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Introduction: In brain function research, each brain region has been investigated
independently, and how di�erent parts of the brain work together has been
examined using the correlations among them. However, the dynamics of how
di�erent brain regions interact with each other during time-varying tasks, such
as voluntary motion tasks, are still not well-understood.

Methods: To address this knowledge gap, we conducted functional magnetic
resonance imaging (fMRI) using target tracking tasks with and without feedback.
We identified the motor cortex, cerebellum, and visual cortex by using a general
linear model during the tracking tasks. We then employed a dynamic causal model
(DCM) and parametric empirical Bayes to quantitatively elucidate the interactions
among the left motor cortex (ML), right cerebellum (CBR) and left visual cortex
(VL), and their roles as higher and lower controllers in the hierarchical model.

Results: We found that the tracking task with visual feedback strongly a�ected the
modulation of connection strength in ML→CBR and ML↔VL. Moreover, we found
that the modulation of VL→ML, ML→ML, and ML→CBR by the tracking task with
visual feedback could explain individual di�erences in tracking performance and
muscle activity, andwe validated these findings by leave-one-out cross-validation.

Discussion: We demonstrated the e�ectiveness of our approach for
understanding the mechanisms underlying human motor control. Our
proposed method may have important implications for the development of
new technologies in personalized interventions and technologies, as it sheds light
on how di�erent brain regions interact and work together during a motor task.

KEYWORDS

dynamic causal model, functional magnetic resonance imaging, hierarchical motor

control, visuomotor control, electromyography

1 Introduction

Optimal feedback control (OFC) (1) in conjunction with brain theories such as the
Bayesian brain hypothesis (2) and neural Darwinism (3) has been widely utilized to elucidate
the mechanisms underlying action, perception, and learning. Beyond the traditional notion
of functional localization (4), the prevailing concept for understanding brain functions
involves the network interactions among various brain regions (5). Recognizing the
significance of brain network connectivity is crucial for achieving optimal feedback control
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of movements, but the analysis of network dynamics during
feedback motion control remains relatively unexplored. In
particular, there has been little in-depth discussion of how network
connectivity is altered during visuomotor feedback control when
doing different voluntary levels of motion. This goes beyond
conceptual ideas such as the dominant role of the cerebellum in
feedforward control (6) and its contribution to muscle activity (7),
or the strong activation of the motor cortex in voluntary
movements (8).

Human motor control is achieved by minimizing the
discrepancy between predicted and actual motor outcomes via
sensory feedback (9). However, one fundamental challenge in
understanding human motor control is elucidating how the
motor cortex integrates feedback information and adjusts motor
commands in order to reach an agent’s targets (10, 11).
Bayesian approaches address this challenge with hierarchical
models that explain how signals pass through cortical sensory
areas (12). The low-level controller is responsible for tuning the
voluntary level during the entire motion process required for
motor behavior, while the high-level controller is responsible for
planning, instructing, and performing online correction of the
low-level controller. Specifically, previous studies have shown that
visuomotor adaptation tasks (13) are suitable for analyzing how the
motor cortex integrates visual feedback information and interacts
with the visual and cerebellar cortices. Based on that knowledge,
we designed two voluntary levels of hand motion in target tracking
tasks. The participant was asked to track the moving target with
hand motions, which was different from the static target typically
used in previous visuomotor tasks. We analyzed the network
connectivity of several brain regions during the tasks with two
different voluntary levels of motion to clarify the modulation
of connectivity. The lower-voluntary-level motion was a more
automatic hand motion involving up and down movement to
track a target’s movement without visual feedback of the motion,
which represented motion dominated by the lower-level controller.
The other was a higher-voluntary-level motion involving motor
correction informed by moving targets and online visual feedback.
This task elicited motion dominated by the higher-level controller.
We used the online visual feedback to drive the participant to
focus on the motor control task and evaluated the improvement
of motor performance compared with the lower-level voluntary
motion. We also verified the two levels of voluntary motion using
muscle activation data (surface electromyography [EMG] in the
upper extremity) to analyze the contribution of motor commands
on muscle activity.

The development of non-invasive brain imaging techniques
has enabled functional investigation of how neural systems achieve
high- and low-level control in motor neuroscience. Dynamic
causal modeling (DCM) is a suitable approach for studying brain
interactions in motor control and verifying how they are affected
by experimental conditions. DCM was proposed by Friston et
al. (14) to explain effective connectivity among different brain
regions and estimate hidden neuronal states based on measured
brain activity, such as the blood oxygenation level-dependent
(BOLD) signal using functional magnetic resonance imaging
(fMRI). Model construction facilitates understanding of effective
connections among different brain regions (15, 16) and adjusts for

covariates (e.g., age, sex, body weight, and other behavior analysis
results) to evaluate their potential effects on effective connections
reflected in fMRI data (17). Several studies have used DCMs to
analyze hierarchical motor systems (18), hierarchical planning (19),
and cerebellar-premotor cortex interaction underlying visuomotor
control (13). In this study, we implemented DCM to elucidate the
connection between high- and low-level controllers and elucidate
the modulation process. In addition to using DCM to analyze
BOLD signals during the actions, we used surface EMG to identify
the effects of different levels of motor control on muscle activation
during differentmotion tasks. In detail, we employed this combined
analysis to quantitatively evaluate individual differences in motor
adjustment abilities, inspect information flows in hierarchical
motor control systems, and ascertain how neural systems balance
high and low-level control.

In this study, we aimed to understand the hierarchical human
motor control in visuomotor adaptation using a combination of
experimental behavior and DCM analysis. We first conducted
online tracking tasks and fMRI group analysis to identify regions
of interest in the motor, cerebellar and visual cortices that
participated in the higher- and lower-level motor control. Then,
we built a DCM to quantitatively reflect the intrinsic network
and modulation among brain regions that contribute to fast-
adaptation motor control. We hypothesized that motor-cerebellar
interaction was affected by different levels of motor control
that integrated visual information and modulated the effective
connection strength. Furthermore, we tested whether effective
connections could explain individual differences in the behavior
analysis of tracking performance and the EMG analysis. We
anticipate that effective modulation of connectivity on the motor-
visual pathway by the higher-level motor task can contribute to
effective task design in rehabilitation and training.

2 Experiments

2.1 Participants

Fourteen healthy right-handed participants (9 men, 5 women;
mean age, 29.9±5.2 years; range, 24–44 years) took part in this
study. Exclusion criteria included any history of motor injury
or dysfunction, any MRI contraindication, pregnancy, history
of brain injury, and claustrophobia. The experimental protocol
was explained to the participants before the study. Both MRI
experiments lasted about 2 h in total, and the EMG experiment
lasted about 1.5 h, including setup, explanation, and testing. All
participants provided written informed consent. This study was
conducted in accordance with the Declaration of Helsinki and
approved by the ethical review board of RIKEN (code of the ethical
approval: RIKEN-W3-2021-023, date of approval: October 14th,
2021).

2.2 Experimental setup

The experimental motor tasks were two voluntary handmotion
tasks: target tracking with no feedback (TTNF) and target tracking
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FIGURE 1

Experimental setting. Two closed-loop target-tracking tasks were designed and measured. The movement of the controller was represented by a
passive reflective marker, recorded by a grayscale camera, and mapped online and shown on the screen to the participant.

with feedback (TT). For each task, the participants were asked to
use a 3D-printed small controller and track a target’s reciprocating
movement on the screen. The participants lay supine in the
MRI machine and there was a small desk placed in front of
their trunk, as shown in Figure 1. The 3D-printed controller was
fixed on the table, and the table was adjusted to a suitable place
for each participant. A bite bar was used to fix the position
of the participant’s head. Several sponge armrests were used to
support the participant’s arms. One display was placed above the
participant’s head and they could see the screen reflected in a
mirror device on the head coil. Participants with myopia wore
suitable glasses with corrective lenses provided by the MRI team.
The display showed the experimental interface in a 1,280×720
pixels window with a black background. The target and feedback
spheres in the TT task were shown in the middle of the window.
The starting position for both spheres was 200 pixels from the
bottom. The target sphere underwent vertical displacement on a
screen with dimensions of 1,280×720 pixels, within a range of
motion spanning from 200 to 600 pixels above the bottom of
the screen. Each incremental motion step encompassed a distance
of 25 pixels plus some inherent random variability falling within
the range of [0–2] pixels, taken from a normal distribution. The
task name and remaining rest time were displayed at the top of
the screen. The 3D-printed controller was a simplified steering
wheel and could only be moved up or down. In particular, the
left and right parts of the controller were synchronized by a
gear mechanism. On top of the right controller, there was a
silver passively reflective marker that was used to represent hand
movement. The movement of the marker was measured by a
grayscale camera in the MRI room and mapped to the vertical
movement of the feedback sphere within the same range of the
target sphere. The task project was developed in Pycharm (Python
3.7.0) mainly using the OpenCV package. The movements of
both feedback and target spheres were recorded, even in the
TTNF task where the feedback sphere was not shown on the
screen.

In the two motion tasks, the participants used the driving
controller to perform reciprocating upper extremity motion. In
the TTNF task, the participants could see only the target sphere
on the screen. They used the controller and moved it up and
down to follow the movement of the target sphere but received no
feedback on their movements. Therefore, the TTNF task represents
intentional motion without feedback, which was used to represent
a lower-level motor control task. In the TT task, the participants
could see both the target and feedback spheres. They needed to
control the feedback sphere and track the movement of the target
sphere. The TT task represented intentional motion with visual
feedback. It required fast correction during the motion in order to
obtain better tracking performance and thus represented a higher-
level motor control task.

The measurements were carried in three sessions, and each
session comprised three TTNF tasks and three TT tasks in random
order. The duration of each task was 21 s and the screen showed
the task name on the top middle part, above the sphere movement
region. There was a 15 s resting time between each task. The
screen also showed the text “Rest:” along with a countdown in 1
s increments.

2.3 EMG data acquisition

We used the same experiment protocol for the EMG
experiment in another measurement because EMG sensors could
not be used in the MRI room. We created a replica of the MRI
environment as shown in Figure 2B and measured the muscle
activation of participants using the same posture to complete the
hand motion tasks. To ensure the participants did similar motions
as in the MRI measurement, we restricted their movements by
fixing their body posture. In detail, we fixed the positions of the
head, elbows, and wrists. To quantitatively evaluate the effects of
brain activity on muscles, we measured surface EMG data from
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FIGURE 2

Scheme of the proposed method. (A) Behavior data were analyzed to evaluate the tracking performance during the TT task (target with feedback)
and TTNF task (target with no feedback) by calculating the root mean square error (RMSE) between target and feedback spheres. (B) The
electromyography (EMG) experiment used a replica of the functional magnetic resonance imaging (fMRI) experiment environment. Muscle activation
in the upper extremity was recorded under the same experimental protocol. Raw EMG data were preprocessed to remove noise. Then the muscle
median frequency and amplitude were calculated to assess individual di�erences. (C) fMRI measured the blood oxygenation level-dependent (BOLD)
response during the motion tasks and clarified the region of interest using group-level analysis. Then we integrated the data and built the dynamic
causal model (DCM) in order to understand how the high- and low-level controllers integrate the visual information and a�ect motor outputs.

the right arm. A wireless surface EMG device (BTS Bioengineering
Corp.) was used in this experiment to obtain the muscle activity
data from the right side of the body at 2,000 Hz. Eight muscles
related to upper extremity motions were measured based on
their contributions to the extension and flexion of the wrist,
elbow, and shoulder: (1) flexor carpi radialis (FCR); (2) extensor
carpi radialis longus (ECRL); (3) brachioradialis (BR); (4) biceps
muscle (BCM); (5) triceps muscle (TCM); (6) anterior deltoids
(AD); (7) posterior deltoid (PD); and (8) superior fibers of the
trapezius (SFT).

2.4 MRI data acquisition

As the first part of the proposed method, we obtained brain
activities related tomotion tasks using BOLD fMRI techniques. The
brain fMRI images were acquired on a SIEMENS Prisma 3T system
equipped with a 20-channel head and neck coil, a 32-channel spine
coil, and a 4-channel small flex coil. The 84 slices in the brain had a
field of view of 240×200mm2 and a voxel size of 2.0×2.0×2.0 mm3

(echo time = 31 ms, repetition time = 1,910 ms, flip angle = 78 deg,
and GRAPPA acceleration factor = 3, gap = 0 mm). Dummy scans
were discarded. High-resolution (1×1×1 mm3, gap = 0 mm). T1-
weighted anatomical images were acquired using a 3D-MPRAGE
sequence (sagittal slice orientation, repetition time = 2.3 s, echo
time = 2.7 ms, flip angle = 8 deg, FOV = 234×224 mm2, GRAPPA
acceleration factor = 3).

3 Methods

3.1 Proposed method

To clarify the mechanism of human hierarchical control, we
employed brain fMRI, muscle activity, and behavior analysis in
voluntary hand motion during intentional tracking tasks with and
without feedback. The proposed method is shown in Figure 2. We
measured brain fMRI and computed the activation levels of the
regions that had strong BOLD responses. We made a general linear
model (GLM) of the two motor tasks along with the contrast,
and we found that the visual cortex was not significantly activated
during target tracking in the TTNF task. This suggests that the
activity of the visual cortex is suppressed during motion, likely due
to the limited information in this condition; detailed results are
shown in Section 4.3. Conversely, the motor cortex and cerebellum
showed activation in both conditions. These initial experiments led
us to hypothesize that the network activity of the visual cortex,
motor cortex, and cerebellum could be key to understanding
the differences in these motions. Also, we were interested in the
motor control of high- and low-voluntary-level motion and we
observed that activation in the motor and cerebellar cortices was
different. Based on these observations, we selected three volumes
of interest (centered in the significant results from the GLM) in
motor, cerebellar and visual cortices, which respectively serve as
the higher-level controller, lower-level controller, and sensory layer
in our hypothesized model. Then, we used DCM to investigate the
dynamic interactions in our model.
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We also measured EMG data from the upper extremity under
the same experimental protocol in a simulated MRI environment.
We calculated the median muscle frequency (MDF) to represent
human muscle activation related to behavior control. These EMG
data represented the effects of brain motor commands on muscle
activation. Finally, we combined the behavior analysis results and
fMRI and EMG analysis to understand how high- and low-level
motor controllers integrate visual information and how they affect
human behavioral performance.

3.2 Experimental behavior analysis

In this study, we recorded the positions of the target and
feedback spheres during the two tasks at 30 Hz, although the
feedback sphere was not shown to the participants on the screen
during the TTNF tasks. To assess the tracking performance
between the two conditions (with and without feedback), we
calculated the root mean square error (RMSE) between the target
position (zt) and feedback position (yt) of the two tasks, as in
Equation 1. We hypothesized that the RMSE would be smaller
in TT than TTNF because participants could fast-correct their
tracking behavior and adjust the motor control command based on
the visual feedback from the feedback sphere.

RMSE =

√

√

√

√

1

T

T
∑

t=1

(zt − yt)2, (1)

3.3 EMG preprocessing and analysis

We defined two types of voluntary intentional motion and
evaluated the motion performance using behavior analysis. To
further classify the motions, we applied muscle activation analysis
to the EMG measurement data of the upper extremity. For
preprocessing, all of the EMG signals were filtered with several
notch filters (60 Hz, 120 Hz, 180 Hz, and 240 Hz) to remove
power line interference and with a bandpass filter between 8 Hz and
200 Hz (20). After filtering, the data were divided into repetitions
(one repetition represented a reciprocating movement). We used
both amplitude (RMS) andMDF as features for assessing the effects
of motor control onmuscle activation. For theMDF calculation, we
first calculated the MDF of individual muscles and then computed
the mean MDF across the eight muscles measured. The mean
MDF represented a global measure of muscle activity to assess the
effects of the two target tracking motions on muscles, as given by
Equation 2.

MDF
∑

j=1

Pj =

M
∑

j=MDF

Pj =
1

2

M
∑

j=1

Pj, (2)

where Pj is the EMGpower spectrum at frequency bin j andM is the
width of the frequency bin. M is usually defined as the next power
of 2 from the length of EMG data in the time-domain (21). We
normalized the amplitude andMDF for each participant because of
individual differences. We calculated the average of amplitude and
MDF across the repetitions for each muscle for each participant

in the TTNF condition. Here we show MDF normalization as an
example, as in Equation 3. MDFks represents the average of MDF
across the repetitions for each muscle in participant s. k = 1, ..., 8
indicates the index of the muscle. t = 1, ..., n shows the repetition
number, and n is the total number of repetitions. Then we used the
average value of amplitude and MDF for normalization. Finally,
we used the t-test to analyze whether the amplitude or MDF
significantly differences between TTNF and TT.

normMDFks (t) =
MDFks (t)

MDFks

=
MDFks (t)

∑n
t=1 MDFks (t)/n

(3)

3.4 MRI data preprocessing

SPM12 (22) (Wellcome Trust Centre for Neuroimaging,
London, UK) was used to preprocess the brain fMRI and
anatomical images and to perform statistical analysis. First, we
applied slice time correction and re-alignment (rigid-body motion
correction with six degrees of freedom) to the fMRI data. The
phase encoding direction for the EPI sequence corresponded to
the y-direction. It was defined as positive from the posterior to the
anterior of the head, the same as the SPM default setting. We co-
registered the mean EPI (fMRI) to T1 structural image, and then
we applied segmentation and normalization of fMRI to Montreal
Neurological Institute (MNI) template brain image, which wrapped
data from each participant to MNI space. Next, the images were
smoothed with an 8 mm full width at half-maximum isotropic
Gaussian kernel. Finally, we performed model specification and
group analysis [family-wise error (FWE) p < 0.05, cluster-level]
to investigate the differences in BOLD brain responses among
intentional motions with and without feedback and voluntary
motion.

3.5 Dynamic causal model

To clarify the effective connectivity among motor and visual
areas and the cerebellum, we employed DCM to modulate the
neuronal activation among these brain regions. Each region is
represented by one time-dependent output ż corresponding to the
observed BOLD signals in this region. Here, we used a bilinear
deterministic DCM that modulates the neuronal activation as in
Equation 4. Matrix A represents the average effective connectivity
from one region to another and matrix Bi specifies the modulation
of effective connectivity due to experimental condition i =

1, 2, ...,m. Each matrix B
i is multiplied by experimental inputs ui

relating to the experimental condition i. In this experiment, we had
two B-matrices corresponding to m = 2 experimental conditions:
TTNF (only an automatically moving target sphere) and TT (both
target and feedback spheres). We set TTNF as the base condition.
Therefore, all the parameters in matrix B

1 were set as 0. Matrix C

is the sensitivity of each region to driving inputs. Matrix x ∈ R
j

represents the measured neuronal activity of selected region j. The
extraction of x from fMRI data was described in the “Regions of
interest (ROIs)” part below. Three regions were selected in this
study based on the fMRI group analysis results. Based on our
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research setting, we simplified Equation 4 to a specific modeling,
as shown in Equation 5.

Ẋ = (A+ 6m
i=1uiB

i)x+ 6m
i=1Cui, (4)





ẋ1
ẋ2
ẋ3



 =





a11 a12 a13
a21 a22 a23
a31 a32 a33









x1
x2
x3



 + u2





b211 b212 b213
b221 b222 b223
b231 b232 b233









x1
x2
x3



 +





c11 c12
c21 c22
c31 c32





[

u1
u2

]

,

(5)

3.5.1 Regions of interest
We restricted the DCM analysis to three brain regions: primary

motor areas, visual areas, and the cerebellum. These regions
were chosen to find the underlying connections between visual
feedback and fast-corrected motion. To extract time series from
significant voxels in each ROI (x ∈ R

j, as in Equation 4) in the
TT > Rest contrast, subject-specific sphere centers were defined
as the closest suprathreshold voxel (p < 0.001, uncorrected) to
the MNI coordinates obtained from group-level analysis over all

FIGURE 3

Region of interest analysis and DCM fitting example. (A) Inputs represent the task time for the TT task (target with feedback) and TTNF task (target
with no feedback) during the measurement time. (B) Time series extraction. This is the first eigenvariate of the pre-whitened, high-pass filtered and
confounded-corrected time series in the selected region (right cerebellum, left motor cortex, and left visual cortex). (C) Predictions made by DCM
about the first eigenvariate values in the selected region. fMRI, functional magnetic resonance imaging; ML, left primary motor cortex; VL, left visual
cortex; CBR, right cerebellum; DCM, dynamic causal model.

FIGURE 4

Fully connected DCM. Schematic illustration of a hierarchical motor control model comprising three regions of interest: the primary motor cortex,
visual cortex, and cerebellum. ML, left primary motor cortex; VL, left visual cortex; CBR, right cerebellum.
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participants. For each subject, the three sessions of measurements
were combined into one session. An “Effects of Interest” F-contrast
was defined to tell SPM which regressors in the design matrix were
of interest. Then, the individual time series were computed as the
first eigenvariate across all suprathreshold voxels within 6 mm, as
shown in Figure 3.

3.5.2 DCM specification and Bayesian model
selection

First, we specified a fully connected DCM template as shown
in Figure 4. The black lines represent the internal connections
between different regions as in matrix A. The red lines in Figure 4
show the condition-related effects on the connections as in matrix
B. The orange lines show the sensitivity of ROIs to driving inputs
as in matrix C. This DCM template was fitted with time series
extracted from ROIs among all the participants (23). Rather than
declare any specific prior models, we searched among the reduced
parametric empirical Bayes (PEB) models to find the best one by
switching off the connections between different brain regions (17).
This procedure compared the evidence for reduced models
obtained by Bayesian model reduction by iteratively discarding
parameters that do not contribute to the model evidence (24, 25).

Then, a Bayesian model average (BMA) is calculated over
the models from the final iteration of the greedy search and the
parameter estimates of the reduced model were obtained. In this
paper, we showed the parameters with a posterior probability (PP).

3.5.3 Design matrix
A group-level designmatrix was used to describe the differences

between participants as covariates (e.g., differences of RMSE in
behavior analysis). All covariates were mean-centered and z-
scored to avoid the problem of multicollinearity (17). The design
matrix was modeled by a GLM with the group-level parameter
estimates to evaluate the potential effects of these differences
between participants. Finally, we performed a leave-one-out cross-
validation (LOOCV, SPM toolbox, function spm_dcm_loo.m) to
evaluate the predictive validity of the DCM.

4 Results

4.1 Visual feedback a�ects tracking
performance

We used RMSE to evaluate the tracking results of the TT task
(target with feedback) and TTNF task (target with no feedback).
The results are shown in Figure 5. For the TT task, we computed
the RMSE between the target position and feedback position to
evaluate the tracking performance of each participant. For the
TTNF task, although the feedback was not shown on the screen, we
still recorded the position of the feedback. We used the recorded
feedback position and target position to evaluate the participants’
tracking performance during the non-feedback motion task. The
RMSE value was significantly smaller in the TT task (81.5±14.4)
than in the TTNF task (120.8±34.7) (t-test, n = 14, p < 0.05). This
indicates that participants could fast-correct their tracking behavior

FIGURE 5

Behavior analysis results. The root mean square error (RMSE) of
motor performance was calculated for the TT task (target with
feedback) and TTNF task (target with no feedback). A significant
di�erence in RMSE between them indicates that visual feedback
improved the tracking performance in the behavioral experiment.
The symbol “*” indicates a statistically significant di�erence in the
comparison between the two groups (p < 0.00058).

according to the visual feedback and thus decrease the RMSE
with better tracking performance. The improved RMSE values
from TTNF to TT were normalized and then used as covariates
to adjust for individual differences in the DCM. We found a
positive correlation (–0.52, p = 0.07) between the normalized
improved RMSE and the estimated value based on the ML→ML
connectivity in the DCM (for details, see Table 4 and subsection
“Behavior analysis and DCM evaluation” in the Discussion). This
result suggests that increased activation in the motor cortex was
related to improved RMSE, which indicated that precise motor
control led to better tracking performance.

4.2 Muscle activation responding to
di�erent motion tasks

We used the t-test to examine whether the TTNF and TT
tasks affected muscle activation differently. Table 1 shows the MDF
results normalized by the mean MDF of each participant during
the TTNF task in the relevant muscles. We found that four of the
eightmusclesmeasured (FCR, BR, TCM, and SFT) had significantly
higher MDF in the TT task compared with the TTNF task (t-test,
p < 0.05, uncorrected). In addition, the mean MDF across all
eight muscles also showed significantly higher MDF in TT (t-test,
p < 0.05, uncorrected). By contrast, PD showed significantly lower
MDF in TT (0.991±0.097) compared with TTNF (1.000±0.100).
No significant difference was found in the other three muscles
measured (ECRL, BCM, ADS). The mean MDF was used as a
covariate in group-level DCM fitting to evaluate the effects of
individual differences. Table 2 shows the statistical analysis results
for EMG amplitude normalized by the mean for the relevant
muscles of each participant during TTNF. We found that, with the
exception of muscle SFT, all seven other muscles had significantly
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TABLE 1 Muscle median frequency.

Muscle 1. FCR 2. ECRL 3. BR 4. BCM 5. TCM 6. ADS 7. PD 8. SFT Mean

p < 0.05 * * * * * *

TTNF ave. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TTNF std. 0.229 0.099 0.103 0.065 0.058 0.054 0.100 0.092 0.041

TT ave. 1.059 1.007 1.032 1.004 1.009 0.996 0.991 1.010 1.014

TT std. 0.200 0.103 0.136 0.068 0.082 0.074 0.097 0.093 0.044

The symbol “∗” denotes a statistically significant difference in the comparison between the two tasks, TTNF and TT, based on a t-test with a significance level of p < 0.05 (uncorrected).

TABLE 2 Muscle amplitude.

Muscle 1. FCR 2. ECRL 3. BR 4. BCM 5. TCM 6. ADS 7. PD 8. SFT Mean

p < 0.05 * * * * * * * *

TTNF ave. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TTNF std. 0.459 0.291 0.191 0.189 0.096 0.154 0.145 0.145 0.110

TT ave. 1.117 1.137 1.098 1.113 1.029 1.024 1.017 1.011 1.068

TT std. 0.654 0.683 0.258 0.236 0.155 0.313 0.175 0.123 0.187

The symbol “∗” denotes a statistically significant difference in the comparison between the two tasks, TTNF and TT, based on a t-test with a significance level of p < 0.05 (uncorrected).

increased amplitude during TT compared with TTNF (t-test, p <

0.05, uncorrected).

4.3 Brain activation in response to di�erent
motion tasks

To investigate the brain regions related to higher- and lower-
level motor control movements, we analyzed the BOLD responses
in fMRI data. We first analyzed the BOLD responses that were
significantly higher than those in the resting state during the
different motion tasks (Figure 6, group analysis: FWE p < 0.05,
cluster level). The results show that the left and right sides of the
motor cortex were activated separately (left: 2,378; right: 1,649
voxels; Figure 6A) during the TTNF task, while a larger motor
cortex region (13,395 voxels, Figure 6B) that combined both sides
was activated in the TT task. Besides the differences in the motor
cortex, the activated region in the cerebellum was also larger in
TT compared with TTNF (TT: 1,211 voxels; TTNF: 831 voxels).
Moreover, there was no significant activation in the visual cortex
in TTNF compared with the resting state, but both sides of the
visual cortex were highly activated in the TT task (left: 365 voxels;
right: 592 voxels), as shown in Figure 6C. We also made a direct
contrast between TT and TTNF to highlight the differences in the
visual cortex, as shown in Figure 6D. For an overview, see Table 3.
We restricted the DCM analysis to the dominant (right) side and
selected three ROIs (p <0.001, uncorrected, sphere centers are the
same as the group analysis results for TT contrast shown in Table 3)
to represent the neuronal activation. These were the motor cortex
and visual cortex in the left hemisphere, and the cerebellum in the
right hemisphere, considering that all participants are right-handed
and the left and right sides of the controller are interconnected via
a gear mechanism.

4.4 Dynamic causal model

4.4.1 Network connection
As described in the methods section, we first built a fully

connected model and then simply pruned away any parameters
from the PEB that did not contribute to the model evidence. We
averaged the estimated connection strengths at the group level. The
final model obtained after Bayesian model reduction is shown in
Figure 7. The average explained variance of participant-level DCMs
was 35.75%±14.52%, ranging from 7.84% to 53.49%. The estimated
parameters of matrices A, B, and C are listed in Table 4.

The intrinsic network (matrix A) showed positive connections
from CBR to ML (a21 = 0.697 Hz, PP = 1) and to VL (a31 =
0.732 Hz, PP = 1) and positive connections from VL to CBR (a13 =
0.277Hz, PP = 1) and toML (a23 = 0.217Hz, PP = 1). These findings
indicate that CBR andVL increased the activity in the other regions.
Meanwhile, we found that the connections from ML to CBR (a12
= –0.070 Hz, PP = 1) and to VL(a31 = –0.509 Hz, PP = 1) were
negative, showing that inhibition from ML decreased activity in
CBR and VL. The input parameter results (matrix C) show the
sensitivity of the selected regions to the two driving inputs, namely,
tasks TTNF and TT. The results show that TTNF probably affected
the motor cortex with a lower sensitivity of c21 = 0.083 Hz (PP =
0.55), while task TT affected both the motor cortex (c22 = 0.409 Hz,
PP = 1.00) and the visual cortex (c32 = 0.379 Hz, PP = 1.00).

The network connectivity was modulated strongly during the
TT task (matrix B). We found that ML→CBR (b212 = –0.451 Hz,
PP = 1) and ML→VL (b232 = –0.606 Hz, PP = 1) were negatively
modulated, which decreased the inhibition from ML to CBR and
VL in the intrinsic network. These modulations could lead to
increasing activity from ML to CBR and VL, showing that ML
dominated the motor control as a higher-level controller. This can
also explain why significantly activated clusters were found in only
the visual cortex during TT. We also found negative modulation
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FIGURE 6

BOLD responses in the brain. Significance level setting: group analysis (n = 14), p < 0.05, family-wise error-corrected. (A) Significantly activated
regions in the motor cortex during the TTNF task (target with no feedback). (B) Significantly activated regions in the motor cortex during the TT task
(target with feedback). (C) Significantly activated regions in the visual cortex during TT task. (D) Contrast between TT and TTNF to highlight the
di�erences.

TABLE 3 Group analysis of fMRI results.

Brain region Left hemisphere Right hemisphere

x y z k t-
value

x y z k t-
value

Primary motor cortex (TTNF) –36 –24 62 2,470 11.56 34 –16 70 2,258 11.06

Primary motor cortex (TT) –36 –22 62 11,146 14.96 32 –16 70 11,146 11.37

Visual cortex (TT) –52 –72 0 837 8.92 50 –66 4 869 9.53

Cerebellum (TTNF) –10 –50 –20 2,183 11.31 20 –46 –26 2,183 8.01

Cerebellum (TT) –26 –38 –34 2,648 10.31 20 –46 –24 2,648 6.25

Group analysis: family-wise error p < 0.05, cluster level. k is the cluster size. x, y, and z are shown in Montreal Neurological Institute coordinates [mm]. For the significantly activated regions

in the cerebellum during the TT task (target with feedback) and TTNF task (target with no feedback), both the left and right hemispheres are in the same cluster; therefore, the values of k are

the same. The significantly activated regions in the motor cortex (left and right hemispheres) are also within the same cluster during the TT task.

from VL to ML (b223 = –0.399 Hz, PP = 0.95) indicating less
activation from VL to ML. However, no modulation was found
from CBR to ML or VL.

We assessed the effects of individual differences by
including improvement in tracking performance (RMSE)
and muscle activation (mean MDF) as covariates in our
model. We identified two connections, ML→ML (0.577 Hz,

PP = 0.98) and VL→ML (0.189 Hz, PP = 0.71), that were
positively related to individual differences in improved tracking
performance (RMSE). These results show that the improved
tracking performance was positively related to the enhanced
connection from VL to ML. Meanwhile, CBR→CBR connection
(0.960 Hz, PP = 1.00) was found to be positively related to mean
MDF.
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FIGURE 7

E�ective connectivity of the motor control model among the motor cortex, visual cortex, and cerebellum. The blue, red, and green lines represent
the intrinsic connections, modulatory connections, and driving inputs, respectively. (A) DCM model driven by the TTNF task. The intrinsic
connectivity shows strong inhibition in CBR→CBR (a11 = –0.885 Hz) and ML→VL (a32 = 0.509 Hz) as bolder blue lines, which indicate strong
self-inhibition in the activation of CR, and suppression to the activation of VL from ML. Weaker connectivity is shown by thinner lines as for ML→CBR
(a12 = –0.070 Hz), suggesting that ML does not dominate motor control during simple motor behavior like the TTNF task. The finding that the driving
input of TTNF only slightly a�ects ML c21 = 0.083 Hz also supports this result, indicating that ML was not sensitive to the stimuli (movement of the
target sphere). TTNF was set as the basic condition and all the parameters in matrix B1 were set to 0, so no modulatory connection (red lines) are
shown for this task. (B) DCM model driven by the TT task. The modulatory connection showed strong enhancements to the connections of
CBR→CBR (b2

11 = 1.180 Hz) and ML→ML (b2
22 = 1.798 Hz), indicating stronger self-inhibition in CBR and ML for adaptive visuomotor control. In

addition, the negative modulation of ML→VL (b2
32 = –0.606 Hz) decreased the suppression from ML to VL (a32 = –0.509 Hz), indicating significantly

activated clusters in the visual cortex. The negative modulation of ML→CBR (b2
12 = –0.451 Hz) compared with that of the intrinsic network (a12 =

–0.070 Hz) also showed that ML decreased the suppression of CBR and led to increased activity in CBR. These inhibitions from the motor cortex to
the visual cortex and cerebellum represent corrections of motor commands from the high-level controller. The inhibition from the visual cortex to
the motor cortex shows the e�ects of visual feedback to motor predictions. The driving input of TT a�ects both the motor cortex (c22 = 0.409 Hz)
and the visual cortex (c32 = 0.379 Hz). CBR, right cerebellum; ML, left motor cortex; VL, left visual cortex; DCM, dynamic causal model; TT, target
with feedback task; TTNF, target with no feedback.

4.4.2 Cross-validation of predictions
We used LOOCV to examine whether the network connections

derived from group analysis could predict individual differences.
In particular, we tested the improved RMSE in behavior analysis
and mean MDF, both after normalization (mean-centered and z-
scored). The tests of improved RMSE were made based on the
ML→ML and VL→ML connections because the two connections
were found to be positively correlated with the improved RMSE,
as explained in the previous subsection. The test of mean MDF
was predicted using modulation of ML→CBR by visual feedback
(task TT). This is because we were interested in whether we could
predict the change in muscle activity from the modulation of the
cerebellum by the motor cortex.

In Figures 8A, C, E, the lines with red circles show the predicted
values of improved RMSE and mean MDF for each left-out
subject. The shaded areas are the 90% credible interval of the
prediction and the lines with blue circles represent the actual
values. Figures 8B, D, F shows the scatterplots of the actual and
predicted values along with the Pearson’s correlation coefficients.
In the LOOCV of improved RMSE based on ML→ML and
VL→ML, 11/13 and 12/13 participants had their actual value
of improved RMSE within the estimated 90% credible interval.
Pearson’s correlation coefficients were –0.52 (p = 0.07) and
0.53 (p = 0.06) respectively. The LOOCV of mean MDF also
showed that 10/13 participants had their actual value within

the 90% credible interval. Pearson’s correlation coefficient was –
0.78 (p = 0.002). Therefore, we can conclude that the DCM
can predict the improved tracking performance (RMSE) and the
muscle activity characteristics (mean MDF), although there is
still variability.

5 Discussion

Rather than a functional understanding of individual brain
regions in isolation, our results suggest that the hierarchical
model could functionally explain human motor control that
effectively integrates incoming visual input and minimizes tracking
errors. We designed a closed-loop visuomotor control task with
moving a target in contrast to previous visuomotor tasks (13).
This design enabled us to study the motor-cerebellar interaction
with integrated visual feedback during target tracking motor
control. Our application of recent methodological advancements
in the field of human motor control enables a more thorough
characterization of the underlying neural mechanisms. These
insights can potentially inform the development of novel motor
control schemes by translating research findings into practical
applications.
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TABLE 4 Connectivity strength (posterior probability) during TTNF and

TT obtained by Bayesian model averaging of PEB model parameters.

Connection type Mean Improved
RMSE

Mean
MDF

Endogenous parameters: Matrix A (Hz)

a21 : CBR→ML 0.697 (1.00) - -

a31 : CBR→ VL 0.732 (1.00) - -

a12 : ML→CBR –0.070 (1.00) - -

a32 : ML→VL –0.509 (1.00) - -

a13 : VL→CBR 0.277 (1.00) - -

a23 : VL→ML 0.217 (1.00) - -

Self-inhibition parameters: Matrix A (Hz)

a11 : CBR→CBR –0.885 (1.00) - -

a22 : ML→ML 0.267 (1.00) - -

a33 : VL→VL –0.148 (0.93) - -

Modulatory parameters: Matrix B (Hz)

b211 : CBR→CBR 1.180 (1.00) - 0.960 (1)

b221 : CBR→ML - - -

b231 : CBR→VL - - -

b212 : ML→CBR -0.451 (1.00) - -

b222 : ML→ML 1.798 (1.00) 0.577 (0.98) -

b232 : ML→VL –0.606 (1.00) - -

b213 : VL→CBR - - -

b223 : VL→ML –0.399 (0.95) 0.189 (0.71) -

b233 : VL→VL - - -

Input parameters: Matrix C (Hz)

c11 : TTNF→CBR - - -

c21 : TTNF→ML 0.083 (0.55) - -

c31 : TTNF→VL - - -

c12 : TT→CBR - - -

c22 : TT→ML 0.409 (1.00) - -

c32 : TT→VL 0.379 (1.00) - -

Between-region connections are in units of Hz. Self-inhibition parameters are the log of

scaling parameters that multiply up or down –0.5 Hz (the default self-connection value).

Posterior probabilities are given in brackets. This table includes all parameters of the 256 best

models during Bayesian model averaging. n = 13. In this study, we set TTNF as the basic

condition. Therefore, all the parameters in matrix B1 were set as 0 and are not shown in this

table. CBR, right cerebellum; ML, left motor cortex; VL, left visual cortex; PEB, parametric

empirical Bayes; TT, target with feedback task; TTNF, target with no feedback; improved

RMSE, decreased right root mean square error (TTNF vs. TT) in the behavior analysis.

5.1 Behavior analysis and DCM evaluation

At the behavioral level, our study demonstrated a significant
reduction in the RMSE of tracking performance in the TT
task compared with the TTNF task. This finding indicates that
participants made a conscious effort to minimize the error in their
tracking in the TT task as instructed, which is consistent with
prior research suggesting that trajectory deviations are corrected
only when they interfere with task performance (1). The visual

feedback in TT allowed participants to adjust their motor output
and minimize the difference between the target and feedback
spheres.

We used the behavioral results in the DCM to correct
for participants’ individual differences. We found a stronger
connectivity strength of ML→ML (b222 = 0.577 Hz; probability:
0.98; covariates: normalized improved RMSE). We used the
DCM and made predictions about the improved RMSE
based on the ML→ML connection. These results suggest
that increased activation in the motor cortex was related to
improved RMSE. Stronger activation in the motor cortex might
lead to better tracking performance. We also found that the
enhanced connectivity strength of VL→ML (b223 = 0.189 Hz;
probability: 0.71; covariates: normalized improved RMSE) could
predict the improvement of tracking performance. Based on the
findings in modulated ML→ML and VL→ML connections, we
further verified that the two DCM connections could estimate
the improved RMSE (TT vs. TTNF) in the behavior analysis. The
LOOCV of ML→ML and VL→ML connections showed that
the modulated connectivity strength of our DCM could predict
individual differences in tracking performance. To summarize, the
modulation of connection strength suggests that visual feedback
can help minimize the differences between predictions and actual
motor outcomes by enhancing the connectivity strength from VL
to ML. Our study sheds light on how functional brain network
modulation affects motor control and provides a quantitative
method for evaluating the effects of modulation on tracking
performance.

5.2 DCM connectivity

Based on the recognition that human sensorimotor control can
be explained using a hierarchical model (26, 27), we built a DCM
that included two levels of neural feedback control with the motor
cortex regions as a high-level controller that monitors progress
and improves performance and the cerebellum as a low-level
controller that provides automatisms (2). Compared with previous
analysis of the cerebellar-premotor cortex interactions (13), we
also considered the interactions with the visual cortex underlying
visuomotor control. Our aim was to uncover functional aspects
of the motor-visual-cerebellar circuitry that could explain fast-
correction processing in target tracking.

The positive and negative values of connectivity strength
parameters between brain regions respectively indicated
enhancement or suppression of the connection. Our analysis
revealed a negative value of ML→VL (a32 = –0.509 Hz) in the
intrinsic network, indicating suppression from the motor cortex to
the visual cortex. This finding suggests that participants tended to
ignore visual stimulation from the target and suppress the visual
cortex when no visual feedback was provided. This result was
consistent with earlier findings from studies in monkeys (28),
which found that the primary visual cortex of monkeys was
selectively suppressed when high saliency stimuli were not
seen. Our result was also supported by the fMRI group analysis
results showing no activation in the visual cortex during the
TTNF task (Figure 6). Another possible explanation was that
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FIGURE 8

Leave-one-out cross-validation. (A) Estimations of improved RMSE based on ML→ML connectivity. (B) Pearson’s correlation coe�cient between
improved RMSE estimations based on ML→CBR connectivity and actual values. (C) Estimations of improved RMSE based on VL→ML connectivity. (D)
Pearson’s correlation coe�cient between improved RMSE estimations based on VL→ML connectivity and actual values. (E) Estimations of muscle
MDF based on ML→CBR connectivity. (F) Pearson’s correlation coe�cient between estimated muscle MDF based on ML→CBR and actual muscle
MDF. CBR, right cerebellum; ML, left motor cortex; VL, left visual cortex; RMSE, root mean square error; MDF, median muscle frequency.

participants might rely more on proprioception information to
follow the target’s movement, as proprioception has been found
to be primarily used for online corrections during rapid, unseen
movements toward visual targets (29). Our results were also
consistent with the study by Bagesterio et al., which found that
vision was mainly used for planning movement distance while
proprioception dominated online corrections during rapid, unseen
movements toward visual targets. The modulatory parameters
show how the motor control changed according to visual feedback.
During TT, the ML→VL connectivity (b232 = –0.606 Hz) was
more strongly suppressed than in the intrinsic network during
TTNF (a32 = –0.509 Hz), which could be interpreted as negative
modulation from the motor cortex activity. The observed
suppression from the motor cortex to the visual cortex would be
consistent with the hierarchical message passing model (9).

The connection from CBR to ML was positive during TTNF,
similar to the results of Pool et al. (30), who found that interactions
between the cerebellum and premotor areas are positive during
simple motor behavior. Our finding suggests that the cerebellum
contributed to fast automated motor control during TTNF as the
lower-level controller, consistent with the functional role of the

cerebellum in the cerebro-cerebellar loop as reviewed by Tanaka
et al. (7). The negative modulation of the ML→CBR connection
(b212 = –0.451 Hz > a12 = –0.070 Hz) shows that ML decreased
suppression of CBR and therefore increased the activity in CBR.
It also supports the interpretation that the motor cortex acted as
a higher-level controller when motor adjustment was necessary
during TT. The validation of the modulated ML→CBR connection
also demonstrated that it could be used to estimate the effects on
muscle activity (see LOOCV of mean MDF in Figure 8F). The
individual performance in terms of muscle activity also showed
a correlation with positive modulation of cerebellar activity. The
enhancement of CBR→CBR (0.980 Hz) represented that higher
activation in the cerebellum was related to higher mean MDF
in participants. Our results provide valuable insights into the
functional architecture of the motor-visual-cerebellar circuitry
and shed light on the mechanisms underlying fast-correction
processing in target tracking. They also illustrate the utility of
DCM in quantifying the effective connectivity changes caused
by visuomotor tasks, which could be useful for developing more
efficient rehabilitation tasks for enhancing the motor-visual and
motor-cerebellar connections.
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5.3 Study limitation

In this study, we measured the MRI and EMG using the same
experimental protocol separately because the EMG sensors could
not be used in the MRI room. However, it would be hard to
quantitatively evaluate whether the participants performed similar
movements in the twomeasurements. Raz et al. reported that vision
and posture play a major role in influencing behavior and MRI
results, and a mock MRI scanner could help address the limitations
of separate measurements (31). Therefore, we developed a dummy
MRI scanner, which aimed to recreate the MRI environment,
especially in terms of posture and vision whenmeasuring the EMG.
We fixed the body posture and positions of the head, elbows, and
wrists to restrict the movement. While this may not completely
replicate muscle activities, it is designed to generate very similar
results under identical behavioral restrictions. Similar upper limb
motion measurements in MRI and EMG were published in a spinal
cord MRI study (32).

There are several ways in which our work could be extended.
For example, additional shorter-duration measurements (i.e.,
an event-based experimental design) could be considered for
capturing distance-sensitive areas within the parietal and frontal
cortex regions, which may warrant inclusion in the hierarchical
model. It would also be worthwhile to improve the design of the
TTNF task by adding a static “feedback” circle to keep the number
of visual stimuli the same in both the TT and TTNF tasks and
prevent unexpected activation in the visual cortex.

6 Conclusion

In this study, we investigated the mechanisms of hierarchical
motor control in humans by combining experimental behavior
analysis andmuscle activity with brain imaging techniques.We first
used behavior analysis to evaluate the tracking performance during
different voluntary hand motions. Our exploration commenced
with a meticulous examination of behavioral data, allowing us
to scrutinize tracking performance across various voluntary hand
motions. This analysis uncovered notable disparities in motor
control strategies, highlighting the multifaceted nature of this
cognitive processing.

Subsequently, we explored the realm of neural dynamics,
utilizing DCM and PEB to quantitatively assess neural activity
interactions within the motor, visual, and cerebellar cortices. Our
findings illuminated substantial differences in behavioral control
performance between tasks executed with and without visual
feedback. Notably, the presence of visual feedback resulted in a
heightened modulated suppression pathway from the motor cortex
to both the cerebellum and the visual cortex, emphasizing the
pivotal role of visual input in shaping motor control.

Furthermore, our study delved into the individual nuances
of motor control by scrutinizing the modulation of connection
strength within the VL→ML, ML→ML, and ML→CBR pathways
under the influence of visual feedback. This analysis provided
insights into the neural signatures responsible for individual
variations in tracking performance and muscle activity. The
results of this research offer fresh perspectives on the mechanisms
underpinning hierarchical motor control, particularly in the
context of visual feedback integration. By deciphering the

intricacies of human motor control, our work is expected to
contribute to the advancement of personalized interventions and
technologies, ultimately enhancing human capabilities and quality
of life.
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