown significant

improvement in seizure-free surgical outcomes for RE pediatric

patients without any increase in developmental risks (6, 16).

One of the challenges in relating ICA’s resulting independent

components (ICs) of rs-fMRI to SOZ is that abnormal BOLD

correlations are variable across individuals, with activation foci

varying across temporal, parietal, frontal lobes, hippocampus, and

cortex (17). Furthermore, over 50% of the data comprises noise

ICs, with the remaining 40–45% attributed to resting state network

(RSN), leaving only a small percentage, around 5–10%, associated

with SOZ ICs. Currently, a set of rules identified by a consortium

of experts is meticulously applied with expert analysis of hundreds

of ICs, rendering the pre-surgical screening process extremely

time-consuming and not easily replicable (16). This calls for a

need of a more streamlined, automated, and replicable pre-surgical

screening process for SOZ localization. The existing methodology,

relying on rules outlined by experts and involving detailed manual

analysis of numerous ICs, is time-intensive, subjective, and lacks

reproducibility. Given the demonstrated capability of large-scale

supervised statistical approaches, such as deep learning (DL),

to identify abnormal patterns within complex datasets, recent

advances have shown their application for SOZ localization from

rs-fMRI data (18, 19). However, a limited study on 14 subjects with

refractory TLE has shown poor positive predictive value (PPV)

of 52% (±3.9%) for a brain parcellation to be associated with

SOZ (19). Moreover, the identified SOZs do not conform to the

disease characteristics, as bilateral SOZ was identified for patients

with unilateral focal TLE (19). Our prior research has demonstrated

that automating the expert rules outlined in (16) and then

implementing them in a carefully structured sequential manner

result in a PPV of 65% (±7.8%), surpassing the performance of

statistical approaches (17).

One of the primary reasons for poor PPV of statistical

approaches is that abnormal BOLD correlations, meaning non-

noise, not normal resting state fMRI network, and thus is

interpreted to be pathological, form <10% of the rs-fMRI ICs

from ICA (17, 19). This triggers the fundamental Achillies

heel of classification science, that is, class imbalance (20),

where the statistical approach lacks enough pathological data

to effectively distinguish abnormal patterns amidst significant

individual variation. A pure statistical approach like DL overlooks

the valuable expert knowledge encoded in terms of rules applied

to real data by experts and validated by the successful seizure-

free outcomes upon surgical resection/ablation of expert-identified

SOZ. In this study, we aimed to investigate whether integration

of expert knowledge of SOZ characteristics combined with data-

driven statistical supervised learning approaches could improve

the identification accuracy of SOZ compared to purely statistical

machine learning approach, for subjects with RE. We validated

identification accuracy by comparing against manual evaluation

by two independent experts and subsequent ic-EEG-based SOZ

identification, and in surgical patients, with surgical outcomes in

terms of Engel scores. Additionally, we tested which knowledge

component contributed most in improving DL performance of

SOZ identification. Finally, we utilized the expert knowledge

contributions to generate clinically relevant explanations of SOZ

identification result.

1.1 Contribution

This study aims to automate localization of the SOZ using DL

and expert knowledge, with the primary goal of facilitating the non-

invasive assessment of iEEG lead placement by the surgical team.

The main contributions of the study include:

• Demonstrating that the integration of AI with expert

knowledge on SOZ characteristics results in superior

automated SOZ localization compared to relying solely on AI

techniques for the same purpose.

• Illustrating through knowledge ablation study that the expert

knowledge of activations originating in gray matter, extending

through white matter, and concluding in vascular regions, is

identified as the most discriminative expert knowledge among

expert-identified SOZ features.

• Validation of SOZ localization accuracy on a large dataset of

52 patients across various age ranges and gender.

1.2 Related works

Recent research can be broadly categorized into two main

areas, as outlined in Table 1: epilepsy detection (21–23), which

entails classifying patients as either epileptic or non-epileptic

based on EN identification, and SOZ localization (1, 6, 17),

the primary focus of this study. Table 1 presents a comparative

analysis of recent studies, considering factors such as the number

of subjects, the proportion of the RE subgroup, age range, and

the types of ICs identified. Within this domain, evaluations
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encompass diverse metrics such as concordance with iEEG,

agreement with expert-identified SOZ, and consistency with

physician assessments.

The reported results column in Table 1 presents the evaluation

metrics from the original manuscripts for each study. Various

manual techniques for identifying the SOZ involve expert-defined

rules based on specific spatio-temporal characteristics of BOLD

signals captured by rs-fMRI. Boerwinkle et al. (6) explored the

agreement between the epileptogenic zone (EZ) identified through

rs-fMRI and the SOZ identified using iEEG data. They employed

prevalence-adjusted bias-adjusted kappa (PABAK) on a cohort

of 40 patients, revealing a concordance rate of 89%. This study

highlighted the limitations of previous approaches that focused on

the most abnormal brain region for SOZ localization. However,

no study is reported on automation of expert sorted ICA-based

SOZ classification in this study. Gil et al. (24) manually studied 21

patients with extratemporal focal epilepsy to identify SOZ-related

ICs in fMRI data using the general linear model-derived EEG-fMRI

time courses associated with epileptic activity. Lee et al. (25) also

manually investigated the functional connectivity changes in the

ENs from rs-fMRI data using intrinsic connectivity contrast (ICC)

to evaluate the non-invasive pre-surgical diagnostic potential for

SOZ localization. The agreement of fMRI-IC with intracranial EEG

SOZ was 72.4%.

The first automation attempts were from Hunyadi et al. (1),

who present a set of SOZ spatial and temporal features used to train

a least-squares support vector machine (LS-SVM). Evaluation on

18 RE patients showed sub-optimal results. DL was first explored

by Nozais et al. (18) to classify RSN ICs on non-RE patients and

reported an accuracy of 92%. However, they did not pursue SOZ

identification. Luckett et al. (26) used 2,132 healthy control data

for training of 3D CNN and tested it on temporal lobe epilepsy

to detect the whole hemisphere of seizure onset. The training

data were synthetically altered in randomly lateralized regions

which helped in detection of biological SOZ’s hemisphere. Note

that ICs were not used here, so this study detected the whole

brain hemisphere of seizure onset rather than the brain region

pointing toward the SOZ. Their primary findings suggested the ICA

guided by their technique has the potential to identify epilepsy-

related ICs in patients with focal epilepsy. Naresh et al. (19)

explored deep graph neural networks using the T1-weighted images

from rs-fMRI along with diffusion MRI (dMRI) measurements.

Study on 14 subjects showed a sensitivity of 40% and precision

of 52% while an accuracy of 88%. Not only the precision was

sub-optimal, the identified SOZs did not align with the expected

disease characteristics as bilateral SOZs were identified for patients

diagnosed with unilateral focal temporal lobe epilepsy, rendering

it irrelevant for pre-surgical screening. Zhang et al. (27) proposed

ICA-based automated method using unsupervised algorithm to

localize the SOZ. SOZ ICs were screened based on peripheral

noise IC removal, asymmetry, and temporal features (excluding

IC outside of frequency band 0.01–0.1 Hz). Consistency with

the resection surgery on 10 patients was reported. If we assume

consistency as true positive (TP), failure as FN and success in

rejecting non-SOZ IC as true negative (TN), and failure to reject

non-SOZ ICs as false positive (FP), then the results indicate

significant FPs. Banerjee et al. (17) are the most recent study in

the automation of SOZ localization. It uses six expert features

combined from Boerwinkle et al. (6) and Hunyadi et al. (1). This

technique reports high FPs.

Knowledge integration into DL models has been recently

explored in many domains (28, 29) including medical imaging (30)

for diagnosis, lesion, or organ segmentation with great success rate.

Expert knowledge can be integrated in two broad ways (28): (a)

scientific knowledge, through mathematical models as performed

in molecular dynamics analysis, or (b) experiential knowledge,

through logic rules. The current study falls in the second category.

To the best of our knowledge, this is the first study exploring

experiential knowledge integration with DL in epilepsy surgical

planning.

2 Materials and methods

2.1 Participants

A total of 52 consecutive patients with quality data of average

age 8 years 8 months (±5 years 4 months) were retrospectively

studied who were diagnosed to have RE based on International

League Against Epilepsy (ILAE) criteria (31), from our previously

published IRB-approved retrospective cohort data who had ic-

EEG and surgery. The evaluation involved rs-fMRI, continuous

video monitoring while electroencephalography (EEG) is being

performed, and anatomical 3T MRI as a part of standard MRI SOZ

localization protocol followed at Phoenix Children’s hospital (PCH)

for epilepsy surgery evaluation. From this published study, the three

imaging modalities were independently reviewed by two blinded

experts, a neurologist, and a neurosurgeon, to determine the SOZ

location in both anatomical MRI and rs-fMRI. For rs-fMRI, each

expert sorted independent components (ICs) into three categories:

NOISE, resting state network (RSN) and SOZ (Henceforth, class

labels are denoted by capitalized, bold, and italicized text). In cases

where there was any disagreement, a third reviewer was consulted

for the final determination.

Subsequently, each patient was subjected to ic-EEG-based

monitoring, which was independent of the rs-fMRI monitoring

result. A clear indication of SOZ through observation of ic-EEG

spikes determined the confirmed candidacy of the patient for

surgical resection, ablation, or disconnection. For all patients, the

SOZ ICs identified from rs-fMRI were manually verified by the

experts. Hence, the expert manual denotation of an IC as NOISE,

RSN, or SOZ, supported by ic-EEG and/or surgical outcome, is

considered as ground truth in this research.

For patients that did undergo surgery, the surgical location

was determined by the expert epilepsy surgery conference team

informed by the non-invasive imaging, including the expert-

identified rs-fMRI-based SOZ location, and ic-EEG monitoring

result. Validation of the manual SOZ determination was performed

through evaluation of seizure-free outcomes after surgical

alteration of the rs-fMRI identified SOZ corroborated with ic-EEG.

The patients were divided into three age groups to evaluate the

effect of age on the SOZ localization performance. Patients in all age

groups varied across many demographic and clinical characteristics

(Table 2). Surgical outcomes were evaluated using Engel scores

where Engel I meant seizure free, and Engel II meant at-most one

debilitating seizure in the first year after surgery.
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TABLE 1 Review of fMRI based IC sorting.

Problem Study N RE Age (years) IC class Reported
results

Epilepsy (23) A 322 63 Child (4–25) NA Sens = 85%, Acc =

71%, Spec = 71%

Detection (22) A 15 0 Adult (>18) NA Acc = 87.5%

(21) A 132 0 Adult (>18) EN Sens = 100%, Acc =

97.5%, Spec =

94.4%

SOZ (6) M 40 40 Child (1.5–19.8) EZ-SOZ Agreement with

iEEG derived SOZ

= 90%, Prec = 79%,

Sens = 93%

Localization (24) M 21 0 Adult (>18) SOZ NS

(25) M 29 29 Adult (>18) SOZ Concordance with

iEEG derived SOZ

= 72 %

(1) A 18 18 Adult (>18) SOZ Sens = 40%, Acc =

51%, Spec = 77%

(18) A 2093 0 Adult (>18) RSN Acc = 92%

(26) A 2164 0 Adult (>18) SOZ Lateralization of

epilepsy foci Acc =

90 % as compared

to video EEG

(19) A 14 14 Child (9–18) EZ Prec = 52%, Sens =

40%, Acc = 88%

(27) A 10 10 Adult (>18) SOZ Consistency with

physicians

assessment

(17) A 52 52 Child (0.25–18) RSN, SOZ Prec = 93%, Sens =

79%, Acc = 75%

This study A 52 52 Child (0.25–18) RSN, SOZ Prec = 93%, Sens =

89%, Acc = 84%

NA, not applicable; Acc, accuracy; Sens, sensitivity; Spec, specificity; Prec, precision; NS, not specified; EN, epilepsy networks; EZ, epileptogenic zone; M in the study column indicates manual,

A indicates automation.

2.2 Data acquisition and processing

The MRI images were obtained using a 3T MRI unit, Ingenuity

Philips Medical systems, equipped with a 32-channel head coil.

The rs-fMRI settings were configured with a TR 2,000 ms, TE

30 ms, matrix size 80 × 80, flip angle 80◦, and a total number

of 46 slices. Each slice had a thickness of 3.4 mm without

any gaps, and the in-plane resolution was set to 3 × 3 mm.

The acquisition process involved interleaved acquisition, with a

grand total of 600 volumes obtained across two 10-min runs,

culminating in a total acquisition time of 20 min. MELODIC

tool (32) was employed to analyze the rs-fMRI and extract

ICs using ICA (16). Preprocessing consisted of discarding the

initial five volumes to remove T1 saturation effects, applying a

high-pass filter at 100s, correcting for slice time, implementing

spatial smoothing with a full-width at half maximum of 1 mm,

and addressing motion artifacts through MCFLIRT (33), while

excluding non-brain structures. Linear registration was done

between the individual functional scans and the patient’s high-

resolution anatomical scan (34) which was further refined using

boundary-based registration (35).

2.3 Computational approach overview

The SOZ localization approach utilized two types of models: (a)

deep supervised classification model or DL model and (b) expert

knowledge integration (EKI) model. The approach combined the

result of these two models following three steps (Figure 1):

Step 1 Preprocessing: DL model used a labeled set of ICs,

where each IC, IL is labeled as RSN, SOZ, or NOISE. DL model

complexity drastically increases with input size potentially resulting

in more data requirement to avoid under-fitting. Moreover,

DL model expects all ICs to be of the same size. Hence, in

the preprocessing step, we resized each labeled IC, IL of size

709 × 1,006 × 3, to an image ILR of size 270 × 470 ×

3. ILR for use by the DL model, while IL was used by the

EKI. ILR gave the most optimized DL model with the best

accuracy for the given dataset, determined through hyperparameter

tuning (36).

Step 2 Training: In this phase, each RSN or SOZ IC

was relabeled as NOISE. The DL was trained to recognize

NOISE or NOISE classes. In parallel, each RSN and SOZ

IC was passed through the expert knowledge feature
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TABLE 2 Demographic and clinical characteristics of participants, including sex distribution, age at onset, surgical procedures, seizure frequencies,

seizure outcomes, and ethnicity breakdown.

Variable All
n = 52

Age 0–<5,
n = 20

Age 5–<13,
n = 18

Age 13–18,
n = 14

Sex (% female) 55.8% 65% 55.5% 43%

Age at onset in months (s.d.) 60 (50) 13 (13) 68 (36) 118 (32)

Surgery (%) 48% 55% 28% 78.6%

Seizure frequency at resting state

evaluation per month (s.d.)

145 (493) 303 (785) 54 (92) 37 (72)

Seizure frequency after surgery

(s.d.)

4 (14) 3 (10) 0.5 (1) 7 (20)

Seizure free (%) 64% 73% 60% 50%

Ablation 28.8% 25% 16.6% 50%

Resection 13.4% 15% 11.1% 14.2%

Disconnection 3.8% 10% 0% 0%

Ethnicity-Asian 5.7% 0% 11.1% 7.1%

Ethnicity-Black/AA 5.7% 5% 5.5% 7.1%

Ethnicity-Hisp/Lat 23% 10% 33.3% 28.5%

Ethnicity-NA/Indian 3.8% 10% 0% 0%

Ethnicity-White 59.6% 70% 50% 57.1%

extraction mechanism, and a weight optimization was

applied to obtain the best linear combination of expert

knowledge components that were most discriminative between

RSN and SOZ.

Step 3 Testing: A test patient’s IC, I, was passed through

DL and EKI models. EKI provided a confidence score ρ for

I being SOZ. If DL categorized IR as NOISE, I retained EKI

labels. However, if DL labeled IR as NOISE, I’s classification then

depended on ρ. Only if ρ > 0.9, I was marked as SOZ, else it

retained DL label of NOISE. Having marked SOZ ICs, the SOZ

was localized by designating the largest activation cluster, extracted

using Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) (37).

2.3.1 Training phase: noise detection using labels
through supervised learning

The ICs IL were relabeled to form IL{N} where ICs were

either NOISE ICs or NOISE (RSN/SOZ). Five strategies with an

80-20 train/test split of the entire data were tested to classify

IL{N} into the new class categories: (a) 2D convolution neural

network (CNN), (b) multilayer perceptron similar to (18), (c)

transfer learning using VGG-16 Imagenet model (38), (d) problem

reduction by treating the BOLD timeseries as images (39), and

(e) vision transformer (ViT). Validation result showed that the

2D CNN had the best precision and sensitivity in determining

NOISE ICs (comprehensive results in Supplementary Document).

Consequently, we opted for the utilization of the 2D CNN

for the classification of noise ICs. The hyperparameters of the

2D CNN were obtained using the Keras-Tuner’s hyperband

algorithm, with the objective of minimizing the validation loss.

The hyperparameter tuning process involved exploring various

configurations:

• Number of convolution layers: [3, 4, 5],

• Number of units or filters per convolution layer: 32–512, with

a default of 128,

• Number of neurons in the dense layer: 192–1,024, with a step

of 256,

• Learning rates: 0.01, 0.001, or 0.0001,

• Dropout rates: 0.2, 0.33, 0.4, 0.5, or 0.66,

The optimized hyperparameter values, determined through the

Keras-Tuner, were as follows: three convolution layers, with 64, 64,

and 256 3× 3 filters in each respective layer; a dense fully connected

layer with 704 neurons; a learning rate of 0.0001; and a dropout

rate of 0.33. These specific hyperparameter values were selected to

enhance the performance of the 2D CNN in accurately classifying

noise ICs. Keras’s image data generator was used to create batches

of both NOISE and NOISE IC images. IC images were resized

from I to IR using “flow from directory” method. “Binary cross-

entropy” loss function along with “Adam” optimizer was chosen.

Potential overfitting was addressed using dropout regularization

and “early_stopping” strategy. Activation function “ReLU” was

chosen for input and hidden layers and “Sigmoid” function for the

output layer. Given the characteristics of our dataset, which features

dark backgrounds and required extraction of sharp features while

controlling variance and computational complexity, we inserted

a max pooling layer of 2 × 2 after every convolution layer

(36).
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FIGURE 1

Overview of the proposed SOZ IC localization. (Top panel) Preprocessing the data by reducing the image dimensions to alleviate computational

overhead. (Second panel-top) training involves relabeling RSN and SOZ as non-noise components. (Second panel-bottom) These components are

then subjected to CNN. Additionally, we establish an expert knowledge integration model (EKI), which is trained based on the extracted expert

knowledge from RSN, and SOZ components. (Third panel) testing involves classification task of rs-fMRI ICs into three categories: NOISE, RSN, and

SOZ using both DL and expert knowledge. (Bottom panel) Localization of SOZ involves identification of biggest cluster among a patient’s SOZ slices.

The operator ◦ denotes dot product.
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FIGURE 2

Three types of information are encoded in rs-fMRI: NOISE, RSN, and SOZ. Each of these categories adheres to specific rules that define their

classification.

2.3.2 Training phase: expert knowledge on
rs-fMRI IC

Expert epileptologists use the RSN, NOISE, and SOZ indicators

to manually sort the ICs (Figure 2) as compiled from the

studies by (1) and (16). In our methodology, we encoded

the SOZ specific expert knowledge into the SOZ localization

mechanism. This phase was subsequently divided into two

steps.

(a) Extracting brain slices: Brain slices were derived from RSN

and SOZ ICs through template matching. We used the Montreal

Neurological Institute’s 152 brain template (MNI152) for this

purpose. With the help of the coordinates given by template

matching, we extracted brain slices which enabled the subsequent

extraction of features guided by expert knowledge.

(b) Extraction of expert knowledge: The expert knowledge about

SOZ characteristics (Figure 2) is represented using the following

features, Fex:

1. Fex(1) Number of clusters: SOZ IC ideally has one cluster

of activation that spreads asymmetrically in one hemisphere,

whereas an RSN IC consists of multiple (at least 2) clusters of

activation which are spread symmetrically across the two brain

hemispheres.

2. Fex(2) Activation extended to ventricles: A SOZ has activation

extended from gray matter toward ventricles through the white

matter.

3. Fex(3) Dominant frequencies: SOZ’s BOLD signal power

spectra exhibit dominant frequencies >6 Hz.

4. Fex(4) Sparsity in frequency domain: The rs-fMRI SOZ power

spectrum is sparse with dominant frequency much more spread

out throughout the spectrum than RSN.

The abovementioned features were extracted using the

following method to form the feature vector Fex for each IC, IL.

Fex extraction method:

Fex(1) Number of clusters: From each IC, brain slices were

extracted (Figure 3). From each slice, the number of clusters was

estimated using DBSCAN (37). This approach had two adjustable

parameters: neighborhood, which defined the distance metric and a

value called ǫ, and vmin, which determined theminimumnumber of

neighboring voxels. Voxels with more than vmin neighbors within

the ǫ distance were considered core points and formed a cluster.

Voxels that were not core points but were within ǫ distance of a core

point were classified as border points and assigned to the nearest

core point’s cluster. All other points were disregarded. Clusters were

formed by combining core points that were within ǫ distance of

each other. Additionally, we set a threshold of 135 pixels, counting

only those clusters that surpassed this threshold to determine the

total number of clusters. The output of this step was the number of

clusters in each IC slice (Figure 3).

Fex(2) Activation extended to ventricles: To identify the

activation of the SOZ that extended from gray matter toward

the ventricles through the white matter, a Sobel filter-based edge
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FIGURE 3

Expert feature extraction and integration process.

detection technique was applied, which extracted the contours for

each slice, with the white matter exhibiting the most prominent

contour within the slice (17). To obtain the ventricular regions,

we applied edge detection to determine brain boundary. The

ventricles run throughout the brain; however, they are less

prominent in the slices that are toward the brain surface. Hence,

we selected slices that are near the base of the brain. In these

slices, the ventricle is more prominent and interrupts the continuity

of the image. As such the contour detection gives multiple

brain boundary contours, identified through the Sobel filter. The

ventricular regions were within the convex hull of the brain

boundary contours but did not intersect any brain boundary

(Figure 3). Subsequently, a comprehensive analysis was conducted

to determine whether the larger clusters (with a size exceeding 135

pixels) had the overlapping with the white matter and extension

toward the ventricles. In the overlapping process, from each

slice of an IC, both clusters and contours were obtained. The

presence of an overlapping cluster could potentially impede the

contour detection algorithm, hindering the extraction of white

matter and blood vessel contours. In the initial pass through

the ICs, we obtained a version of each slice devoid of clusters,

serving as a basis for contour identification. The algorithm

then underwent a subsequent pass through each slice of an IC,

detecting clusters and evaluating their intersection with the white

matter.

Fex(3) Dominant frequencies and Fex(4) sparsity in

frequency domain: For temporal SOZ characteristics, ICs

were analyzed for activelet and sine dictionary sparsity in

their time courses. For calculating the sparsity in activelet

basis, the BOLD signal was divided into windows of length

256 samples. From every window, four levels of activelet

transformation coefficients using the “a trous” algorithm

with exponential-spline wavelets were extracted (1). The

Gini Index metric was used for activelet coefficients and

sine dictionary sparsity evaluation in the frequency band of

0.01–0.1 Hz.

2.3.3 Training phase: balanced dataset creation
The data distribution is composed of ∼51% NOISE, 43%

RSN, and merely 5% SOZ occurrences. To overcome class

imbalance after the feature extraction process, synthetic

SOZ features were created using SMOTE (40). Given the

constraint of a restricted quantity of available SOZ ICs, ∼5

ICs per subject, SMOTE identified authentic SOZ IC samples

within the feature space and performed linear interpolation

of features.

2.3.4 Training phase: expert knowledge
combination logic

Ambiguity is inherent in expert knowledge, given the

significant individual variance in seizure onset characteristics.

Hence, Fex could not be used in isolation to represent expert

knowledge, and a carefully crafted combination was necessary.

We utilized the subset of ICs, IL{R,S} that is labeled RSN or SOZ

to configure a linear combination logic for the expert knowledge

vector FIex for an IC I that gave the best discriminative power

between these two classes. For each IL{R,S}, we defined yi = −1 if it

was RSN and yi = 1 if it was SOZ.We derived an expert knowledge

weight vector ωex, of size |Fex| ×1 that:

Minimizes:

|IL{R,S}|
∑

i=1

(

1− yi
ωex ◦ (F

i
ex)

‖Fiex‖

)2

,

such that:

|Fex|
∑

i=1

ω
i
ex = 1,
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where Fiex is the expert knowledge vector of the ith IC in ILR,S, ‖Fiex‖

is the L2 norm of a vector, and ◦ denotes the dot product operator

(Figure 3).

2.3.5 Testing phase: SOZ localization approach
To obtain the robust estimate of our approach’s performance

on patient’s data, we employed a leave-one-out cross-validation

strategy, wherein each patient was given an opportunity to

represent the entirety of the test datasets. This method of cross-

validation resulted in the most variance and a tight confidence

interval through this approach, indicated robust performance

across all patients. All rs-fMRI ICs of the test subject, I, went

through a dual assessment using pre-trained DL model with IR and

EKI model with I. The DL model classified IR as either NOISE or

NOISE. In parallel, EKI model assigned SOZ or RSN labels to the

ICs I based on their confidence score ρi =
ωex◦(F

I
ex)

‖FIex‖
, where ωex is

the weight configuration from the training phase of the EKI model.

The test IC I is assigned the label SOZ under two conditions:

a) IR was classified as NOISE by DL model, but I was classified

as SOZ by EKI model, or

b) IR was classified as NOISE by DL model, but I was classified

as SOZ with a classification score ρ > 0.9.

Otherwise, I was not marked as SOZ. At this point, the

knowledge component with the highest contribution, ω
j
exF

I
ex(j),

in determining the SOZ was subsequently highlighted as the

rationale/explanation behind selecting a specific IC as the SOZ.

The output of this step was a set ISOZ of ICs ISOZi ∈ ISOZ that

were marked as SOZ. The SOZ ICs were then further processed

through the brain slice extraction and DBSCAN mechanism to

obtain a set of clusters Ci ∀ I
SOZ
i ∈ ISOZ. The localized SOZ was the

largest cluster in each IC in ISOZ,

SOZ area for ISOZi = argmax
j

{
∣

∣

∣
C
j
i

∣

∣

∣

}

(1)

3 Results

We evaluated: (a) efficacy of our approach, its variation across

age and sex and compare with state-of-the-art techniques, (b)

significance of localized SOZ through correlation with surgical

outcomes, and (c) knowledge ablation to show relative importance

of spatial and temporal expert knowledge in SOZ identification.

3.1 Comparative techniques

We chose the following categories for comparison with our

proposed approach supervised learning with both labels and expert

knowledge (SLLEK):

1) Supervised learning with labels using CNN (SLL-CNN):

We utilized a 2D CNN-based deep learning technique for

comparison, solely using the labeled dataset in a supervisedmanner

without incorporating any form of expert knowledge encoding. We

also implemented cost-sensitive learning in CNN to ensure equal

significance across all three classes during gradient updates.

2) Supervised learning with labels using ViT (SLL-ViT): We

employed another DL approach of vision transformer (ViT) for

our comparative analysis. This methodology also relied on the

labeled dataset, embracing a supervised learning paradigm without

integrating any explicit encoding of expert knowledge. To optimize

the model’s performance on our dataset, we leveraged Optuna

to identify the most effective hyperparameters. Furthermore, to

address class imbalance issue within the dataset, we set the weight

parameter of the loss function to the computed class weights. This

is particularly crucial when certain classes are underrepresented

(SOZ in our case), as it helps the model to give more emphasis

to the minority classes, preventing them from being overshadowed

by the majority classes. Additionally, in order to prevent ViT

from suffering from gradient explosion and gradient vanishing

issues, we implemented gradient clipping and batch normalization,

respectively.

3) Statistical pattern learning with expert knowledge (SLEK):

This methodology was inspired by Hunyadi et al. (1) which uses

expert-guided features to facilitate model learning. To ensure an

unbiased comparison with our own approach, we also applied

the Synthetic Minority Over-sampling Technique (SMOTE) to

generate ICs endowed with SOZ features, thereby achieving

balance among the three classes (implementation details in the

Supplementary Document).

4) Unsupervised learning with expert knowledge

(ULEK): This approach was inspired by EPIK (17),

which employs a cascade of six expert rules in a waterfall

technique for IC classification (detailed implementation in

the Supplementary Document).

3.2 Evaluation metrics

We employed a 2-fold approach: (a) We assessed the

agreement between SOZ-labeled ICs using our technique and

the surgically targeted SOZ location for each Engel score

group for 25 patients with available surgical resection/ablation

outcomes in our dataset. (b) For all 52 patients, we validated

the accuracy of generated labels from various approaches against

the expert’s sorted labels. The evaluation was conducted using

commonly employed metrics such as accuracy, precision, and

sensitivity (1, 25, 27).

3.3 Statistical methods

Statistical methods were utilized to derive the significance

of (a) the effect of age and sex on the SOZ identification

performance and (b) the difference in standard metrics among

algorithms.

For the first aim, we utilized a mixed effects model,

incorporating age and sex as predictors, along with their combined

effect, and a random effect on the patient.
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TABLE 3 SOZ identification performance metrics.

Metrics Method Age
0–<5,
N = 20,
EOK

Age
5–<13,
N = 18,
EOK

Age
13–18,
N = 14,
EOK

Male
N = 23,
EOK

Female
N = 29
EOK

Overall
results
EOK

Our
approach
compares
p-value

Accuracy SLL-CNN 50% 38.8% 42.8% 39.1% 41.9% 46.1% 0

SLL-ViT 40% 27.7% 35.7% 39.1% 31% 34.6% 0.0007

ULEK 90% 72.2% 64.2% 78.2% 72.4% 75% 0.08

SLEK 31.5% 61.5% 71.4% 60.8% 44.8% 50% 0

SLLEK 80% 88.8% 85.7% 91.3% 79.3% 84.6% NA

(+30%) (+50%) (+42%) (+52%) (+37%) (+38)

Precision SLL-CNN 90.9% 100% 75 % 90% 86.6% 88.8% 0.02

SLL-ViT 88.8% 100% 71.4% 90% 81.8% 85.7% 0

ULEK 94.7% 100% 75% 94.7% 91.3% 92.8% 0.2

SLEK 85.7% 100% 83.3% 93.3% 86.6% 89.6% 0.03

SLLEK 94.1% 100% 85.7% 95.4% 95.8 % 93.6% NA

(+3%) (+0%) (+10%) (+5%) (+9%) (+5%)

Sensitivity SLL-CNN 52.6% 38.8% 50% 40.9% 44.8% 48.9% 0

SLL-ViT 42.1% 27.7% 41.6% 40.9% 33.3% 36.7% 0

ULEK 94.7% 72.2% 75% 81.8% 77.7% 79.5% 0.1

SLEK 33.3% 61.1% 83.3% 63.6% 48.1% 53.6% 0

SLLEK 84.2% 88.8% 100% 95.4% 82.1% 89.7% NA

(+31%) (+50%) (+50%) (+54%) (+37%) (+41%)

F1 score SLL-CNN 66.6% 55.9% 60% 55.3% 59% 63% 0

SLL-ViT 57.1% 43.3% 52.5% 56.2% 47.3% 51.3% 0

ULEK 94.7% 83.8% 75% 87.8% 83.9% 85.6% 0.041

SLEK 47.9% 75.8% 83.3% 76.1% 61.8% 67% 0.01

SLLEK 88.8% 94% 92.2% 95.4% 88.4% 91.6% NA

(+22.2%) (+38.1%) (+32.2%) (+40.1%) (+29.4%) (+28.6%)

Expert knowledge (EoK) denotes the effect of merging expert knowledge and labels in our approach. Supervised learning with labels (SLL), Supervised learning with expert knowledge (SLEK),

unsupervised learning with expert knowledge (ULEK), and supervised learning with both labels and expert knowledge (SLLEK). Bold values indicate the results of our technique.

TABLE 4 Performance comparison of methods across surgical procedures and Engel outcomes.

Approach Ablation procedures
(N = 15)
Sensitivity

Resection
procedures (N = 15)

Sensitivity

Engel I outcomes
(N = 16)
Sensitivity

Engel II outcomes
(N = 5)

Sensitivity

SLL 66.6% 57.1% 56.2% 80%

ULEk 33.3% 42.5% 43.7% 60%

SLEK 73.3% 71.4% 75% 100%

SLLEK 93.3% 85.7% 93.7% 100%

Supervised learning with labels (SLL), supervised learning with expert knowledge (SLEK), unsupervised learning with expert knowledge (ULEK), and supervised learning with both labels and

expert knowledge (SLLEK). Bold values indicate the results of our technique.

For the second aim, we computed the variance of the evaluation

metrics across various subsets of test data obtained through

categorization by age and sex. The variance of each metric

in the techniques that are closest in performance to SLLEK

showed < 10% difference. Moreover, we utilized the Kolmogorov-

Smirnov (KS) test (41) to verify that the distribution of evaluation

metrics across the subsets of test data came from a normal

distribution with significance value α < 0.05. The p-value of
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the KS test is provided in Supplementary Table 3 with a high

p-value indicating that the KS test could not reject the null

hypothesis that the data came from a normal distribution. Since

the variance of the evaluation metrics for the closest methods

is similar and the metrics across test data subsets fit normal

distribution, we utilized a one-sided t-test to evaluate the statistical

significance of the difference between our approach and other

comparative techniques. The 95% confidence p-values are provided

in Table 3.

3.4 Performance evaluation

Our approach (SLLEK) outperformed the other techniques

across all evaluation metrics, as illustrated in Table 3 for the given

patient population, warranting further investigation. The results

encompassed standard metrics evaluations, considering variations

in age and sex.

We observed the impact of incorporating expert knowledge

with DL in our approach, quantified as the difference between

SLLEK and SLL (EoK). The last column in Table 3 provides

the statistical significance of the difference between SLLEK and

comparative techniques implemented on our dataset.

SLLEK exhibited high sensitivity, indicating a low false negative

(FN) rate compared to other methods. Proficiency in accurately

identifying the correct SOZ ICs suggests that expert knowledge

integration with DL enhances the SOZ ICs identification and

warrants further exploration.

SLLEK demonstrated higher accuracy, precision, and

sensitivity across all age groups and sex distributions. In contrast,

SLL and SLEK exhibited significant variability based on age and

sex. ULEK emerged as the second-best performer after SLLEK. The

p-values presented in Table 3 highlight the statistically significant

differences between SLLEK and all other comparative techniques.

Nevertheless, statistically, there is an insignificant difference

between SLLEK and ULEK.

Comparison with state-of-the-art computer vision technique

ViT is also presented in Table 3. As the results show, ViT

did not perform good for SOZ localization. This observation

aligns with the understanding that ViTs may face challenges

in generalizing well with smaller datasets. It is noteworthy

that CNNs, in contrast, exhibit better generalization on smaller

datasets, yielding better accuracy. This is attributed to the inherent

capability of CNNs to excel in learning from limited data

(42, 43).

Overall, the outcomes suggest that our approach has the

potential to enhance the manual sorting workflow for the surgical

team, positioning it as a promising and effective tool in detecting

SOZ for pediatric RE patients.

3.5 Performance with surgical outcomes

Of the 25 subjects who had surgery to remove rs-fMRI

determined SOZ, 16 (64%) achieved seizure freedom (Engel

I), and 7 (28%) experienced significantly reduced postoperative

TABLE 5 SLLEK knowledge ablation study (accuracy, F1 score, and

change in overall F1 score).

Metrics Accuracy F1 score Change in
F1 score

SLLEK without

activelet sparsity

84.6% 91.6 % 0%

SLLEK without sine

sparsity

84.6% 91.6 % 0%

SLLEK without nos.

clusters

75% 85.8% ↓ 6.3%

SLLEK no white

matter overlap

50% 66.6% ↓27.4%

Supervised learning with both labels and expert knowledge (SLLEK). Bold values indicate the

results of our technique.

seizure frequency (Engel II). This indicated that the removed

regions likely represented a substantial portion of the epileptogenic

network.

SLLEK showed the highest sensitivity of 93.3% for

patients undergoing minimally invasive ablation surgery,

making it a promising option in such cases. For patients

undergoing resection, SLLEK maintained a consistent

sensitivity of 85.7%, outperforming other techniques for the

dataset.

Furthermore, when analyzing patients with Engel I outcome,

SLLEK exhibited a 93% agreement with expert sorting, reinforcing

its suitability and reliability as a pre-surgical screening tool

(Table 4).

3.6 Knowledge ablation studies

SLLEK’s performance could be attributed to the influence

of each expert knowledge component on the accuracy of

SOZ identification. To better understand its capabilities, we

assessed the impact of removing specific knowledge components

(Table 5) from SLLEK in relation to standard metrics used in

Table 3.

SLLEKwithout temporal features: The BOLD signal temporal

features were removed one by one from the expert knowledge

model of SLLEK.We created two unique configurations: (a) SLLEK

without activelet domain sparsity and (b) SLLEK without sine

domain sparsity. Table 5 reveals no significant impact on metrics,

indicating that removing temporal features had limited effect on

the classification of patient’s ICs with SLLEK.

SLLEK without spatial features: The spatial features were

removed one by one from the expert knowledgemodel to create two

unique configurations: (a) SLLEK without the number of clusters,

and (b) SLLEK without white matter overlap. An 11% reduction in

accuracy and a 6% drop in F1 score were noted when the number

of clusters feature was removed from the analysis. However, when

the white matter overlap feature was omitted, a substantial 41%

decrease in accuracy and a 27% reduction in the F1 score were

observed. These findings underscore the pivotal role of white

matter overlap as the most influential feature in the identification

of the SOZ.
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4 Discussions and limitations

The results suggest an approach that combines expert

features, and AI for SOZ localization may possess the capability

to generate connectivity classifications that align with ic-EEG

and surgical outcomes. This stems from the design where

expert knowledge integration model facilitates the derivation

of weight contributions for each expert feature for SOZ

identification. This provision not only enables explanations

for the selection of an IC for SOZ but also amplifies its

potential as an advanced tool for SOZ identification in clinical

contexts. By furnishing transparent rationales for its classifications,

our approach may equip the surgical team with invaluable

insights.

The interplay between the deep supervised classification

model and expert knowledge integration components in the

SOZ localization approach is instrumental in achieving superior

localization accuracy. The DL model excels in discerning noise

images, as evidenced by its classification capabilities. Our PCH

dataset of 52 patients had a total of 5,616 IC images where

only 5.6% of these images represented SOZ ICs, while 51.1%

were attributed to noise ICs, and 43.1% to RSN ICs. Due

to such high data imbalance, where majority class is 16.6

times more prevalent than minority class, commonly used

imbalanced data handling techniques such as cost-sensitive

training failed to provide good performance as seen in SLL-CNN

or SLL-ViT. Similarly, under-sampling the majority classes to

balance the data would have resulted in significant information

loss from the majority class, potentially resulting in overall

performance loss.

Due to balanced data between Noise and RSN ICs, DL could

learn their distribution. However, due to the limited availability of

SOZ ICs in the dataset, traditional DL techniques faced challenges

in learning the intricate features of these rare events from such

a small subset of SOZ data. To overcome this limitation, a need

arose for a methodology that could leverage the wealth of expert

knowledge on SOZ characteristics available in the literature review.

Additionally, relying solely on expert knowledge also exhibits

a sub-optimal outcome as it struggles to capture the intricate

details of brain networks, possibly because of the overlapping

characteristics between noise and SOZ ICs. For instance, an

activation located in the white matter is associated with noise,

whereas an activation originating in the gray matter, extending

into the white matter and reaching the ventricles, is indicative

of SOZ. The minimal overlap of activation on gray matter

can sometimes make these SOZ activations appear as a noise.

This is a domain where DL excels in encoding the nuances of

noise ICs more effectively, benefiting from a slightly larger data

of noise ICs to learn and represent their characteristics. This

unique integration of DL for noise IC classification and EKI

for SOZ IC classification addresses the performance limitations

inherent in relying solely on either DL or EKI strategies,

offering a more robust and comprehensive solution to SOZ IC

identification.

While our dataset is one of the largest in recent literature

for pediatric patients with RE, a larger study is necessary to

address the potential impact of variability in fMRI preprocessing

and motion correction techniques, which can differ across centers.

Before being used with minimal expert supervision, further testing

of this technique in real-world settings is necessary, considering its

intended application in local epilepsy care centers.

5 Conclusion

The most effective treatment for RE is surgical resection

or ablation of the SOZ which requires accurate localization

to avoid functional brain network damage and developmental

impairments. While rs-fMRI, a non-invasive imaging technique,

holds promise for SOZ localization and guiding iEEG lead

placement, its clinical integration is hindered by the lack of

expertise in manual seizure onset analysis. Additionally, manual

sorting of ICs obtained from rs-fMRI data using ICA is a

challenging and subjective task as only a small fraction (<5%)

of the ICs is related to the SOZ. This makes the process time-

consuming and limits the reproducibility and availability of this

non-invasive technique. Accurate, automated, and reproducible

SOZ localization is imperative for successful surgical treatment

of RE while avoiding functional brain network damage and

resultant developmental impairments. This study shows how expert

knowledge can be integrated with powerful supervised learning

approaches to automate SOZ localization. Reliable performance on

a large dataset of children with RE, stratified across age, sex, and

corroboration with 1-year post operative Engel outcomes for rs-

fMRI-guided surgery increases confidence of potential for clinical

integrability of the approach. The activations initiating in gray

matter, extending through white matter, and ending in vascular

regions were seen as the most discriminative expert identified SOZ

characteristics. The prospect of automating SOZ localization using

advanced AI techniques and existing expert knowledge not only

addresses existing challenges in manual analysis but also suggests

a transformative shift toward more accessible, trustworthy, and

reproducible clinical application in epilepsy care. In future, a multi-

center study to evaluate general applicability of the technique

irrespective of scanning protocols and measurement devices is

contemplated.
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