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Prune exopolyphosphatase 1 (PRUNE1) is a short-chain phosphatase that 
is part of the aspartic acid-histidine-histidine (DHH) family of proteins. 
PRUNE1 is highly expressed in the central nervous system and is crucially 
involved in neurodevelopment, cytoskeletal rearrangement, cell migration, 
and proliferation. Recently, biallelic PRUNE1 variants have been identified 
in patients with neurodevelopmental disorders, hypotonia, microcephaly, 
variable cerebral anomalies, and other features. PRUNE1 hypomorphic 
mutations mainly affect the DHH1 domain, leading to an impactful 
decrease in enzymatic activity with a loss-of-function mechanism. In this 
review, we explored both the clinical and radiological spectrum related to 
PRUNE1 pathogenic variants described to date. Specifically, we  focused 
on neuroradiological findings that, together with clinical phenotypes and 
genetic data, allow us to best characterize affected children with diagnostic 
and potential prognostic implications.
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1 Introduction

Prune exopolyphosphatase 1 (PRUNE1) is a component of the aspartic acid-histidine-
histidine (DHH) family of proteins with hydrolysis activity on short-chain polyphosphates 
(1–3). The DHH catalytic domain is located at the N-terminal end of the protein and 
consists of highly conserved loading residues that bind metal cofactors during interaction 
with substrates (1, 4). PRUNE1 is highly expressed in the central nervous system during 
fetal development and plays a crucial role in cell migration and proliferation, presumably 
through interaction at the C-terminal end with proteins involved in cytoskeletal 
rearrangement (3, 5–8). Probably implicated in the hydrolysis of the second messenger 
cyclic adenosine monophosphate (cAMP), PRUNE1 also modulates many sub-cellular 
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processes and appears to be  critical for embryogenesis in mouse 
models (1, 3, 9). Interestingly, both PRUNE1 −/− mice and PRUNE1 
conditional knockout mice generated by cell-specific inactivation of 
PRUNE1 died within embryonic day 12 and exhibited cardiac 
anomalies, vascular remodeling, and hematopoietic defects, in 
addition to anomalies in the differentiation of trophoblasts (1, 3). 
These mice also presented with Purkinje cell degeneration during 
embryonic age, with the loss of these same cells (>90%) within 2 
months of age (3).

Moreover, PRUNE1 has been involved in postnatal 
neurodevelopment and metastatic processes, being implicated in cell 
cycle and motility (1, 3, 8–10). Specifically, mutations in PRUNE1 have 
been related to different metastatic subgroups of medulloblastoma. It 
was observed that the PRUNE1 protein, which is highly expressed in 
metastatic medulloblastoma, stimulates the TGF-β pathway with 
consequent upregulation of OTX2 and SNAIL and PTEN inhibition. 
In this context, two different substrates (a small pyrimido-pyrimidine 
derivative, AA7.1, and a competitive permeable peptide) inhibited the 
PRUNE1/TGF-β/OTX2/PTEN axis and prevented tumor growth and 
metastatic dissemination in a functional model (5, 11). The 
overexpression of PRUNE1 has also been involved in the oncogenesis 
and metastatic progression of thyroid cancer, esophageal squamous 
cell carcinoma, gastric cancer, colorectal cancer, non-small cell lung 
cancer, breast cancer and triple-negative breast cancer, hepatocellular 
carcinoma, and neuroblastoma. In particular, silencing PRUNE1 in 
human cancer cells impaired cell motility and metastasis formation (5).

Autosomal recessive pathogenic variants of PRUNE1 have been 
associated with microcephaly, hypotonia, and variable brain anomalies 
(NMIHBA, MIM #617481) (1, 12). In recent years, the clinical-
radiological spectrum related to PRUNE1 has expanded to include 
craniofacial anomalies, skeletal muscle and articular impairment, 
neuropathy, profound global developmental delay, cortical and 
cerebellar atrophy, white matter disease, corpus callosum 
abnormalities, and seizures (3, 13–16).

The aim of this review is to delineate the emerging clinical-
radiological spectrum related to PRUNE1 pathogenic variants, 
focusing on brain magnetic resonance imaging signs, better 
characterize the disorder, and provide clinicians with a helpful 
instrument for diagnostic work-up.

2 Genetic features

The PRUNE1 gene is situated on chromosome 1q21.3 and encodes 
a protein of 453 amino acids. The PRUNE1 protein is involved in 
synaptogenesis, neurite growth, and neurogenesis and includes two 
domains, DHH (20–172 amino acids) and DHHA2 (215–359 amino 
acids) (6, 17).

PRUNE1 pathogenic variants present pan-ethnic expression and 
are related to an expanding neuroradiological phenotype. Those 
described to date are missense, start-loss, nonsense, deletions, loss-of-
function splicing, homozygous, and compound heterozygous, 
inherited in an autosomal recessive pattern. Interestingly, the 
expression of homozygous PRUNE1 variants was more pronounced 
in those populations with high rates of consanguineous marriages, 
and the majority of homozygous patients carried a missense variant, 
suggesting that PRUNE1-related disorders are mainly associated with 
hypomorphic alleles (1, 13). Moreover, rare severe alleles from recent 

ancestors were associated with a relevant effect on PRUNE syndrome, 
greater than common variants reported in populations. If these rare 
alleles congregate in homozygosis, a founder effect and/or a high 
consanguinity rate may play a crucial role (1, 18).

To date, 64 patients with PRUNE1-related disorders have been 
described, with no evidence of a clear genotype–phenotype 
correlation. Indeed, patients harboring the same variant allele 
displayed a variable severity of clinical phenotype (1).

The majority of the pathogenic variants reported seems to affect 
the DHH domain, leading to a variable loss of protein function (17) 
(Figure 1). The DHH disruption impairs the protein structure and the 
interaction with divalent metal ions, preventing substrate binding (1). 
Specifically, according to a synergistic mechanism, the metal ion 
binding in the active site of the protein accelerates the substrate 
binding to PRUNE1, which in turn increases the enzymatic affinity for 
the metal ion. Indeed, comparative modeling of variants affecting one 
of the three highly conserved amino acids of the DHH domain 
(Asp-His-His) showed a relevant decrease in enzymatic activity, with 
subsequent variable loss of function of the PRUNE1 protein (1, 
10, 17).

Homozygous variants p.(Met1?) (17), p.Asp106Asn (12), c.521-
2A>G: IVS4-2A>G (19), p.D30N, p.D106N, and compound 
heterozygous variants p.R128Q and p.G174X (12) affecting the 
catalytic DHH domain showed neurological features such as 
developmental delay, intellectual disability with speech disorder, 
cerebral and cerebellar atrophy, hypotonia, spastic quadriplegia, 
microcephaly, and seizures, with decreased enzymatic and short-chain 
exopolyphosphate activity.

Concurrently, patients carrying the homozygous variant c.521-
2A>G: IVS4-2A>G, p.(Met1?), p.Cys180* presented a neurological 
phenotype without microcephaly. Both organoid studies and the 
expansion of the clinical spectrum will be able to clarify the impact of 
each variant and possibly better define a genotype–phenotype 
correlation (17).

PRUNE1 appears crucial in mouse embryogenesis, and PRUNE1-
null mouse models showed cardiac hypoplasia and profound vascular 
defects, not reported in humans with PRUNE1-related disorders 
despite a high cardiac expression in human adults (1). Moreover, 
homozygous deletion of PRUNE1 results in embryonic lethality in the 
mouse model but not in humans. Although the role of PRUNE1 in 
embryonic development is currently not known, studies to date 
support a pivotal role for PRUNE1 in human neuronal survival during 
development. Further functional studies will better elucidate the 
molecular mechanisms of PRUNE1-related disorders.

3 Clinical features

Considering the 64 patients with PRUNE1-related disorders 
described to date, no specific genotype–phenotype correlation has 
emerged. PRUNE1 is highly expressed in the cortex, hippocampus, 
midbrain, and cerebellum of the developing brain. Affected patients 
are frequently born after an uncomplicated pregnancy and present 
with an unremarkable perinatal period. However, during the first 
months of life, they usually manifest severe global neurodevelopmental 
delays and comorbidities that worsen over time. Specifically, they do 
not achieve neurodevelopmental milestones (~90%) and exhibit 
moderate to profound intellectual disability (83%), with speech delay 
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(~78%), hypotonia (42%), spastic quadriplegia (22%), microcephaly 
(61%), and seizures (60%) (17). Language is often absent, with patients 
communicating with grunts and cries. Axial hypotonia with distal 
hypertonia/spasticity and brisk tendon reflexes characterize these 
patients, and peripheral neuropathy, reduced nerve conduction 
velocity, and/or spinal motor neuron involvement have also been 
described (1, 20). Patients often present with seizures starting at a 
mean age of 6 months. These include infantile spasms, focal and 
generalized gelastic, myoclonic, clonic, and/or tonic seizures 
refractory to antiseizure medications (1, 21–24). In this context, the 
electroencephalogram (EEG) documents variable discharges, 
progressive development of hypsarrythmia, and/or slowed 
background activity as the epileptic encephalopathy worsens. 
Furthermore, vision problems such as optic atrophy, esotropia, cortical 
blindness, bilateral rudimentary iris strands, congenital cataracts, 
saccadic eye movements, and nystagmus have been reported and are 
often present after birth (1, 8, 13, 19, 20, 23). Recently, gastrointestinal 
disorders such as dysphagia and gastrointestinal reflux have been 
described, usually followed by inadequate oral caloric intake and 
failure to thrive, requiring nasogastric tube feeding or gastrotomy tube 
placement (1, 13, 20). Skeletal issues such as kyphosis and scoliosis 
have also been observed (1, 20, 23). Dysmorphic features described 
include craniofacial anomalies such as a sloping or high forehead, 
large prominent or low-set ears, prominent eyes, a narrow, high-
arched palate, epicanthus, hypertelorism, a flat nasal bridge, detached 
and hypoplastic nipples, hirsutism, abnormal dentition with widely 
spaced teeth, micro-retrognathia, plagiocephaly, bitemporal 
narrowing, brachycephaly, and brachydactyly. Other findings, then, 
include arthrogryposis/contractures, hypertrophic cardiomyopathy, 
pectus excavatum, clubfoot, bilateral talipes equinovarus, respiratory 
distress, exaggerated startle, bilateral Babinski signs, and sustained 
ankle clonus (1).

4 Imaging findings

Brain imaging plays a crucial role in the diagnostic workup of 
PRUNE1-related disorders. However, previous literature does not 

entirely elucidate the distinct MRI anomalies associated 
with PRUNE1.

However, specific MRI features related to PRUNE1 pathogenic 
variants have emerged over the years, often including brain 
malformations (Figure 2; Table 1). Our aim is to analyze the PRUNE1-
related MRI features described to date in order to establish a distinct 
radiological pattern.

In 2015, Karaca et al. performed a study including 208 patients 
from 128 mainly consanguineous families with congenital brain 
malformations and/or intellectual disabilities. In four families, 
potentially deleterious variants of the PRUNE1 gene, associated with 
intellectual disability, brain malformations, and cortical dysplasia, 
were identified. Specifically, a homozygous missense variant 
(NM_021222: c.G316A, p.D106N) in the PRUNE1 gene was detected 
in two apparently unrelated families from neighboring villages in 
eastern Turkey. Both individuals affected by this variant showed 
microcephaly, frontotemporal cortical atrophy, and cerebellar atrophy 
on MRI. Furthermore, a rare homozygous missense variant 
(NM_02122:c.G88A:p.D30N) was described in an 18-month-old male 
patient with cerebral and cerebellar atrophy, microcephaly, and severe 
developmental delay. In four unrelated families from the United States, 
compound heterozygous missense variants (NM_021222: c.G383A:p.
R128Q and NM_021222: c.G520T:p.G174X) were detected and were 
associated with severe developmental delay, regression, seizures, 
microcephaly, and brain atrophy (12).

In 2016, Costain et al. presented the case of a 2-year-old boy with 
a complex neurological phenotype and abnormalities detected on 
brain MRI. Upon re-evaluation of clinical whole-exome sequencing 
data, a homozygous, likely pathogenic splicing variant in PRUNE1 
(c.521-2A>G) was identified. The patient was born to 
non-consanguineous parents of Cree (maternal) and Ojibwe-Cree 
(paternal) descent. After birth, he developed central hypoventilation, 
requiring assisted ventilation. At neurological examination, bilateral 
talipes equinovarus (clubfoot) and generalized hypotonia were 
observed. Throughout his first year of life, additional issues emerged, 
including severe global developmental delay without regression, 
cortical blindness, infantile spasms characterized by hypsarrhythmia, 
and an active focus in the right posterior temporal region on the 

FIGURE 1

Pathogenic variants in PRUNE1 reported to date. PRUNE1 figure protein with the catalytic domains and the pathogenic variants described so far.
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EEG. The patient underwent three MRI brain scans at the ages of 
8 days, 7 weeks, and 10 months of age, each of which was unremarkable. 
The most recent MRI showed cortical atrophy and a small cerebellum. 
Bilateral cerebral white matter loss was detected with a thin corpus 
callosum and patchy T2 hyperintensity in the frontal and parietal 
regions. Areas of diffusion restriction and T2 hyperintensity were 
observed in the globus pallidus and subthalamic nuclei, likely related 
to the use of vigabatrin. Furthermore, time-of-flight MR angiography 

and single-voxel MR spectroscopy in the left basal ganglia region 
showed normal results (19).

In 2017, Zollo et  al. described PRUNE1 mutations in 13 
individuals, ranging in age from 3 months to 21 years, belonging to 
extended families from Oman and Iran, with two smaller families 
from India and Italy. All of these families were affected with 
overlapping severe global neurodevelopmental delays. Neuroimaging 
revealed specific findings in affected individuals, including focal 

FIGURE 2

Neuroradiological features of individuals with biallelic PRUNE1 mutations. Sagittal T1-weighted images of a PRUNE1-affected patient performed at 
6  months of age (A) and 16  months of age (B) show progressive global brain atrophy, but more specifically evidence of cerebellar and brainstem 
atrophy, which is out of proportion to the cerebral atrophy. (E,F) Axial T2-weighted images performed at 6  months of age (E) and 16  months of age 
(F) in the same child, showing progressive diffuse white matter abnormalities along with progressive brain atrophy. (C) Axial inversion recovery and 
(G) sagittal T1-weighted MRI sequences performed in the patient at 24  months of age show generalized brain volume loss, but with specific evidence 
of cerebellar atrophy and a diffuse white matter signal abnormality as was seen in her sibling (D,H).

TABLE 1 MRI Features of PRUNE1 affected patients reported to date.

MRI Features Karaca 
et al. 
(12)

Costain 
et al. 
(19)

Zollo 
et al. 
(8)

Karakaya 
et al. (23)

Iacomino 
et al. (22)

Alfadhel 
et al. 
(13)

Hartley 
et al. 
(14)

Hiroyuki 
et al. 
(21)

Koko 
et al. 
(25)

Gholizadeh 
et al. (17)

Cerebral atrophy + + + + + + − + + +

Cerebellar atrophy + + + + − + + +

Delayed myelination + + + − +

Hypoplasia of the corpus 

callosum

+ + + + − + + +

White matter disease + + + − +

Microcephaly + + + + −

White matter 

hyperintensities (T2)

+ − + +

Optic atrophy + + −

Progression of 

abnormalities with age

+ + −
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white matter changes, delayed myelination, cortical atrophy, a thin 
or underdeveloped corpus callosum, and cerebellar atrophy. In one 
case, serial MRI scans were performed and showed a severe 
progression of the disease over time. At 6 months of age, delayed 
myelination was observed, while a follow-up MRI at 18 months of 
age revealed widespread abnormalities in the white matter and 
progressive brain atrophy affecting the cerebral cortex and especially 
the cerebellum. Both Italian children presented with optic atrophy 
at 2 years of age (8).

Recently, Karakaya et al. described the new case of an affected 
individual from a consanguineous Turkish family with congenital 
hypotonia, secondary microcephaly, global developmental delay, and 
respiratory failure. Cranial MRI scans conducted at 14 months of age 
revealed cerebral and cerebellar atrophy, delayed myelination, and 
hypoplasia of the inferior vermis. Electromyography was also 
performed and documented the neurogenic involvement. At 
38 months of age, the patient exhibited generalized muscle weakness, 
no head control, hypotonia, spasticity, and sustained ankle clonus. 
He also developed secondary microcephaly, with a head circumference 
of 48.0 cm, brachycephaly, large ears, optic atrophy, severe 
kyphoscoliosis, and flexion contractures. Due to his condition, 
he required permanent mechanical ventilation and a nasogastric tube 
for feeding problems (23).

Iacomino et al. reported the case of a patient with a homozygous 
PRUNE1 mutation and spinal motor neuronal involvement observed 
by electrophysiologic exam and muscle biopsy. This 9-month-old child 
from Italy was born at term to healthy, non-consanguineous parents. 
At birth, the patient displayed distal joint contractures and profound 
hypotonia. Respiratory distress required an early intubation. From the 
age of 6 months, the patient experienced epileptic spasms, and the 
EEG revealed a slowed background and multifocal epileptic 
abnormalities, prominent in the left occipital and right temporal brain 
regions. Brain MRI documented diffuse cortical atrophy and severe 
white matter loss, with signal changes in the periventricular white 
matter and pons. Subsequent whole-exome sequencing identified a 
missense homozygous variant (c.316G>A, p.D106N) in the PRUNE1 
gene (NM_021222). These findings provide further insights and 
highlight the extensive involvement of both brain and spinal motor 
neurons in this patient (22).

Alfadhel M. et  al. described two affected girls, aged 12 and 
30 months, from unrelated Saudi families. Both patients had the same 
missense mutation in PRUNE1 (c.383G>A, p.Arg128Gln), which had 
not been reported before in the homozygous state. Patient 1 exhibited 
various dysmorphic features, and the neurological examination 
revealed central hypotonia and spastic quadriplegia with brisk tendon 
reflexes and clonus. MRI showed delayed myelination, a slightly 
abnormal shape of the corpus callosum, and mild frontal cerebral 
atrophy. Patient 2 had severe global developmental delay, axial 
hypotonia, appendicular spasticity, and microcephaly. A brain MRI 
showed a slightly abnormally shaped corpus callosum and slightly 
prominent CSF spaces anteriorly with normal myelination. Magnetic 
resonance spectroscopy was unremarkable (13).

Hartley J. et  al. provided a description of the clinical and 
neuropathological features observed in nine Cree children from 
Manitoba, Canada. A homozygous PRUNE1 mutation was identified 
as the underlying cause of the disease. Both the central and peripheral 
nervous systems were involved in these affected patients. The subjects 
exhibited hypotonia, contractures, and feeding difficulties. Notably, 

their MRI brain scans and head sizes were within the normal range, 
suggesting a neuromuscular origin for these manifestations (14).

In 2019, Hiroyuki Fujii et al. presented a unique case from Japan 
involving a reported PRUNE1 mutation. A brain MRI revealed distinct 
imaging findings not previously reported. The patient was a 
12-month-old girl, the first child of non-consanguineous Japanese 
parents. She exhibited global developmental delay, intellectual 
disability, hypotonia, spastic quadriparesis, and hyperreflexia. Brain 
MRIs displayed cerebral and cerebellar atrophy, a thin corpus 
callosum, white matter changes, and abnormal signal intensity in the 
brainstem. Additionally, she presented a transient lesion in the 
subcortical white matter of the brain, atrophy of the midbrain and 
pontine tegmentum, and abnormal signal intensity in the swollen 
putamen and medial portions of the thalamus, which emerged after 
the age of 4 years. At the same age, the patient underwent whole-
exome sequencing (WES) analysis, which identified biallelic PRUNE1 
variants. Specifically, compound missense heterozygous mutations 
were detected (c.[316G>A];[540T>A], p.[Asp106Asn];[Cys180*]) (21).

In 2021, Koko M. et al. reported five patients from two unrelated 
consanguineous Sudanese families who exhibited global 
neurodevelopmental delay, pyramidal symptoms with prominent 
flexion contractures, and extrapyramidal signs and symptoms (severe 
dystonia and bradykinesia). A homozygous splice variant 
(NM_021222.3:c.132 + 2 T > C), possibly related to an in-frame 
deletion in the DHH domain or premature truncation of the protein, 
was detected in these patients. Mild cortical, subcortical, and 
cerebellar atrophy, and a thin corpus callosum, were described on 
brain MRI in these affected patients. Additionally, periventricular 
subcortical white matter hyperintensities were detected in one 
individual (25).

Finally, in 2022, Gholizadeh MA et al. examined four individuals 
(two affected and two healthy) from a consanguineous Iranian family. 
Whole-exome sequencing revealed a start-loss pathogenic variant, 
NM_021222.3:c.3G>A; p.(Met1?), in the PRUNE1 gene in two patients 
from this family. These patients presented with spastic quadriplegic 
cerebral palsy, hypotonia, developmental delay, intellectual disability, 
optic atrophy, and cerebellar atrophy. Brain MRI documented cortical 
atrophy, a thin corpus callosum, cerebellar hypoplasia, and delayed 
myelination (17).

5 Discussion

Genetic neurodevelopmental disorders (NDDs) include a 
variety of monogenic conditions with increasing clinical and 
genetic heterogeneity, characterized by various impairments in 
language, motor abilities, cognitive and behavioral development, 
and neurological comorbidities such as epilepsy and movement 
disorders (26–30). Over the years, studies based on NGS and omics-
related sciences have revealed an expanding molecular complexity 
underlying NDDs (31–36). Many novel molecular factors have been 
identified with consequent advantages in terms of better definition 
of clinical phenotypes, valuable prognostic information, detailed 
imaging studies, and targeted therapies for the children affected by 
these conditions (37–42).

PRUNE1 pathogenic variants have been associated with a 
widening clinical-radiological spectrum. To date, no clear genotype–
phenotype correlation has been found, but functional and 
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computational studies showed a loss-of-function pathogenic 
mechanism of PRUNE1. Indeed, nonsense, missense, deletion, start-
loss, splicing, and truncating variants mainly affect the DHH domain 
with variable impairment and a decrease in protein 
enzymatic activity.

PRUNE1 is a multifunctional protein that mainly acts by 
hydrolyzing short-chain polyphosphates through metal ion interaction 
at the catalytic domain level, modulating several cellular processes 
such as cytoskeletal reorganization, migration, differentiation, 
neurogenesis, and synaptogenesis. Its complex regulation, along with 
its multiple interactions, largely explain the emerging clinical 
spectrum of PRUNE1.

Over the years, several studies have investigated the molecular 
mechanisms associated with PRUNE1 overexpression in several 
metastatic cancers. Interestingly, it was noted that PRUNE1 regulates 
cell migration, motility, and adhesion through interaction with 
glycogen synthase kinase 3 (GSK-3)-binding protein, paxillin, 
vinculin, and phosphorylation of different substrates such as tyrosine 
phosphorylation of focal adhesion kinase (FAK) and H2-domain- and 
SH3 domain-containing proteins (p130Cas and Crk) (6). Specifically, 
GSK-3 and PRUNE1 cooperate to disassemble focal adhesions and 
promote cell migration. Additionally, it has cyclic nucleotide 
phosphodiesterase activity and negatively regulates nm23-H1, a 
protein with antimetastatic activity. It has been observed that 
mutations in PRUNE1 lead to a gain of phosphodiesterase activity, 
promoting metastasis, cancer aggressiveness, and proliferation. 
Moreover, PRUNE1 upregulates several genes involved in metastatic 
processes and modulates the TGF-β/OTX2/PTEN axis with the same 
consequences as previously described (6). Additionally, it stimulates 
β-catenin and the secretion of Wnt3a, vimentin, and cytokines such 
as IL-17F. These results suggest that this protein could be considered 
as a potential marker of cancer aggressiveness and a target for future 
personalized treatments.

Polyphosphate seems to play a crucial role in cell metabolism in 
different species and has recently been described as neuroprotective 
against amyloid accumulation (43). Contextually, several mechanisms 
have been described to prevent amyloid toxicity. Presumably, 
polyphosphate directly controls amyloid formation and degradation. 
Concurrently, it may inhibit the uptake and diffusion of amyloid fibrils 
or increase their turnover. Additionally, low polyphosphate levels may 
be  related to mitochondrial dysfunction, which is frequently 
associated with amyloidosis. Interestingly, polyphosphate levels 
decrease with age and appear to be low in patients with Alzheimer’s 
disease (44). Furthermore, polyphosphate has been observed to act as 
a gliotransmitter, leading to the strong activation of astrocytes. It has 
presumably played a pivotal role in modulating their signal 
transmission (45). Interestingly, in vitro studies have shown that 
patients with amyotrophic lateral sclerosis (ALS) have an 
overexpression of polyphosphate in astrocytes. Concurrently, motor 
neuron death was prevented by polyphosphate degradation, 
suggesting that this molecule could be  considered as an ALS 
biomarker and therapeutic target (46).

Furthermore, PRUNE1 acts as a microtubule-associated protein 
(MAP) and promotes microtubule polymerization during mitosis and 
migration processes. Consistently, mutations in NMIHBA patients 
lead to delayed polymerization, disrupting proliferation and migration 
in the developing brain (5).

The variable loss of phosphatase activity in affected patients 
caused by pathogenic PRUNE1 variants may shed light on potential 
targeted treatments, such as the use of molecules able to restore its 
enzymatic activities.

MRI radiological findings show that the majority of the subjects 
examined have delayed myelination, thin corpus callosum, and white 
matter abnormalities; in particular, brain magnetic resonance imaging 
showed an abnormal shape of the corpus callosum with thinning in 
the T1-weighted image, while in the T2-weighted image it showed 
mild frontal cerebral atrophy, prominent cerebellar atrophy, and 
delayed myelination. Imaging data represent a valuable instrument 
that, together with specific clinical features and genetic analysis, can 
best define PRUNE1-related disorders with diagnostic and potential 
prognostic implications.

We suggest that clinicians should consider the PRUNE1 gene in the 
diagnostic workup of any child presenting with dysmorphic features, 
developmental delay, microcephaly, central hypotonia, peripheral 
spasticity, delayed myelination, cerebral atrophy, and thin corpus callosum.
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