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Background: Fragile X-associated tremor/ataxia syndrome (FXTAS), a 
neurodegenerative disease that affects carriers of a 55-200 CGG repeat expansion 
in the fragile X messenger ribonucleoprotein 1 (FMR1) gene, may be  given an 
incorrect initial diagnosis of Parkinson’s disease (PD) or essential tremor (ET) due 
to overlapping motor symptoms. It is critical to characterize distinct phenotypes 
in FXTAS compared to PD and ET to improve diagnostic accuracy. Fast as possible 
(FP) speed and dual-task (DT) paradigms have the potential to distinguish 
differences in gait performance between the three movement disorders. 
Therefore, we sought to compare FXTAS, PD, and ET patients using quantitative 
measures of functional mobility and gait under self-selected (SS) speed, FP, and 
DT conditions.

Methods: Participants with FXTAS (n  =  22), PD (n  =  23), ET (n  =  20), and controls 
(n  =  20) underwent gait testing with an inertial sensor system (APDM™). An 
instrumented Timed Up and Go test (i-TUG) was used to measure movement 
transitions, and a 2-min walk test (2MWT) was used to measure gait and turn 
variables under SS, FP, and DT conditions, and dual-task costs (DTC) were 
calculated. ANOVA and multinomial logistic regression analyses were performed.

Results: PD participants had reduced stride lengths compared to FXTAS and ET 
participants under SS and DT conditions, longer turn duration than ET participants 
during the FP task, and less arm symmetry than ET participants in SS gait. They also 
had greater DTC for stride length and velocity compared to FXTAS participants. 
On the i-TUG, PD participants had reduced sit-to-stand peak velocity compared 
to FXTAS and ET participants. Stride length and arm symmetry index during the 
DT 2MWT was able to distinguish FXTAS and ET from PD, such that participants 
with shorter stride lengths were more likely to have a diagnosis of PD and those 
with greater arm asymmetry were more likely to be diagnosed with PD. No gait 
or i-TUG parameters distinguished FXTAS from ET participants in the regression 
model.

Conclusion: This is the first quantitative study demonstrating distinct gait and 
functional mobility profiles in FXTAS, PD, and ET which may assist in more 
accurate and timely diagnosis.
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Introduction

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a 
progressive neurodegenerative disease that affects carriers of a 
‘premutation’ size (55–200) CGG repeat expansion in the fragile X 
messenger ribonucleoprotein 1 (FMR1) gene (1). Although the 
characteristic motor features are intention tremor and cerebellar gait 
ataxia, there is high phenotypic variability with some carriers also 
demonstrating parkinsonism, neuropathy, psychiatric symptoms, and/
or executive function deficits and dementia (1–5). Because FXTAS was 
first described relatively recently (1) and has high phenotypic 
variability and overlap of symptoms with other more well-known 
movement disorders, patients are frequently given an incorrect initial 
diagnosis (6). This is especially the case when patients are seen by a 
primary care physician or general neurologist, or at a non-Fragile X 
clinic where FXTAS may not be readily recognized. At onset, FXTAS 
is most commonly diagnosed as Parkinson’s disease (PD) or essential 
tremor (ET), due to overlapping motor symptom profiles and lack of 
physician awareness of the disorder (6). Inaccurate diagnosis delays 
the initiation of targeted treatments and the provision of genetic 
counseling, negatively impacting health outcomes for patients and 
their families. Distinguishing the FXTAS disease profile, in terms of 
gait and functional mobility, from those of PD and ET may be critical 
in assisting with the differential diagnosis. We previously reported that 
tremorography using an inertial sensor system was able to distinguish 
between these three movement disorders, where higher kinetic tremor 
was found in FXTAS compared to PD patients and more bradykinesia 
was found in FXTAS compared to ET patients (7). Thus, quantitative 
measures of the prominent motor features of FXTAS, namely kinetic 
tremor and cerebellar gait ataxia, captured via wearable sensor 
technologies are likely to be  beneficial in assisting clinicians with 
diagnostic accuracy.

Gait impairments are a common feature in FXTAS that can lead 
to significant disability. Our group first characterized the gait deficits 
in a small cohort of FXTAS participants during self-selected (SS) 
speed walking using an instrumented Timed Up and Go test (i-TUG) 
and found deficits in gait speed, rhythm, cycle phase, and variability 
as well as movement transitions compared to healthy controls (8). PD 
participants have shown similar gait deficits during SS walking using 
the i-TUG (9–15) and GAITRite® walkway (16), with the addition of 
abnormalities in the domain of gait asymmetry in arm swing range of 
motion and stride length (9). Reduced stride velocity and cadence and 
increased double support time and gait asymmetry have been found 
in ET participants compared to controls during standard walking on 
the GAITRite® walkway (17–19). Our group recently used an 
instrumented 2MWT under SS, fast as possible (FP) speeds, and with 
the addition of a cognitive dual task (DT) in FXTAS and found 
reduced stride length and velocity, swing time, and peak turn velocity 
and greater double limb support time and number of steps to turn as 
compared to controls under all three conditions. During the FP 
condition, stride length variability was increased, and cadence was 

reduced in FXTAS participants. Additionally, stride velocity variability 
under FP gait was significantly associated with the number of self-
reported falls in the last year (20). Studies investigating FP walking in 
PD report reduced stride length and stride velocity and increased 
double support time compared to controls (21–23). No studies to date 
have examined gait under fast speed walking conditions in ET. DT 
cognitive and motor paradigms have been used previously to explore 
the interplay between cognition and gait in PD (24), ET (18), and 
FXTAS (20). PD participants have shown decreased gait velocity, 
stride length and swing phase time, and increased gait variability 
during DT gait testing (25–27), and similar interference effects have 
been seen in ET (28). We previously found greater dual task costs 
(DTC) of a verbal fluency task on peak turn velocity in men with 
FXTAS compared to women with FXTAS and controls (20). However, 
the gait profiles of FXTAS, PD, and ET patients have never been 
directly compared. This information is critical to inform clinicians of 
the distinct phenotypes in FXTAS compared to PD and ET, and aid in 
accurate diagnosis. Therefore, the objective of this study was to 
compare the gait profiles in FXTAS, PD, and ET using quantitative 
measures of gait during SS and FP speeds, and a DT cognitive-motor 
condition to determine whether these measures may be sensitive for 
distinguishing FXTAS from PD and ET.

Methods

Participants

FXTAS, PD, and ET participants were recruited through the 
Parkinson Disease and Movement Disorders Clinic at Rush University 
Medical Center (RUMC). Inclusion criteria for participants with 
movement disorders were: (1) A diagnosis of only one of these 
disorders made by a movement disorders neurologist at RUMC, (2) a 
FMR1 gene test showing one allele with 55–200 CGG repeats for 
FXTAS participants and < 55 repeats on both alleles for PD and ET 
participants, (3) symptom onset at ≥ age 50, (4) mild to severe tremor, 
and (5) mild to moderate parkinsonism for PD participants with 
Hoehn & Yahr staging of PD score ≤ 3 (29). Exclusion criteria were: 
(1) A prior history of stroke with focal neurological deficit or any 
other neurological or muscular disease, (2) seizure disorder or past 
head trauma resulting in structural brain damage, (3) deep brain 
stimulation surgery, (4) presence of dyskinesia on neurological exam, 
and (5) clinical diagnosis of dementia as determined by the neurologist 
and/or neuropsychologist. Twenty healthy control subjects were 
recruited from RUMC or from the community. Inclusion criteria 
were: (1) a normal neurological examination, and (2) a FMR1 gene 
test showing both alleles with <55 CGG repeats. Exclusion criteria 
were the same as for the FXTAS, PD, and ET participants, but also 
included a significant history of tremor, balance problems, falls, or 
dizziness. All participants were required to be between 50 and 90 years 
of age; this range was chosen because FXTAS typically develops after 
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age 50. This study was approved by the RUMC Institutional Review 
Board, and all participants gave written informed consent.

Gait assessments

Quantitative gait analysis was performed during a 25-meter 
instrumented 2-min walk test (2MWT) using the APDM Mobility 
Lab™ six inertial sensor system (APDM™; Oregon; version 1) under 
three conditions: (1) self-selected speed (SS), (2) fast as possible speed 
(FP), and (3) dual-task (DT). The DT condition involved the 
participant performing a verbal fluency task (Animal Naming) during 
the SS 2MWT. FP and DT conditions were used to create gait “stress” 
conditions that might amplify differences between the three 
movement disorders under study. Variables were selected from the five 
key gait domains thought to reflect independent features of neural 
locomotor control in older adults (30, 31), including (1) gait pace 
(stride length and velocity), (2) rhythm (cadence), (3) gait variability 
(stride length, stride velocity, and cadence variabilities), (4) gait cycle 
phase (percentage of gait cycle spent in double limb support and swing 
phases), and (5) gait asymmetry [stride length asymmetry and arm 
symbolic symmetry index (32)]. Stride length asymmetry was 
calculated as a percentage via the following formula: 

( )
( )

left right

left right

stride length stride length
100.

max stride length ,stride length

−
×  Higher values of both 

gait asymmetry variables indicate greater asymmetry. Intra-individual 
gait variability was determined by the coefficient of variation 

(standard deviation

mean
×100)  for each gait parameter. A movement 

transition domain consisting of turn duration, and number of steps to 
turn was also created as previously described (8) to ascertain whether 
these were different among the three movement disorders. The level 
of interference of the cognitive DT on gait performance, or the dual-

task cost (DTC), was calculated as DT SS

SS

−
×100 . In addition, a 

validated and reliable instrumented Timed Up and Go (i-TUG) was 
performed six times as previously described (8) and the mean values 
for sit-to-stand and turn-to-sit measures were calculated.

Cognitive assessments

Four measures of executive function were administered: the 
Behavioral Dyscontrol Scale II (BDS-II), the Controlled Oral Word 
Association Test (COWAT), the Animal Naming test, and the Symbol 
Digit Modalities Test (SDMT). The BDS-II is a measure of attention 
and inhibitory control of voluntary motor behavior (33) and the 
COWAT and Animal Naming tests are measures of verbal fluency (34, 
35). The SDMT is a measure of attention and information processing 
speed (36); the oral version was used so that test results were not 
altered by the participants’ motor symptoms. The Wechsler 
Abbreviated Scale of Intelligence 3rd edition (WASI-III) was used to 
obtain a full intelligence quotient (Full IQ), verbal IQ (VIQ) and 
performance IQ (PIQ) (37). These executive function and intelligence 
scales were administered because there are known executive function 

deficits in FXTAS, PD, and ET and lower cognitive function negatively 
impacts gait and functional mobility in these disorders and therefore 
could be included as potential confounders in our statistical analysis 
plan. For example, lower executive function correlates with worse 
deficits in stride length, speed, variability and asymmetry in PD (26, 
38–40), and greater impairments in velocity, cadence, stride length, 
and double limb support time were also associated with lower 
cognitive scores in ET (18). We  previously found that lower 
information processing speed was associated with shorter stride 
lengths and lower response inhibition was associated with slower 
turn-to-sit times on the i-TUG in FXTAS (41).

Neuropathy testing

Participants were also administered the Total Neuropathy Score 
(TNS), modified to exclude nerve conduction velocity testing, from a 
neurologist (42). Testing for neuropathy is important given that it is 
prevalent in FXTAS (43) and PD (44) and may negatively affect 
performance on spatiotemporal measures of gait (45).

FXTAS rating scale

Participants were videotaped performing the FXTAS Rating Scale 
(FXTAS-RS), a 44-item scale that rates tremor, postural sway, gait, 
parkinsonism, coordination, dystonia, speech, and oculomotor 
deficits to determine the presence and severity of FXTAS symptoms 
(46). The scale was created using items from the Unified Parkinson’s 
Disease Rating Scale (UPDRS) (47), the Clinical Rating Scale for 
Tremor (CRST) (48), the International Cooperative Ataxia Rating 
Scale (ICARS) (49), and a tandem item from the Unified Huntington’s 
Disease Rating Scale (50). The leg agility and pouring items were not 
collected for all participants, therefore, only forty-two items were 
included in the scale. Videotapes were acquired for 16 control, 16 
FXTAS, 14 PD, and 10 ET participants, which were rated by a 
movement disorders neurologist who was blinded to genotype.

Molecular analysis

Blood samples or buccal swabs from all participants were sent to 
the Rush University Molecular Diagnostic Laboratory (Dr. Berry-
Kravis lab) for FMR1 genotype testing. QIAGEN Blood and Tissue 
DNA isolation kits were used to isolate DNA from buccal swabs or 
peripheral blood leukocytes. Allele-specific CGG repeat lengths were 
determined using the Asuragen Amplidex FMR1 mPCR kit (Asuragen 
Inc. Austin, TX) as previously described (51).

Statistical analysis

All measures were first compared univariately between the four 
participant groups with one-way ANOVA and Tukey’s post hoc 
pairwise comparisons (for normally distributed measures) or the 
Kruskal-Wallis test followed by pairwise comparisons with Dunn’s test 
for multiple comparisons (for non-normal measures). Significant gait 
measures from univariate comparisons were then included in a 
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penalized multinomial logistic regression model to determine which 
gait measures were best able to distinguish between the groups. Sex 
differences were first examined within each group to determine if sex 
should be included as a covariate in the regression model. Age, SDMT 
scores, and TNS were controlled for in the final regression analysis, as 
some were significantly different between the groups and thought to 
be potentially confounding factors. There were a few sex differences 
in the gait and i-TUG variables within the FXTAS group, but none of 
these variables were significantly different between groups in the 
univariate comparisons and therefore sex was not included as a 
covariate in the final regression model. For significant logistic 
regression results, ROC analyses were performed and area under the 
curve (AUC) was computed with 95% confidence intervals for 
significant between group differences. Sensitivity and specificity were 
then calculated using the Youden index.

Spearman’s rank correlation coefficient (rho) was used to assess 
the relationship between the gait and i-TUG parameters and 
FXTAS-RS scores in the three movement disorder groups and between 
CGG repeat size in the FXTAS group. CGG repeat size did not 
correlate with any gait or i-TUG measures under any condition; 
therefore, these were not examined as potential predictors of the gait 
and i-TUG measures in a separate regression model in the FXTAS 
group. A p ≤ 0.05 was considered significant. Statistical analyses were 
performed with SAS (SAS Institute Inc., Cary NC, USA), GraphPad 

Prism 9 (GraphPad Software, San Diego, CA, USA), and ‘pmlr’ 
package in R (R Core Team 2016). For the modified FXTAS-RS, 
missing values were imputed using the Hot Deck technique.

Results

Participant characteristics

Demographic and clinical characteristics are summarized in 
Table 1. The study included 22 participants with FXTAS, 23 with PD, 
20 with ET, and 20 controls. In the FXTAS group, six had a diagnosis 
of possible FXTAS, eight had probable FXTAS, and eight had definite 
FXTAS. The three movement disorder groups did not differ in age, 
although the control group was significantly younger than the PD and 
ET groups (p = 0.006 and 0.04, respectively). As expected, FXTAS 
participants had significantly greater CGG repeat sizes than all other 
groups (p < 0.0001) and all were in the premutation range. FXTAS and 
PD participants also had significantly higher TNS scores than controls 
(p = 0.0002 and 0.02, respectively) but there were no significant 
differences in TNS scores among the 3 movement disorders. ET 
participants had significantly longer disease duration compared to 
FXTAS and PD participants (p = 0.004 and 0.001, respectively). CGG 
repeat size did not correlate with any gait or i-TUG measures under 

TABLE 1 Participant demographic characteristics.

Variable Controls (n  =  20) FXTAS (n  =  22) PD (n  =  23) ET (n  =  20)

Age 62.65 ± 8.52 (50–83) 69.14 ± 8.12 (55–86) 71.26 ± 7.87 (56–87)a** 69.80 ± 8.85 (53–85)a*

Men, n (%) 11 (55.0) 12 (54.5) 15 (65.2) 10 (50.0)

Ethnicity, n 19 White/Non-Hispanic, 1 

White/Hispanic

22 White/Non-Hispanic 20 White/Non-Hispanic, 1 

White/Hispanic, 1 Asian, 1 

African American

19 White/Non-Hispanic, 1 

African American

BMI 27.07 ± 3.44 (20.6–35.3) 25.63 ± 4.82 (16.9–34.7) 25.94 ± 3.62 (19.5–33.8) 26.93 ± 5.39 (19.6–42.0)

Disease duration (years) N/A 6.59 ± 4.22 (1–16) 5.74 ± 3.74 (1–15) 13.29 ± 9.97 (2–33)b**,c**

History of diabetes, n (%) 2 (10.0) 3 (13.6) 0 (0.0) 2 (10.0)

CGG repeat 31.39 ± 5.42 (23–48) 85.33 ± 12.33 (60–104)a**** 29.64 ± 5.02 (20–42)b**** 29.10 ± 6.17 (20–44)b****

FXTAS Dx N/A 6 Possible, 8 Probable, 8 Definite N/A N/A

FXTAS-RS 13.6 ± 7.9 (3–26) 46.4 ± 17.6 (24–78)a**** 41.7 ± 13.1 (21–65)a**** 46.1 ± 19.6 (24–73)a****

H&Y stage N/A N/A 2.09 ± 0.29 (2–3) N/A

TNS 0.59 ± 1.12 (0–4) 3.67 ± 3.02 (0–14)a*** 2.95 ± 3.43 (0–13)a* 2.62 ± 2.99 (0–8)

Education 17.50 ± 2.61 (12–24) 15.95 ± 3.11 (9–20) 16.61 ± 2.69 (12–22) 15.75 ± 2.40 (12–20)

WASI full IQ 127.35 ± 9.98 (108–142) 118.13 ± 13.00 (84–135) 117.70 ± 15.24 (86–149) 116.85 ± 15.17 (84–136)

WASI VIQ 124.50 ± 8.57 (106–136) 118.07 ± 10.33 (88–129) 120.17 ± 13.45 (91–140) 117.55 ± 12.93 (86–136)

WASI PIQ 124.00 ± 11.53 (99–141) 113.53 ± 14.54 (83–141) 111.56 ± 16.69 (84–141)a* 111.65 ± 15.94 (86–134)

BDS-II 25.45 ± 1.10 (24–27) 23.33 ± 2.99 (16–27) 24.22 ± 1.93 (19–27) 24.20 ± 1.61 (21–27)

COWAT 108.20 ± 19.76 (82–142) 96.86 ± 24.98 (54–152) 101.35 ± 23.84 (74–160) 99.25 ± 23.42 (66–154)

SDMT 106.89 ± 10.05 (94–128) 89.56 ± 13.20 (67–118)a*** 88.87 ± 12.84 (61–107)a**** 88.95 ± 10.75 (72–103)a****

Animal naming 36.20 ± 9.56 (22–55) 28.71 ± 11.34 (11–53) 28.73 ± 8.93 (9–42) 27.40 ± 10.30 (13–48)a*

All values are mean ± SD with range in brackets unless indicated otherwise. a, significantly different from controls; b, significantly different from FXTAS; c, significantly different from 
PD; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Age, disease duration, CGG repeat, modified FXTAS Rating Scale score (FXTAS-RS), Hoen & Yahr (H&Y) Stage, Body Mass Index 
(BMI), Total Neuropathy Score (TNS), Education, Wechsler Abbreviated Scale of Intelligence (WASI) Full Intelligence Quotient (Full IQ), Verbal IQ (VIQ) and Performance IQ (PIQ), 
Behavioral Dyscontrol Scale II (BDS-II), Controlled Oral Word Association Test (COWAT), Symbol Digit Modalities Test (SDMT) and Animal Naming test were compared between controls, 
FXTAS, PD and ET. The COWAT and SDMT were scaled for age and years of education.
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any condition; therefore, these were not examined as predictors of gait 
and i-TUG measures in a separate regression model in the FXTAS 
group. All movement disorder groups had significantly worse 
FXTAS-RS scores compared to controls (p < 0.0001) but were not 
different from each other. There were no significant differences in 
BMI, education level, WASI Full IQ or VIQ between any of the groups. 
PD participants had significantly lower PIQ compared to controls 
(p = 0.04). Roughly 48, 87 and 65% of FXTAS, PD and ET participants, 
respectively, were on medication for motor symptoms at the time of 
testing (Supplementary Table S1).

Cognitive assessments

A summary of between group differences in cognitive function is 
also shown in Table 1. FXTAS, PD and ET participants all scored 
lower than controls on the SDMT (p = 0.0002 to <0.0001). On Animal 
Naming, ET subjects scored significantly lower than controls 
(p = 0.04). No significant differences were found among any of the 
movement disorder groups on any of the cognitive measures.

Gait parameters

2MWT
Summaries of between group comparisons of gait parameters for 

the three walking conditions (SS, FP, and DT) are shown in Table 2. 
Under the SS condition, FXTAS participants demonstrated 
significantly increased stride velocity variability and cadence 
variability compared to PD participants (p = 0.048 and 0.04, 
respectively) (Figures 1A,B). PD participants had significantly shorter 
stride lengths compared to FXTAS (p = 0.007), ET (p = 0.002), and 
control participants (p = <0.0001) (Figure  1C), and slower stride 
velocity compared to controls (p = 0.003). They also had significantly 
greater arm asymmetry than ET and control participants (p = 0.02 and 
0.004, respectively) (Figure  1D). Lastly, PD participants took 
significantly longer to complete turns (p = 0.006), more steps to turn 
(p = 0.03), and slower peak turn velocity than control participants 
(p = 0.04). Under the FP condition, FXTAS participants had 
significantly slower stride velocity (p = 0.003), increased stride velocity 
variability (p = 0.03), increased stride length asymmetry (p = 0.02), and 
increased turn duration (p = 0.02) compared to controls. PD 
participants had significantly shorter stride lengths (p = 0.002 
and < 0.0001, respectively) and longer turn duration (p = 0.03 and 
0.0003, respectively) compared to ET and control participants 
(Figure 2). They also had slower stride velocity (p = 0.0002), greater 
arm asymmetry (p = 0.0005), and reduced peak turn velocity 
(p = 0.002) compared to controls. In the DT condition, FXTAS 
participants took significantly longer to complete turns (p = 0.03) and 
had slower peak turn velocity (p = 0.03) compared to controls. PD 
participants had significantly shorter stride lengths (p = 0.03, 0.02, 
and < 0.0001, respectively) and greater arm asymmetry (p = < 0.0001, 
0.0002, and < 0.0001, respectively) compared to FXTAS, ET, and 
control participants. They also had significantly slower stride velocity 
(p < 0.0001), longer turn duration (p < 0.0001), slower peak turn 
velocity (p = 0.0001), and took more steps to turn (p = 0.009) compared 
to controls.

Dual-task interference
Dual-task costs (DTC) on 2MWT parameters are summarized in 

Table  3. Compared to FXTAS participants and controls, PD 
participants had greater DTC for stride length (p = 0.02 and 0.004 
respectively) and stride velocity (p = 0.03 and 0.0006, respectively) 
(Figure 3). They also had greater DTC for cadence (p = 0.009), turn 
duration (p = 0.02), and peak turn velocity (p = 0.02) compared to 
controls. ET participants had greater DTC for peak turn velocity 
(p = 0.04) compared to controls.

i-TUG
Summaries of between group comparisons of i-TUG parameters 

are summarized in Table 4. PD participants had significantly reduced 
sit-to-stand peak velocity compared to FXTAS (p = 0.002), ET 
(p = 0.009) and control participants (p = 0.007) (Figure 4), and reduced 
turn-to-sit peak turn velocity compared to controls (p = 0.006).

Regression analysis
In the multinomial logistic regressions controlling for age, 

SDMT, and TNS, stride length on the DT 2MWT was able to 
distinguish PD from FXTAS (OR = 0.88, 95% CI = 0.77–0.996, 
p = 0.04) and ET (OR = 1.16, 95% CI = 1.02–1.33, p = 0.02), such that 
participants with shorter stride length were more likely to have a 
diagnosis of PD (Figure 5A). Arm symmetry index during the DT 
2MWT was also able to distinguish between PD from FXTAS 
(OR = 1.1, 95% CI = 1.01–1.19, p = 0.03) and ET (OR = 0.92, 95% 
CI = 0.85–1.00, p = 0.05), such that participants with greater arm 
asymmetry were more likely to be diagnosed with PD (Figure 5B). 
No gait or i-TUG variables were found to distinguish FXTAS from 
ET. Given the relatively low group sample sizes in this study, a 
multivariable ROC analysis was performed accounting for age, 
TNS, SDMT scores, stride length during DT gait, and arm 
symmetry index during DT gait. The ROC analysis comparing 
FXTAS and PD groups had an AUC of 0.85 (95% CI: 0.73–0.97) 
with a sensitivity of 0.83 and specificity of 0.71 based on the Youden 
index. The comparison between PD and ET resulted in an AUC of 
0.87 (95% CI: 0.76–0.98) with a sensitivity of 0.81 and specificity 
of 0.81.

Correlations
Spearman’s correlations between FXTAS-RS scores and gait 

parameters are summarized in Supplementary Tables S2–S5. 
Under the SS condition, worse (higher) FXTAS-RS scores were 
associated with reduced stride length (p = 0.03), stride velocity 
(p = 0.003), and peak turn velocity (p = 0.006), as well as increased 
arm asymmetry (p = 0.03), turn duration (p = 0.003), and number 
of steps to turn (p = 0.03) in FXTAS. On the FP 2MWT, higher 
FXTAS-RS scores were associated with reduced stride velocity 
(p = 0.005), cadence (p = 0.048) and peak turn velocity (p = 0.02), 
as well as increased turn duration (p = 0.005) in FXTAS, and lower 
steps to turn in controls (p = 0.03). During the DT 2MWT, worse 
FXTAS-RS scores were associated with greater stride length 
asymmetry (p = 0.04) and turn duration (p = 0.047), as well as 
reduced stride length (p = 0.04), stride velocity (p = 0.002), and 
peak turn velocity (p = 0.02) in FXTAS. No significant correlations 
were found between FXTAS-RS and spatiotemporal variables of 
gait and turning in PD or ET during SS, FP, or DT walking. On the 
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TABLE 2 Gait and turning parameters during self-selected (SS), fast as possible (FP), and dual task (DT) two-minute walk test (2MWT).

i-WALK domain 
parameters

Controls (n  =  20) FXTAS (n  =  22) PD (n  =  23) ET (n  =  20)

Self-selected (SS) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Stride length (%stature) 86.21 (3.48) 81.93 (8.00) 75.34 (7.51)a****,b** 83.06 (6.43)c**

Stride velocity (%stature/s) 81.77 (7.09) 75.77 (8.28) 72.17 (9.27)a** 76.61 (9.84)

Cadence (steps/min) 113.62 (8.91) 110.93 (9.24) 114.97 (9.45) 110.63 (11.89)

Double limb support (%) 20.22 (3.26) 22.99 (4.90) 21.67 (4.87) 23.12 (4.96)

Trunk frontal ROM (degrees) CoV 0.35 (0.26) 0.44 (0.33) 0.24 (0.16) 0.32 (0.32)

Stride length (%stature) CoV 0.04 (0.03) 0.05 (0.02) 0.04 (0.02) 0.04 (0.02)

Stride velocity (%stature/s) CoV 0.06 (0.04) 0.08 (0.05) 0.05 (0.02)b* 0.06 (0.04)

Cadence (steps/min) CoV 0.04 (0.03) 0.06 (0.04) 0.03 (0.01)b* 0.04 (0.03)

Stride length asymmetry (%) 1.42 (0.66) 1.83 (0.71) 1.60 (0.56) 1.47 (0.60)

Arm symmetry index (%) 18.20 (5.27) 21.90 (6.78) 31.89 (15.89)a** 20.81 (11.02)c*

Turn duration (s) 2.06 (0.37) 2.43 (0.53) 2.71 (0.61)a** 2.26 (0.63)

Number of steps to turn 4.33 (0.71) 4.93 (0.97) 5.44 (1.39)a* 4.48 (0.86)

Peak turn velocity 169.70 (37.50) 150.96 (26.92) 137.54 (31.43)a* 166.97 (46.79)

Fast as possible (FP) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Stride length (%stature) 88.52 (4.22) 83.23 (7.81) 77.03 (6.99)a**** 85.64 (6.39)c**

Stride velocity (%stature/s) 96.77 (9.35) 84.71 (9.90)a** 82.02 (10.54)a*** 88.97 (13.27)

Cadence (steps/min) 131.12 (12.39) 122.05 (12.95) 127.85 (12.86) 124.53 (16.43)

Double limb support (%) 16.75 (3.25) 19.46 (5.49) 18.69 (4.69) 19.50 (5.15)

Trunk frontal ROM (degrees) CoV 0.36 (0.28) 0.47 (0.43) 0.27 (0.18) 0.32 (0.25)

Stride length (%stature) CoV 0.04 (0.03) 0.06 (0.03) 0.04 (0.02) 0.05 (0.03)

Stride velocity (%stature/s) CoV 0.06 (0.05) 0.09 (0.05)a* 0.05 (0.03) 0.07 (0.04)

Cadence (steps/min) CoV 0.04 (0.03) 0.06 (0.04) 0.04 (0.02) 0.05 (0.03)

Stride length asymmetry (%) 1.34 (0.41) 1.98 (0.83)a* 1.61 (0.73) 1.57 (0.67)

Arm symmetry index (%) 14.00 (6.05) 17.61 (4.42) 29.59 (17.33)a*** 21.35 (11.03)

Turn duration (s) 1.81 (0.32) 2.27 (0.51)a* 2.45 (0.52)a*** 2.04 (0.55)c*

Number of steps to turn 4.63 (0.67) 5.00 (0.74) 5.52 (1.26) 4.71 (0.85)

Peak turn velocity 199.34 (41.69) 167.90 (34.68) 154.06 (31.86)a** 184.33 (50.59)

Dual-task (DT) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Stride length (%stature) 86.92 (4.50) 80.88 (9.38) 73.22 (8.78)a****,b* 82.23 (6.86)c*

Stride velocity (%stature/s) 85.72 (11.99) 74.75 (11.11) 68.52 (10.25)a**** 75.06 (10.91)

Cadence (steps/min) 117.95 (13.41) 110.68 (11.64) 112.52 (12.31) 109.31 (12.66)

Double limb support (%) 20.17 (3.66) 23.43 (5.91) 22.03 (4.44) 23.95 (4.73)

Trunk frontal ROM (degrees) CoV 0.38 (0.25) 0.45 (0.37) 0.27 (0.15) 0.36 (0.30)

Stride length (%stature) CoV 0.03 (0.02) 0.05 (0.03) 0.04 (0.02) 0.04 (0.03)

Stride velocity (%stature/s) CoV 0.06 (0.04) 0.08 (0.05) 0.05 (0.02) 0.07 (0.04)

Cadence (steps/min) CoV 0.04 (0.03) 0.06 (0.04) 0.03 (0.02) 0.05 (0.03)

Stride length asymmetry (%) 1.40 (0.53) 1.98 (0.86) 1.76 (0.66) 1.54 (0.55)

Arm symmetry index (%) 18.08 (5.59) 19.48 (5.63) 35.70 (19.69)a****,b**** 20.03 (6.84)c***

Turn duration (s) 1.88 (0.39) 2.51 (0.86)a* 2.80 (0.69)a**** 2.26 (0.66)

Number of steps to turn 4.16 (0.72) 4.98 (1.36) 5.49 (1.38)a** 4.45 (0.99)

Peak turn velocity 191.37 (42.21) 156.46 (38.28)a* 136.85 (34.44)a*** 166.54 (42.53)

Gait and movement transition domain variables for between group comparisons among FXTAS, PD, ET, and controls. CoV coefficient of variation
SD

mean
( ) = ×100. a, significantly different 

from controls; b, significantly different from FXTAS; c, significantly different from PD; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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i-TUG, higher FXTAS-RS scores were correlated with increased 
total duration in PD (p = 0.01) and increased turn-to-sit duration 
in both PD (p = 0.02) and ET (p = 0.02). In FXTAS participants, no 
significant correlations were found between CGG repeat size and 
gait or i-TUG variables.

Discussion

This is the first study to directly compare gait characteristics in 
FXTAS, PD, and ET using quantitative gait analysis and gait stress tests 
including FP and DT paradigms. These results show that gait analysis 
was able to distinguish between-group differences in gait parameters 
during SS, FP, and DT conditions. We also identified differences in 
DTC in the domains of gait pace (stride length and velocity) where PD 
had significant DTC compared to FXTAS participants. FXTAS 
participants had significantly slower stride velocity and stride velocity 
variability, increased stride length asymmetry, and increased turn 
duration compared to controls during FP walking. Importantly, this 
condition revealed a greater number of impairments in FXTAS than 
in ET compared to controls, suggesting that this particular test may 
be helpful for distinguishing FXTAS from ET in the clinic. It is known 
that at fast speeds of locomotion, it is more difficult to maintain 
stability due to signaling delays between the musculoskeletal system 
and higher-level neural control centers (52). It is possible that this 
coordination of neural signaling and muscular responses was more 
stressed by fast walking in the FXTAS participants, requiring them to 
slow down their strides and turns in order to maintain stability more 
so than the ET participants. In a previous study, our group 
characterized the gait deficits using a 7 m i-TUG in a smaller cohort 
of FXTAS participants and found abnormalities similar to those found 
in this study, including reduced stride velocity and longer turn 
duration (8); however, these deficits were seen with SS walking speeds, 
whereas the current study did not find any gait deficits in FXTAS 
compared to controls at these speeds. Our present inclusion criteria 
required that participants had to be able to walk unassisted for 2 min; 
therefore, the group had milder gait symptoms that might not 
be detectable at SS speeds. In addition, our prior study only included 
those with definite cerebellar gait ataxia on neurological exam, 
whereas the current study included a more heterogeneous group of 
FXTAS participants with both tremor and ataxia dominant forms of 
the disease.

Other groups have investigated gait under fast walking speeds in 
other cerebellar ataxias and reported increased stride length and speed 
variability in Friedreich ataxia, spinocerebellar ataxia, and idiopathic 
cerebellar patients using the GAITRite® walkway (53–55). Increased 
stride velocity variability was seen in FXTAS during FP walking in the 
current study, which we reported in our prior FP gait study in FXTAS 
to be significantly associated with increased falls (20). Furthermore, 
Schniepp et al. found FP walking to be the most strongly correlated to 
clinical severity of ataxia compared to other walking speeds and 
concluded that it may be a useful measure in the clinical evaluation of 
patients with cerebellar ataxia (55). Given that we found the most gait 
deficits in FXTAS under FP walking in the present study, this test may 
be useful for evaluating FXTAS patients in the clinic.

PD participants had significantly reduced stride length compared 
to FXTAS and ET participants on the SS and DT gait conditions, as 
well as slower stride velocity and reduced stride length compared to 
controls on all three conditions. They also took significantly longer to 
turn with lower peak turn velocity and increased turn duration on all 
three gait conditions, and more steps to turn under SS and DT walking 
compared to controls. In the FP condition, PD participants were 
slower to turn than the ET group. Typical PD patients display a slow, 
shuffling gait pattern, as well as bradykinesia, which is consistent with 

FIGURE 1

Gait parameters under self-selected (SS) speed two-minute walk test 
(2MWT). Significantly different gait parameters among FXTAS, PD, 
and ET participants: (A) stride velocity variability, (B) cadence 
variability, (C) stride length, and (D) arm symmetry index. 

( ) SDCoV coefficient of variation 100
mean

= × . All data reported as 

mean  ±  SEM. *p  ≤  0.05, **p  ≤  0.01.

FIGURE 2

Gait parameters under fast as possible (FP) two-minute walk test 
(2MWT). Significantly different gait and movement transition 
parameters among FXTAS, PD, and ET participants: (A) stride length, 
and (B) turn duration. All data reported as mean  ±  SEM. *p  ≤  0.05, 
**p  ≤  0.01.

https://doi.org/10.3389/fneur.2023.1308698
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Robertson-Dick et al. 10.3389/fneur.2023.1308698

Frontiers in Neurology 08 frontiersin.org

our findings of slower, shorter strides and slower turns. This contrast 
with the wide-based, ataxic gait pattern typically seen in FXTAS 
patients, and the mild ataxia seen in roughly half of ET patients (56–
60). PD participants also had significantly greater arm asymmetry 
than ET participants and controls at SS speeds, and than FXTAS, ET, 
and control participants under DT gait. DT during gait apparently 
stressed the neuromotor system in PD exacerbating arm asymmetry. 
These results are consistent with the common asymmetric PD gait 
pattern. PD symptoms typically present asymmetrically and many 
patients exhibit a reduced or absent reciprocal arm swing (61).

ET participants were not abnormal on any gait parameters for any 
of the test conditions, likely because regular bipedal gait in ET patients 
tends to be normal (58). However, mild gait and postural stability 
deficits have been found in ET, including difficulties with tandem gait 
(56–60). It may be  that the present study conditions were not 

challenging enough to extract gait deficits in the ET group, or that the 
pool of selected ET participants did not have cerebellar gait ataxia.

Compared to FXTAS participants and controls, PD participants 
had significantly greater DTC for the gait pace domain including 
stride velocity and stride length parameters. Previous DT studies in 
PD have shown similar findings. Plotnik et al. found that gait speed 
and stride length were both impaired by DT using a serial subtraction 
cognitive interference task (26). Yogev-Seligmann et al. and Fuller 
et al. also found reduced gait speed under DT in PD using a verbal 
fluency interference task similar to the current study (27, 62). 
However, we did not find differences for DTC between movement 
disorder groups in any of the other gait domains. None of the groups 
performed worse on the cognitive task during the DT condition, 
indicating that they were not prioritizing the gait task over the 
cognitive task. It is possible that the DT verbal fluency test did not 
provide a sufficient cognitive load to reveal other impairments. 
Therefore, future studies could utilize a more difficult task that might 
cause greater cognitive interference. Our results do suggest that PD 
patients may be more sensitive to cognitive interference, potentially 
having lower cognitive reserve than those with FXTAS.

The i-TUG was used to evaluate functional movement transitions 
important in daily living. PD participants had significantly slower 
speed when transitioning from sit-to-stand compared to FXTAS, ET, 
and control participants, as well as slower speed when turning to sit 
compared to controls. Given that bradykinesia is a cardinal symptom 
of PD, it was expected that the PD group would be  slower at 
completing these movement transitions. These results suggest that the 
sit-to-stand measure may be helpful for assisting with diagnosis, such 
that patients with reduced velocities on this parameter may be more 
likely to have PD. Furthermore, Herman et  al. found that i-TUG 
parameters were able to distinguish between the postural instability 
and gait disorder and tremor dominant subtypes of PD (10). It has 
been proposed that there may be  two subtypes of FXTAS as well, 
including tremor and ataxia predominant phenotypes (63). As a 
follow-up study, it would be interesting to compare these subtypes of 

FIGURE 3

Dual task costs for gait parameters. Significantly different gait 
parameters among FXTAS, PD, and ET participants: (A) stride length, 
and (B) stride velocity. DTC was calculated using the formula 
DT SS 100

SS
−

× . All data reported as mean  ±  SEM. *p  ≤  0.05.

TABLE 3 Dual-task costs for gait and turning parameters.

i-WALK domain parameters Controls (n  =  20) FXTAS (n  =  22) PD (n  =  23) ET (n  =  20)

Dual-task cost (DTC) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Stride length (%stature) 0.81 (2.77) −1.16 (7.34) −2.98 (3.76)a**,b* −1.03 (2.14)

Stride velocity (%stature/s) 4.69 (9.68) −1.20 (10.59) −5.15 (5.98)a***,b* −2.02 (6.51)

Cadence (steps/min) 3.75 (7.43) −0.26 (5.38) −2.23 (4.72)a** −1.13 (5.10)

Double limb support (%) −0.07 (10.16) 1.98 (13.63) 2.60 (8.96) 4.29 (9.85)

Trunk frontal ROM (degrees) CoV 24.66 (47.14) 4.07 (31.88) 18.10 (34.02) 22.04 (32.84)

Stride length (%stature) CoV 3.28 (50.80) 3.58 (38.33) 8.15 (33.95) 3.62 (28.48)

Stride velocity (%stature/s) CoV 11.68 (55.87) 7.97 (37.26) 15.20 (36.37) 19.94 (44.09)

Cadence (steps/min) CoV 31.75 (70.57) 16.33 (51.26) 25.47 (35.78) 30.96 (56.67)

Stride length asymmetry (%) 5.84 (37.59) 15.58 (58.73) 11.49 (24.48) 7.56 (22.96)

Arm symmetry index (%) 2.40 (34.04) −7.26 (25.27) 17.06 (59.66) 7.28 (37.98)

Turn duration (s) −7.84 (13.04) 3.99 (32.21) 3.74 (12.17)a* 0.64 (12.43)

Number of steps to turn −2.73 (14.55) 1.94 (23.55) 1.52 (10.83) −0.49 (11.34)

Peak turn velocity 13.19 (13.19) 3.77 (17.93) 0.04 (14.79)a* 0.88 (10.64)a*

Dual-task costs (DTC) for gait variables for between group comparisons among FXTAS, PD, ET, and controls. DTC was calculated using the formula 
DT SS

SS

−
×100 . 

CoV coefficient of variation
SD

mean
( ) = ×100. a, significantly different from controls; b, significantly different from FXTAS; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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FXTAS to see if i-TUG, FP, and DT gait testing are able to distinguish 
them; treatment plans could then be  tailored based on 
individual phenotypes.

Multinomial logistic regression analysis showed that on the DT 
condition, stride lengths was able to distinguish PD from FXTAS and 
ET, such that participants with shorter stride length were more likely 
to have PD. Shortening of steps when walking is a common feature in 
PD, particularly under a stressful condition such as walking while 
performing a cognitive task where PD patients may be triggered to 
festinate or take involuntarily short steps (64, 65). Furthermore, in the 
current study we found that PD participants had a significant DTC for 
stride length whereas FXTAS participants did not. Thus, it is logical 
that the measure of stride length would be  able to make this 
distinction. Arm symmetry index during the DT condition was also 
able to distinguish between FXTAS and PD, and ET and PD, such that 
participants with greater arm asymmetry were more likely to have 
PD. This appears logical given that reduction in reciprocal arm swing 
range of motion and its asymmetry is a hallmark feature in PD (61), 
while arm asymmetry in FXTAS or ET has not been reported. Our 
findings of greater arm asymmetry in PD compared to ET are similar 
to those in a recent report using inertial sensors during performance 
of the i-TUG and a machine learning approach to distinguish early-
stage PD from ET (66). We  also have unpublished data in larger 
cohorts indicating that arm asymmetry and arm range of motion are 
not different from controls in FXTAS.

As expected, the FXTAS, PD, and ET groups all had significantly 
worse FXTAS-RS scores compared to healthy controls. However, no 
differences in rating scale scores were found among the disorders, 
suggesting that the gait and functional movement transition measures 
were more sensitive for distinguishing between them than the scale. 
FXTAS-RS scores were associated with multiple gait measures in 
FXTAS under all three gait conditions, and number of steps to turn in 
controls during FP walking. FXTAS-RS scores were also associated 
with total duration in PD and turn-to-sit duration in PD and ET during 
the i-TUG. This finding was not unexpected given that FXTAS and PD 
patients tend to have greater gait impairments than ET patients (67).

Strengths of this study include objective gait measurement using 
highly sensitive quantitative analysis that has been validated in PD in 
previous studies, and the use of DT cognitive-motor interference 
paradigms similar to those used in previous studies of PD, FXTAS, and 
ET. SS, FP, and DT gait testing was able to distinguish differences 
between FXTAS and PD and ET and PD. It may be cost effective to add 
these tests to a clinical evaluation to aid in accurate diagnosis given that 
each walking condition takes only 2 min to complete. These quantitative 
measures may improve characterization of these disorders and serve as 
outcome measures to evaluate treatment responses in future studies.

Limitations of this pilot study include a relatively small sample 
size; increasing the sample size in future studies will help to 

TABLE 4 Movement transition parameters during the Instrumented Timed Up and Go test (i-TUG).

i-TUG parameters Controls (n  =  20) FXTAS (n  =  22) PD (n  =  23) ET (n  =  20)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Total duration (s) 17.71 (2.28) 20.54 (5.47) 20.02 (2.64) 18.95 (3.69)

Sit-to-stand duration (s) 2.28 (0.30) 2.34 (0.26) 2.49 (0.23) 2.35 (0.32)

Sit-to-stand peak velocity (deg/s) 99.29 (47.45) 98.91 (33.63) 68.26 (14.90)a**,b** 90.95 (23.46)c**

Turn-to-sit peak turn velocity (deg/s) 173.98 (39.34) 151.89 (36.32) 135.15 (36.34)a** 160.50 (38.74)

Turn-to-sit duration (s) 4.21 (0.65) 4.57 (1.03) 4.56 (0.98) 4.26 (0.82)

i-TUG variables for between group comparisons among FXTAS, PD, ET, and controls. a, significantly different from controls; b, significantly different from FXTAS; c, significantly 
different from PD; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

FIGURE 4

Movement transition parameters in the Instrumented Timed Up and 
Go test (i-TUG). Significantly different parameter among FXTAS, PD, 
and ET participants: sit-to-stand peak velocity. All data reported as 
mean  ±  SEM. *p  ≤  0.05, **p  ≤  0.01.

FIGURE 5

Significant multinomial regression results. Significantly different gait 
parameters among FXTAS, PD, and ET participants during the dual 
task (DT) condition: (A) stride length, and (B) arm symmetry index. All 
data reported as mean  ±  SEM. *p  ≤  0.05.
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strengthen and corroborate these findings. Another limitation is that 
there were no significant differences between controls and FXTAS 
participants on any gait or turn variables in the self-selected (SS) 
speed condition, suggesting that our FXTAS group was minimally 
impaired in gait and only showed impairments at fast speeds (FP) 
and while dual tasking (DT). Future studies could only include those 
with probable and definite FXTAS with definite cerebellar gait ataxia 
on clinical exam. The control group was significantly younger than 
the PD and ET groups, but there were no differences in age between 
the three movement disorder groups. Additionally, we controlled for 
age in the regression model, which only compared FXTAS, PD and 
ET groups, so we do not believe age is a relevant problem with the 
study. Another potential limitation was that, due to logistical and 
feasibility issues, all medicated study participants were on their 
medications at time of testing, which did not allow their gait to 
be  measured in its most natural and debilitating state. In future 
studies, it would be ideal if participants could be tested both on and 
off their medication to obtain a more accurate measurement of gait 
in these disorders.

These findings demonstrate that patients with FXTAS and ET 
exhibit distinct gait profiles from those with PD. The DT condition was 
sensitive for distinguishing FXTAS and ET from PD in arm asymmetry 
and stride length. Significant DT cognitive interference (i.e., DTC) for 
gait and turn variables were only seen in the PD group. On the i-TUG, 
FXTAS and ET participants were significantly faster at transitioning 
from sitting to standing than PD participants. These results suggest that 
DT walking paradigms and assessment of movement transitions may 
be useful for diagnosing FXTAS patients in the clinic.
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