
Frontiers in Neurology 01 frontiersin.org

Stroke classification and treatment 
support system artificial 
intelligence for usefulness of 
stroke diagnosis
Nobukazu Miyamoto 1*, Yuji Ueno 1, Kazuo Yamashiro 1, 
Kenichiro Hira 1, Chikage Kijima 1, Naoki Kitora 2, Yoshihiko Iwao 2, 
Kayo Okuda 2, Shohei Mishima 2, Daisuke Takahashi 2, 
Kazuto Ono 3, Mika Asari 4, Kazuki Miyazaki 4 and 
Nobutaka Hattori 1*
1 Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan, 2 HACARUS INC., 
Kyoto, Japan, 3 Ohara Pharmaceutical Co., Ltd., Tokyo, Japan, 4 PARKINSON Laboratories Co., Ltd., 
Tokyo, Japan

Background and aims: It is important to diagnose cerebral infarction at an early 
stage and select an appropriate treatment method. The number of stroke-trained 
physicians is unevenly distributed; thus, a shortage of specialists is a major 
problem in some regions. In this retrospective design study, we tested whether 
an artificial intelligence (AI) we built using computer-aided detection/diagnosis 
may help medical physicians to classify stroke for the appropriate treatment.

Methods: To build the Stroke Classification and Treatment Support System AI, the 
clinical data of 231 hospitalized patients with ischemic stroke from January 2016 
to December 2017 were used for training the AI. To verify the diagnostic accuracy, 
151 patients who were admitted for stroke between January 2018 and December 
2018 were also enrolled.

Results: By utilizing multimodal data, such as DWI and ADC map images, as well 
as patient examination data, we  were able to construct an AI that can explain 
the analysis results with a small amount of training data. Furthermore, the AI was 
able to classify with high accuracy (Cohort 1, evaluation data 88.7%; Cohort 2, 
validation data 86.1%).

Conclusion: In recent years, the treatment options for cerebral infarction have 
increased in number and complexity, making it even more important to provide 
appropriate treatment according to the initial diagnosis. This system could be used 
for initial treatment to automatically diagnose and classify strokes in hospitals 
where stroke-trained physicians are not available and improve the prognosis of 
cerebral infarction.
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Highlight

• SCTSS-AI classifies strokes with over 85% accuracy, aiding in treatment decisions.
•  Utilizing multimodal data, the AI provides explanations and improves prognosis of cerebral  

infarction.
•  The system addresses the shortage of stroke experts, enabling automatic diagnosis and  

classification.
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Introduction

Cerebrovascular disease, commonly referred to as stroke, is a 
leading cause of death and chronic disability on a global scale (1–3). 
Approximately 80% of strokes are caused by cerebral ischemia (4). 
In addition, energy depletion and cell death can cause ischemic 
brain injury (5). These injuries lead to functional impairment of the 
injured neurons, leading to severe long-term disability. In the initial 
diagnosis, brain imaging techniques, such as computed tomography 
(CT) and magnetic resonance imaging (MRI), to detect tissue 
necrotic areas of cerebral infarction are important tools for ischemic 
stroke assessment (6).

Treatment of ischemic stroke includes intravenous 
thrombolysis, intra-arterial therapy, and mechanical 
revascularization (7). Although it is possible to diagnose stroke 
without being a stroke specialist, stroke-trained physicians classify 
stroke severity using knowledge of how the physiology of different 
stroke types is reflected in image textures (8). However, manual 
image analysis is labor intensive (8) and prone to inter- and intra-
operator variability (9, 10). Furthermore, expert analysis is limited 
by the number and areas where specialists practice (11), which 
results in increased diagnostic costs. Automatic lesion 
identification and subsequent stroke severity classification can 
significantly reduce drawing time and accurately detect lesions 
(11). The development of computer-aided detection and 
diagnostic systems based on the automatic detection of post-
stroke brain lesions is an active research field. In such studies, 
research is being conducted to construct an automated stroke 
severity classification system using either CT or MRI. Both 
methods yield a graphical representation of the human brain 
containing distinct image objects. Identifying such objects 
through image segmentation is an important step in extracting 
diagnostically important information. CT is faster and less 
expensive and more widely used globally than MRI. However, 
MRI is suitable for constructing an automated stroke severity 
classification system because MRI is much more sensitive for 
acute ischemic lesions than CT (12) and MRI scans can 
be enhanced by adding functional information to the anatomical 
data to form diffusion-weighted images (DWI).

There are regional disparities in the number of physicians who 
can diagnose stroke accurately globally. In Japan, there are many 
stroke-trained physicians in urban areas; however, there are fewer in 
rural hospitals. Thus, initial stroke treatment is provided by general 
physicians who are not trained in stroke care (13). To solve this 
problem, the Japan Stroke Association has provided guidelines on 
“drip-and-ship treatment,” but this only increases the burden on 
urban stroke-trained physicians (14). In stroke treatment, it is 
important to classify the acute phase of stroke and treat patients 
according to the stroke classification, even in environments where 
mechanical thrombectomy and intravenous thrombolysis are not 
available (15). However, differences in functional prognosis have 
been reported between patients treated by stroke specialists and 
those treated by general physicians (16). We aimed to develop an 
artificial intelligence (AI)-based stroke diagnosis aid system using 
MRI to automatically diagnose and classify strokes in hospitals 
where stroke-trained physicians are not available, and to link this to 
initial medical care.

Patients and methods

Patients

We developed a Stroke Classification and Treatment Support 
System AI (SCTSS-AI) equipped with the infarct detection AI and the 
stroke classification AI for cerebral infarction. The development was 
approved by the Human Ethics Review Committee of Juntendo 
University School of Medicine (E22-0028). The stroke classification 
AI was established using the medical records and MRI data of Cohort 
1, who were admitted to Juntendo University Hospital’s Neurology 
Department between January 2016 and December 2017 for cerebral 
infarction or developed cerebral infarction while admitted and were 
treated at the Neurology Department (Figure  1A). The infarct 
detection AI was trained primarily using MRI data from patients in 
Cohort 1 with the three main types of Trial of Org 10,172 in Acute 
Stroke Treatment (TOAST) classification. To confirm the accuracy of 
SCTSS-AI, we used another data set provided from Cohort 2, who 
were treated at the same institution as Cohort 1 for stroke between 
January 2018 and December 2018 (Figure 1A).

The exclusion criteria for both cohorts were as follows: 1) patients 
aged <20 years at stroke onset, 2) patients with stroke >8 days after 
stroke onset, 3) patients who had not undergone MRI, 4) patients with 
stroke of undetermined etiology (negative evaluation and two or more 
causes identified), 5) cases diagnosed with aortic arterial dissection, 
and 6) patients who were judged by three stroke experts to be ineligible 
for data analysis. The diagnostic results and treatment methods 
provided by the system were constructed in accordance with the Japan 
Stroke Treatment Guidelines 2021 (14) and in the final evaluation, 
training data and test data were completely separated to evaluate the 
generalization performance of the system.

Collected data set

We extracted the following information from the medical records 
of each patient to establish SCTSS-AI: 1) demographic data; 2) vital 
signs at presentation and laboratory findings including ECG, fibrin/
fibrinogen degradation products [FDP] D dimer, brain natriuretic 
peptide [BNP], N-terminal pro-BNP [NT-proBNP], estimated 
glomerular filtration rate, and high-sensitivity C-reactive protein on 
admission; 3) medications taken upon admission, with particular 
attention paid to anti-platelets, anti-coagulants, anti-hypertensives, 
and statins; 4) vascular risk factors for stroke, such as hypertension 
(HT; systolic blood pressure [BP] > 140 mmHg, diastolic 
BP > 90 mmHg, or drug treatment for HT), dyslipidemia (DL; defined 
as low-density lipoprotein [LDL] cholesterol level of >140 mg/dL, 
high-density lipoprotein [HDL]-cholesterol level of <40 mg/dL, 
triglyceride [TG] level of >149 mg/dL, or drug treatment for DL), 
diabetes mellitus (DM; defined as glycated hemoglobin level of >6.4%, 
or drug treatment for DM), a cardioembolic source according to 
TOAST classification (17), transient ischemic attack, and smoking 
history (as reported by the patient and their family); 5) stroke 
mechanism according to TOAST criteria (17); and 6) baseline 
National Institutes of Health Stroke Scale (NIHSS) score (18), as 
recorded by stroke-trained neurologists that were certified in the 
application of the NIHSS, on admission. Brain CT/MRI and 
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FIGURE 1

(A) Flow chart describing enrollment of patients with stroke in the present study. (B) Flowchart for establishment of stroke classification AI. (C) Decision 
flow for developing stroke classification AI. (D) k-Nearest Neighbor method. The k-Nearest Neighbor classification algorithm was used to classify SVO, 
BAD, LAS, and CE. For the other determined etiology, a method combining the concept of abnormality detection was used.
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electrocardiography were performed in all patients, and we diagnosed 
brain infarction by focal hyper-intensity that was judged not 
attributable to normal anisotropic diffusion or magnetic 
susceptibility artifact.

Establishment of infarct detection AI

Adjustment of MRI images
We constructed the infarct detection AI that was used to derive 

the features that determine the stroke classification using MRI from a 
variety of different resolutions and manufacturers to assess patients 
who were initially suspected of stroke between 6 h and 7 days from the 
onset time as training data. The process of correcting the signal values 
of the MRI images based on the positions of the peaks was performed. 
To correct for differences in image orientation and position, we used 
image processing to measure the orientation of the head and perform 
rotation correction to adjust the tilt and to correct for differences in 
imaging range in the slice direction (Z-axis) and brain size, and used 
the Dynamic Time Warping technique to correct the Z-axis position 
(19). Variations in images among cases were corrected.

Identification of features
Using the corrected image data, the infarct detection AI derives 

the following features and provides them to SCTSS-AI. The stroke 
classification AI is designed to diagnose cerebral infarction based 
on TOAST classification and to propose treatment methods 
(Figure  1B). Infarct-related features were as follows: (i) size (< 
1.5 cm/1.5 cm or larger), (ii) culprit lesion (cortical branch/
perforating branch as the preferred site of small vessel occlusion 
[SVO]/branch atheromatous disease [BAD]), (iii) number of 
cerebral infarctions (single region/multiple regions), (iv) region of 
cerebral infarction (single territory/multiple territories), (v) 
presence of intracranial stenosis, (vi) presence of carotid artery 
stenosis, and (vii) presence or absence of cardiac disease as a risk 
factor for embolic source (including NT-proBNP). Of these, (i)-(iv) 
were extracted using infarct detection AI. The infarct detection AI 
was built using DWI and apparent diffusion coefficient (ADC) 
mapping, which are used to distinguish between infarcts and 
artifacts. The design of the features to be used as machine learning 
input was based on domain knowledge about the difference between 
infarcts and artifacts. The 3D positional and symmetry information 
of candidate pixels were used as features in the construction of the 
infarct detection AI, based on the artifacts tending to occur at 
specific locations and symmetrically. To distinguish between the 
feature of high signal at the infarction point of DWI, and cases 
where the high signal is not due to the infarction point but to the 
effect of T2 shine through, the pixel value of the ADC map and the 
amount of information of surrounding pixel values were also used 
as feature values (Figure 2A). Designing input features that leverage 
domain knowledge is difficult to incorporate into deep learning-
based machine learning and is one of the major differences between 
the AI that we built and deep learning-based AI.

Annotation MRI images
To build the infarct detection AI to derive the above features, 

stroke experts with more than 10 years of experience annotated the 
MRI dataset as training data.

Construction of stroke classification AI

SCTSS-AI was designed so that the infarct detection AI and the 
stroke classification AI work in tandem to classify stroke. The infarct 
detection AI extracts the features from the MRI data, and the stroke 
classification AI combines infarct-related features and stroke 
classification-related features from the medical records to make 
a diagnosis.

Selection of features
The stroke classification AI was constructed using the patients’ 

background, medical history, and clinical and laboratory findings used 
to classify stroke. The following additional features related to stroke 
classification were selected by 231 of the cases provided by Juntendo 
Hospital (Figure  1A): (viii) malignancy (treated/not treated), (ix) 
D-dimer, (x) grade of aortic arch calcification (AoAC) by chest X-ray 
(grade 0–3), and (xi) age. Features were selected based on TOAST 
criteria and our domain knowledge. These features were reported in 
previous studies and also confirmed in our analysis. It was noted that 
the blood fibrin degradation products, such as D-dimer, tend to 
be higher in Trousseau syndrome than in other stroke types due to 
hypercoagulability caused by malignancy, that AoAC tends to 
be higher in aortic primary cerebral embolism than in other stroke 
types (20), and that cardiogenic cerebral embolism due to patent 
foramen ovale (PFO) and arterial dissection are common stroke types 
in young patients (Figure 3).

Algorithm design
We designed an algorithm that makes inferences if part of the 

information is missing, as some tests necessary for diagnosis are not 
performed immediately after MRI in the clinical setting. The AI 
executes an appropriate model corresponding to features with missing 
values. The algorithm for diagnosis of cerebral infarction was 
constructed based on the TOAST classification approach (Figure 1C). 
This algorithm was based on the long-used algorithm of Lee et al. (21), 
which was modified to incorporate TOAST classification from 
imaging. In addition, we employed the k-Nearest Neighbor (kNN) 
method to classify stroke other than Others, and combined kNN with 
anomaly detection for Others (Figure 1D).

Evaluation methods & statistical analysis methods
The performance of the AI constructed from the 231 cases of 

Cohort 1 was assessed by the Leave One Out Cross Validation 
(LOOCV) method (22). Out of the 231 cases in Cohort 1, one case 
was extracted as the data for evaluation, and stroke was classified 
using the stroke classification AI trained with the remaining data and 
compared with the stroke classification determined by the stroke 
experts. This evaluation was repeated until all 231 cases were used as 
data for evaluation, and the stroke classification AI was evaluated. 
Final accuracy of the stroke classification AI with verified performance 
using LOOCV was evaluated using 151 independent cases from 
Cohort 1 (Cohort 2).

All data analysis, including image processing and feature 
extraction of the infarct detection AI, training and evaluation of the 
stroke classification AI, and visualization were performed under the 
Python 3.7 environment. The performance metrics used in the 
evaluation of the stroke classification AI were: accuracy sensitivity, 
precision, and F value expressed by the following formulas:
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where TP is True Positives, FN is False Negatives, FP is False 
Positives, and stype is subtype. Sensitivity, precision, and F value were 
calculated for each subtype. Accuracy was calculated for all patients. 
Sensitivity indicates how many patients with a subtype were actually 
detected as patients. Precision indicates how correct the predicted 

result was. F value is an integrated value of sensitivity and Precision 
and can be evaluated considering their trade-off. Accuracy indicates 
how many patients overall were predicted as having the correct 
disease type.

Statistical analysis

The data were analyzed with SPSS 29.0 (SAS Institute Inc., Cary, 
NC). Data are expressed as mean ± standard deviation values for 
continuous variables. All statistical analyzes were performed using χ2 
test for categorical variables, t-test for parametric analyzes. p-values 
of < 0.05 were considered significant.

Results

As cohort 1, 231 from 278 people, 151 from 197 people as cohort 
2 were enrolled. Background factors and examination data of cohort 
1 and 2 patients revealed no difference between cohort 1 and 2, except 
diastolic blood pressure, heart rate, stroke classification, blood sugar, 
HbA1c, triglyceride, eGFR on arrival (Table 1).

AI for infarct detection

We evaluated the infarct detection AI that determines the 
presence of absence of infarction using a machine learning algorithm 

FIGURE 2

(A) DWI and ADC combined analysis method for infarct detection AI visualizes and evaluates the difference between DWI high-intensity area and ADC 
low-intensity area, except for symmetrical high-signal areas and areas where artifacts are likely to appear. (B) Infarct detection AI overview. One 
hundred cases were studied, and 18 cases were evaluated. In infarct lesion units, the sensitivity (recall) was 80% and the match rate (lesion-by-lesion 
evaluation) was 84%.
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FIGURE 3

Key features used for disease typing AI: (A) D-dimer. (B) AoAC [Shimada et al. (17)]. (C) Age. AoAC increased in aortogenic embolism, and patients with 
CE-PFO/dissection were younger than other etiologies. FDP-D dimer was higher in patients with Trousseau syndrome.
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called gradient boosting decision tree using 18 cases in Cohort 1 
(SVO: 4 cases; cardiogenic embolism [CE]: 10 cases; large artery 
atherosclerosis [LAS]: 4). We found sensitivity (reproducibility: the 
percentage of infarcts that the AI could detect as infarcts out of those 

that were actually infarcts) of 80 and 84% (lesion-by-lesion 
evaluation). Thus, our infarct detection AI had a sensitivity (recall) of 
80%, with few undetected infarcts and few false detections of infarcts 
(Figure 2B).

TABLE 1 Background factors, stroke classification and examination data.

Cohort 1 (231) Cohort 2 (151) p-value

N % N %

Sex (male) 154 66.7 94 62.2 0.377

Age 69.4 ± 14.8 70.9 ± 14.2 0.172

Body height (cm) 161.4 ± 9.8 160.4 ± 9.3 0.250

Body weight (kg) 60.8 ± 13.3 59.0 ± 14.0 0.107

BMI (kg/m2) 23.2 ± 3.8 22.6 ± 3.72 0.047

Systolic blood pressure on arrival (mmHg) 150.3 ± 29.8 153.3 ± 28.2 0.220

Diastolic blood pressure on arrival (mmHg) 82.2 ± 17.7 85.4 ± 18.0 0.049

Heart rate on arrival (/min) 76.1 ± 15.4 79.8 ± 14.9 0.050

Smoking habit 64 27.7 29 19.2 0.058

HT 150 64.9 111 73.5 0.078

DM 53 22.9 58 38.4 0.001

DL 79 34.1 101 66.8 <0.001

Ischemic heart disease 22 9.5 14 9.2 0.934

Af 39 16.8 37 24.5 0.068

Active Malignancy 18 7.79 13 8.6 0.775

Stroke classification 0.005

SVO 25 10.8 19 12.5

BAD 28 12.1 14 9.2

LAS 29 12.5 25 16.5

CE 51 22.0 52 34.4

CE-PFO 7 3.0 1 0.6

aortogenic embolism 40 17.3 18 11.9

Trousseau syndrome 9 3.8 9 5.9

Dissection 15 6.4 8 5.2

other 27 11.6 5 3.3

Laboratory data on arrival

WBC (/μL) 7,596 ± 3,490 7,194 ± 2,919 0.126

PT-INR 1.08 ± 0.22 1.10 ± 0.19 0.305

FDP-D dimer (μg/mL) 3.24 ± 7.08 4.15 ± 7.29 0.118

Blood sugar (mg/dL) 124.5 ± 49.2 138 ± 65.3 0.009

HbA1c (%) 6.15 ± 1.05 6.57 ± 1.71 0.002

LDL (mg/dL) 116.4 ± 36.8 116.5 ± 49.3 0.496

HDL (mg/dL) 51.3 ± 15.0 50.3 ± 16.5 0.270

TG (mg/dL) 120.6 ± 72.6 143.5 ± 104.2 0.009

UA (mg/dL) 5.50 ± 1.44 5.48 ± 1.70 0.439

Cre (mg/dL) 0.945 ± 0.984 1.063 ± 1.144 0.149

eGFR (mL/min/1.73 m2) 75.53 ± 30.72 65.02 ± 26.13 <0.001

hsCRP (mg/dL) 1.262 ± 3.277 1.598 ± 3.755 0.186

NT-proBNP (pg/dL) 1051.88 ± 2658.45 1302.85 ± 4150.58 0.266

Bolded numbers indicate p < 0.05 compare to cohort1 and cohort2. CE, cardiogenic embolism; CE-PFO, cerebral embolization through a patent foramen ovale (paradoxical embolism); LAS, 
large artery atherosclerosis; SVO, small vessel occlusion; BAD, branch atheromatous disease.
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AI for stroke classification

The results of the evaluation of the stroke classification AI trained 
using features of 231 cases: SVO/BAD: 53 cases, CE: 51 cases, LAS: 29 
cases, Trousseau syndrome: 9 cases, and Others, including aortogenic 
embolism, paradoxical embolism, and other undetermined etiology 
(embolic stroke of undetermined sources and cerebral artery 
dissection [ESUS+D]: 89 cases) in Cohort 1 using the LOOCV 
method showed an 88.7% correct rate (Tables 2, 3).

In the present evaluation, high accuracy was obtained for each 
stroke classification, especially for CE, LAS, and BAD/SVO; however, 
when attempting to predict BAD/SVO and ESUS+D more finely, the 
accuracy rate was lower (correct rate of 76.6%, Tables 4, 5). Because 
SVO/BAD is diagnosed within 1–3 days of the onset of the disease, it 
is difficult to distinguish SVO/BAD using the information available in 
the emergency room. Furthermore, it is impossible to diagnose 
paradoxical embolism unless transesophageal echocardiography is 
performed. On the other hand, if the patient has been treated for 
carcinoma, and the FDP D-dimer is elevated (Figure 3A), Trousseau 
syndrome could be allowed for differentiation. Another problem is 
that accurate reading of magnetic resonance angiography (MRA) is 
often difficult for non-stroke physicians. In the acute phase of 
treatment, the classification into CE, LAS, BAD/SVO, Trousseau 
syndrome, and ESUS+D may be more practical.

Verification of stroke classification AI

We evaluated the diagnostic accuracy of the stroke classification 
AI constructed using Cohort 1 using Cohort 2 (total 151 cases). The 
correct rate for stroke classification (SVO/BAD: 33 cases, CE: 52 cases, 
LAS: 25 cases, Trousseau syndrome: 9 cases, and ESUS+D: 32 cases) 
was 86.1% (Tables 6, 7), which was similar to the accuracy rate of 
Cohort 1 using the LOOCV method.

Discussion

In this study, we established SCTSS-AI for cerebral infarction 
diagnosis that uses image-based infarction detection and medical data 
to determine the stroke classification. We found that machine learning 

with the incorporation of clinical information can diagnose cerebral 
infarction based on the TOAST classification, which could not have 
been achieved with image-based stroke diagnosis AI alone. The high 
performance of this SCTSS-AI despite the diversity of MRI images 
used for construction, and the fact that there is no current AI that can 
classify the stroke types to provide appropriate treatment according to 
the initial treatment of cerebral infarction, suggest that this AI can 
be used in actual clinical practice in the future. SCTSS-AI can make 
inferences even when some features of data have missing values for a 
stroke classification, provided that in this verification work, the model 
was analyzed using cases with no missing data from a single 
institution. Further studies are needed to investigate whether the 
model can be analyzed even with missing data, and whether it can 
be used with high accuracy even when data from multiple institutions 
are used.

There are different stroke types that require different clinical 
management. Therefore, classification of stroke types is necessary for 
early treatment and prevention (23). Subudhi et al. (24), evaluated 
DWI with a support vector machine classifier according to the 
Oxfordshire Community Stroke Project (OCSP) classification. They 
obtained an accuracy of 92.9%, sensitivity of 90.4%, and specificity of 
93.3% in differentiating among total anterior circulation infarction, 
partial anterior circulation infarction, and lacunar circulation 
infarction. However, posterior circulation infarction, another subclass 
of OCSP, has not been evaluated, and the MobileNetV2 convolutional 
neural network (CNN) model, which was fine-tuned to classify 
cerebral infarcts according to vascular territory, had an accuracy of 
93% (25). However, only subtypes covering 75–80% have been 
evaluated, and this analysis requires the use of a CNN model, which 
requires a large number of patient cases. The solution to this problem 
was the creation of the ImageNet dataset, with over 15 million images 
labeled in 22,000 different categories (26). ImageNet is often used to 
measure the accuracy of current CNN models. EfficientNet and 
MobileNetV2 CNN models were preferred for transfer training 
compared to similar models because of their lower computational load 
and ImageNet’s higher accuracy (27, 28). However, the advantage of 
our method is that by inputting MRI, laboratory data, X-ray data, 
ECG data, and other data used in daily medical treatment of patients 
into the application, stroke classification can be accurately made, and 
appropriate treatment can be immediately initiated for patients.

Current AI advancements in stroke TOAST classification are 
focused on predicting prognosis after the onset of stroke (29). The 
LAS diagnostic criterion requires over 50% stenosis in proximal 
arteries (30). A previous study reported the use of computer-based 
diagnosis utilizing a CNN to identify stenosis (31). In the present 
study, we aimed to analyze stenosis in MRA using AI. However, AI 
was considered unsuitable for diagnosis due to instances where the 
stenotic lesion occluded during the stroke onset; therefore, 
we employed manual entry. Although this method may miss some 
cases of stenosis, it was possible to detect stenoses in the ipsilateral 
carotid artery, internal carotid artery, middle cerebral artery, and 
basilar artery, and was useful in making a diagnosis. In CE, AI has 
been developed focusing on the detection of cardiac embolic sources 
(29). In this study, NT-proBNP was initially considered a potential 
marker for detecting heart diseases; however, it was deemed unsuitable 
due to its elevation in patients with chronic kidney disease. 
Nevertheless, a previous study reported a potential association 
between NT-proBNP and arrhythmias (32). Further studies with more 

TABLE 2 Result for stroke classification AI. Matching table for each stroke 
type: CE, LAS, SVO/BAD, and ESUS+D in Cohort 1.

Precision subtype by AI

CE LAS
SVO/
BAD

Tro ESUS+D

Manually 

assigned 

stroke 

subtype

CE 49 0 1 1 0

LAS 0 29 0 0 0

SVO/

BAD
0 0 52 0 1

Tro 0 1 1 4 3

ESUS+D 2 5 9 2 71

Bold numbers indicate the number of each case correctly answered by the AI. Tro, Trousseau 
syndrome; ESUS + D, embolic stroke of undetermined sources + cerebral artery dissection; 
TP, true positives; FN, false negatives; FP, false positives.
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cases are needed to establish an association curve between eGFR and 
NT-proBNP, which would make it a suitable candidate for the 
development of a stroke diagnosis AI. Furthermore, an algorithm 
attributed to ESUS has been created (33), which may become a 
candidate in the future. Initially, D-dimer alone was utilized in this 
study for Trousseau syndrome, but evaluating it was challenging due 
to the inclusion of many CE cases within the cutoff line. Incorporating 

data on active malignancy allowed us to achieve a more defined 
evaluation. Nonetheless, in real clinical scenarios, there are instances 
where malignancy is unknown at the time of admission, which may 
impact the accuracy of the response rate.

Although there are limited reports on TOAST classification of 
ischemic stroke using AI. Primarily, extraction is done from the 
electronic health records (EHRs), and Garg et  al. (34) extracted 

TABLE 5 Result for stroke classification AI. Precision rate for each stroke classification.

Stroke 
classification

Patient 
number 
TP  +  FN

Predicted 
number of 

cases TP  +  FP

Number of 
correct cases 

TP

Sensitivity TP/
(TP  +  FN)

Precision TP/
(TP  +  FP)

F value

CE 51 51 49 96% 96% 0.96

CE-PFO 7 0 0 0% – –

LAS 29 35 29 100% 83% 0.91

SVO 25 32 25 100% 78% 0.88

BAD 28 31 27 96% 87% 0.92

Aorto 40 49 30 75% 61% 0.67

Tro 9 7 4 44% 57% 0.50

Dissec 15 3 1 7% 33% 0.11

Other 27 23 12 44% 52% 0.48

CE, cardiogenic embolism; CE-PFO, cerebral embolization through a patent foramen ovale (paradoxical embolism); LAS, large artery atherosclerosis; SVO, small vessel occlusion; BAD, branch 
atheromatous disease; Aorta, aortogenic embolism; Tro, Trousseau; Dissec, cerebral artery dissection; Other, undetermined etiology; TP, true positives; FN, false negatives; FP, false positives.

TABLE 3 Result for stroke classification AI. Precision rate for each stroke classification.

Stroke 
classification

Patient 
number 
TP  +  FN

Predicted 
number of 

cases TP  +  FP

Number of 
correct cases 

TP

Sensitivity TP/
(TP  +  FN)

Precision TP/
(TP  +  FP)

F value

CE 51 51 49 96% 96% 0.96

LAS 29 35 29 100% 83% 0.91

SVO/BAD 53 63 52 98% 83% 0.90

Tro 9 7 4 44% 57% 0.50

ESUS+D 89 75 71 80% 95% 0.87

Tro, Trousseau syndrome; ESUS + D, embolic stroke of undetermined sources + cerebral artery dissection; TP, true positives; FN, false negatives; FP, false positives.

TABLE 4 Result for stroke classification AI. Matching table for each stroke type.

Precision subtype by AI

CE
CE-
PFO

LAS SVO BAD Aorta Tro Dissec other

Classification 

from physician

CE 49 0 0 0 1 0 1 0 0

CE-PFO 0 0 0 0 1 1 0 0 5

LAS 0 0 29 0 0 0 0 0 0

SVO 0 0 0 25 0 0 0 0 0

BAD 0 0 0 0 27 1 0 0 0

Aorto 0 0 2 1 0 30 2 0 5

Tro 0 0 1 0 1 3 4 0 0

Dissec 2 0 2 4 1 4 0 1 1

Other 0 0 1 2 0 10 0 2 12

Bolded numbers indicate the number of each case correctly answered by the AI. CE, cardiogenic embolism; CE-PFO, cerebral embolization through a patent foramen ovale (paradoxical 
embolism); LAS, large artery atherosclerosis; SVO, small vessel occlusion; BAD, branch atheromatous disease; Aorta, aortogenic embolism; Tro, Trousseau; Dissec, cerebral artery dissection; 
Other, undetermined etiology; TP, true positives; FN, false negatives; FP, false positives.
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information from 1,091 cases of EHR data and compared it with 
actual diagnoses using machine learning techniques. The 
corresponding precision rates obtained were 70.3% for cardioembolic 
stroke, 65.3% for large artery atherosclerosis (LAA), 62.3% for small 
vessel occlusion (SVO), and 73.7% for cryptogenic stroke. 
Additionally, Zhang et al. (35) performed similar analyzes, resulting 
in precision rates of 53.3% for cardioembolic stroke, 74.5% for LAA, 
54.7% for SVO, and 20.0% for cryptogenic stroke. Moreover, Wang 
et  al. (36) conducted an analysis excluding cryptogenic stroke, 
achieving precision rates of 94.07% for cardioembolic stroke, 76.73% 
for LAA, and 72.13% for SVO. However, these reports indicate that 
our developed system exhibits higher diagnostic accuracy. 
Furthermore, our system has the advantage of performing analysis 
inclusive of cryptogenic stroke (also known as ESUS) and 
incorporating image-based analysis. It is believed that the diagnostic 
accuracy has improved by creating a two-stage system with ischemia 
detection AI and subtype classification AI. Furthermore, the 
comparison registry data, although from a single center, is based on a 
registry that evaluates cryptogenic stroke with transesophageal 
echocardiography for aortogenic embolism and stroke associated with 
patent foramen ovale (PFO). It is considered a strength of the AI 
developed in this study that it can diagnose detailed subtypes of 
strokes. SCTSS-AI can change the functional prognosis of stroke 
patients and lead to the equalization of stroke treatment.

In the future, the use of inflammatory markers and cytokines as 
predictive elements for AI development should be considered. For 
example, the ligand for CD40 and expression of MCP1 are upregulated 
in the acute phase of atherothrombotic stroke, which is also associated 

with vascular events with diabetes (37). Moreover, the association 
between white blood cell count and blood glucose at onset and 
mortality during hospitalization, as well as inflammatory markers are 
potential factors for stroke diagnostic AI (38). Our findings also 
suggest that hyperglycemia caused by stroke stress was associated with 
in-hospital mortality, and there may be  a relationship with NO 
activity. Furthermore, an association between peripheral vasoreactivity 
index and endothelial function has been reported in the LAS (39). 
Arterial stiffness indices, such as augmentation index and pulse wave 
velocity, have been shown to be higher in LAS patients, and arterial 
stiffness indices at onset may also be useful for the establishment of 
AI diagnosis in the future.

Our study has several limitations. First, it was a single-center, 
medical record-based, retrospective study. Second, unlike other AI 
studies, only a few hundred cases were needed for constructing the 
AI. Although this was a strength of the study, the small number of 
cases may also be a limitation. Further studies with more cases may 
be able to distinguish CE-PFO features and SVO from BAD with only 
an initial MRI. Third, the features required to distinguish ESUS+D 
were limited; therefore, the number of cases and characteristics of 
ESUS+D-determined etiology cases require clarification. Moreover, 
the diagnosis of cerebral artery dissection requires the collection of 
vertebral/basilar artery MRA findings. In the present study, the 
number of cases used for training the AI was insufficient for learning 
to predict the vascular morphology in areas where no vessels were 
captured on MRA. Further case collection and prospective 
randomized studies are needed to address these uncertainties. Fourth, 
this study had technical limitations. Initially, our proposed method 
constructed the AI model using 231 cases, which was insufficient to 
cover all stroke variations. While increasing case numbers may 
improve our model’s performance, it also introduces exceptions that 
our model may not classify accurately. This inherent challenge in AI 
construction is unavoidable. Continuously expanding the dataset and 
re-building the AI is necessary to yield benefits for patients. Further 
studies using novel AI models with higher speed are needed to identify 
exceptions that our model is unable to classify to optimize model 
structure and hyperparameters.

In conclusion, AI in stroke imaging has the potential to 
revolutionize stroke diagnosis and patient management. Diagnosis of 
stroke using machine learning methods could be especially useful for 
health care providers who are not familiar with stroke imaging, such 
as general practitioners and paramedics, and to speed up treatment 
decisions. This study, which achieved high accuracy in detecting 
strokes and classifying their vascular regions, may contribute to the 
automatic detection of strokes, enabling physicians to make quick and 

TABLE 7 Result for stroke classification AI. Precision rate for each stroke classification.

Stroke 
classification

Patient 
number 
TP  +  FN

Predicted 
number of 

cases TP  +  FP

Number of 
correct cases 

TP

Sensitivity TP/
(TP  +  FN)

Precision TP/
(TP  +  FP)

F value

CE 52 46 44 85% 96% 0.90

LAS 25 24 22 88% 92% 0.90

SVO/BAD 33 38 30 91% 79% 0.85

Tro 9 7 6 67% 86% 0.75

ESUS+D 32 36 28 88% 78% 0.82

Tro, Trousseau syndrome; ESUS + D, embolic stroke of undetermined sources + cerebral artery dissection; TP, true positives; FN, false negatives; FP, false positives.

TABLE 6 Result for stroke classification AI. Matching table for each stroke 
type; CE, LAS, SVO/BAD, and ESUS+D in Cohort 2.

Precision subtype by AI

CE LAS
SVO/
BAD

Tro ESUS+D

Manually 

assigned 

stroke 

subtype

CE 44 2 4 0 2

LAS 0 22 2 0 1

SVO/BAD 0 0 30 0 2

Tro 0 0 0 6 3

ESUS+D 2 0 2 0 28

Bold numbers indicate the number of each case correctly answered by the AI. Tro, Trousseau 
syndrome; ESUS + D, embolic stroke of undetermined sources + cerebral artery dissection; 
TP, true positives; FN, false negatives; FP, false positives.
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appropriate treatment decisions (Figure 4). Since the AI was created 
using only factors that are known in the emergency department, 
we  were able to establish an AI that is directly related to clinical 
practice. Furthermore, our findings suggest that additional tests, such 
as transesophageal echocardiography and Holter EEG analysis, should 
be performed if the patient is classified as ESUS+D.
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