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Introduction: Monitoring upper limb function is crucial for tracking progress, 
assessing treatment effectiveness, and identifying potential problems or 
complications. Hand goal-directed movements (GDMs) are a crucial aspect of 
daily life, reflecting planned motor commands with hand trajectories towards 
specific target locations. Previous studies have shown that GDM tasks can detect 
early changes in upper limb function in neurodegenerative diseases and can 
be used to track disease progression over time.

Methods: In this study, we  used accelerometer data from stroke survivor 
participants and controls doing activities of daily living to develop an automated 
deep learning approach to detect GDMs. The model performance for detecting 
GDM or non-GDM from windowed data achieved an AUC of 0.9, accuracy 0.83, 
sensitivity 0.81, specificity 0.84 and F1 0.82.

Results: We further validated the utility of detecting GDM by extracting features 
from GDM periods and using these features to classify whether the measurements 
are collected from a stroke survivor or a control participant, and to predict the 
Fugl-Meyer assessment score from stroke survivors.

Discussion: This study presents a promising and reliable tool for monitoring upper 
limb function in a real-world setting, and assessing biomarkers related to upper 
limb health in neurological, neuromuscular and muscles disorders.
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Introduction

Objective and quantitative assessment of lower and upper limb movement and functions 
can facilitate early detection, disease progression monitoring, and development of personalized 
treatment plans for individuals with neurological disorders. Goal-directed movements (GDMs) 
are the atomic components of upper limb movements, and the movement patterns depend on 
the planned motor commands with hand trajectories toward specific target locations (1). In 
GDMs, the central nervous system (CNS) coordinates between multiple muscle groups to work 
together in a specific sequence and timing to achieve a desired outcome. (2). The CNS receives 
sensory information about the goal and the environment and uses this information to plan and 
execute the movement. This process involves several stages, including sensory processing, motor 
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planning, motor programming, and execution. GDMs are a crucial 
aspect of daily life for carrying out tasks such as reaching, grasping, 
and manipulating objects. For example, stroke can adversely affect 
GDMs in multiple ways, including motor impairments, sensory 
processing deficits, and cognitive deficits. In stroke rehabilitation, 
remote and quantitative assessment of GDMs is essential for the 
clinicians to assess the patient’s progress towards achieving functional 
goals (3–5).

Accelerometers provide a convenient way to measure upper limb 
movements and can be used to measure different movement patterns 
by detecting changes in acceleration. Previous methods rely on activity 
counts to measure upper limb function, usually by counting the 
number of zero crossings in the acceleration signal (6–8). However, 
activity counts provide an overall measure of upper limb movements, 
but are unable to differentiate between purposeful and non-purposeful 
movements, and do not provide information about the quality or 
complexity of the movements being performed (9–11). In contrast, 
GDM specifically measures upper limb function. Previous research 
has shown that GDM tasks can detect early changes in upper limb 
function in neurodegenerative diseases and can be  used to track 
disease progression over time (12–15). Accelerometer data can 
provide a cost-effective solution to measure GDMs for measuring 
upper limb function and health in neurodegenerative, neuromuscular 
and muscle diseases.

Automated assessments of GDM have advantages over manual 
assessments, including reducing the potential for human error and 
subjectivity, offering more frequent and convenient assessments, 
tracking disease progression, detecting subtle changes in movement, 
and being more cost-effective. These benefits are particularly 
important for neurorehabilitation settings where precise and reliable 
neuromotor assessments are critical for patient outcomes, and for 
conditions such as Parkinson’s disease and ALS where frequent and 
accurate assessments can help with identifying changes in function 
and inform treatment decisions. Recent works thus explored machine 
learning approaches to automatically detect GDM from sensor 
measurements towards stroke rehabilitation applications (16–20), 
with ensemble models such as XGBoost attaining the best prediction 
performance (17). While deep learning models in this setting have 
also been tested (21–23), these works have been limited to traditional 
convolutional neural network architectures. In broader classification 
applications on multivariate time-series data such as multi-channel 
accelerometer measurements, state-of-the-art deep learning models 
comprise transformer architectures (24) and improved convolutional 
architectures with model-specific explainability (25).

Motivated by these studies, we developed an automated method 
of detecting GDM from wrist-worn accelerometer data via three 
approaches comprising both shallow and deep models using the data 
previously reported in (16). In classifying windowed accelerometer 
data as GDM or non-GDM, we demonstrated that a state-of-the-art 
deep learning model outperforms existing shallow models designed 
for stroke rehabilitation applications. We further validated the utility 
of detecting GDM by extracting features from GDM periods and 
using these features to predict whether the measurements are 
collected from a stroke survivor or a negative control participant. In 
addition, the features were also used to predict the Fugl-Meyer 
Assessment [FMA, (26)] score, a stroke-specific performance-based 
impairment index, from stroke survivors. The prediction 
performance was compared to the performance from models that 

used the entire recordings to extract the features, rather than only 
GDM periods.

Methods

Dataset

The accelerometer and label data in this study was previously used 
in (16). The reader can refer to the previous publication for greater 
detail. Here a summary is presented.

30 participants were recruited for the study, from which 20 were 
stroke survivors (mean 54.4, SD 10.1 years old; time since stroke mean 
4.6, SD 5.5 years; FMA average 37, SD 8), and 10 controls (age 53.8, 
SD 11.4 years old). Stroke survivors were recruited from Spaulding 
Rehabilitation Hospital (SRH) inpatient and outpatient units. All 
subjects provided written informed consent and the study was 
approved by the SRH Institutional Review Board.

Study design

Participants wore a six-axis inertial measurement unit (IMUs, 
Shimmer Research, Ireland) on each wrist and performed tasks 
resembling different types of ADL. Specifically, participants performed 
unimanual, bimanual and passive tasks. Table  1 explains the 
performed tasks for each category. Each motor task was repeated 3 
times and therapist scripted and timed all the tasks. The entire 
experiment was videotaped and synchronized with the sensor data.

Data labeling

Sensor data was labeled by inspecting the videos in segments of 
2.5 s. Each segment was labeled as unimanual, bimanual, passive or 
task-free. During unimanual movements, the opposite side sensor 
data was labeled as task-free. For the GDM detection task, bimanual 
and active-side unimanual were categorized as GDM movements and 

TABLE 1 Description of the tasks for each type of movement performed 
while accelerometer data was recorded.

Type Task

Unimanual (affected limb)

Drink from a can

Turn a key in a lock

Hair brushing

Bimanual

Pick up pen from desk, remove the cap, and place it 

back

Pick up a box and bring it to the knees

Fold a hand towel

Passive

Walk

Stand up without using arm for bracing

Ascend and descend stairs

Task free
Periods without goal directed movements while 

accelerometer data is recorded
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the passive-side unimanual, passive and task-free were categorized as 
non-GDM.

Data analysis

The six-axis IMU has an accelerometer that detects acceleration 
and a gyroscope that measures rotation. For this study, only the 
accelerometer was used, given that the energy consumption of the 
accelerometer is lower than gyroscope (16). That makes it better suited 
for long-term remote monitoring.

Triaxial acceleration time series for each wrist IMU were band-
passed between 0.1 and 12 Hz with a 4th order butterworth filter to 
remove the inertial gravity component and high frequency activity, 
and then down sampled to 25 Hz. Triaxial velocity data was estimated 
by integrating acceleration data. Then, the same band-pass filter was 
applied. High frequency cut-off did not discard any activity 
measurements, as typical movements attain at most 10 Hz 
frequency (27).

A sliding window of 3 s with 70% overlap was used to segment the 
data for training the classification model, as these parameters ensure 
enough data to capture a GDM, and with the overlap more data is 
obtained for the model to better generalize. At each window, if one 
third of the time points were labeled as GDM, the entire window was 
labeled as GDM movement. For each IMU, data were windowed 
separately. In total, 49,254 6-dimensional time windows were 
extracted, with 21% labeled as GDM. Optimal window size and 
overlap were determined from validation set performance, as 
explained below.

A leave-one-subject-out (LOSO) cross-validation was used to test 
model performance. Ten percent of the training subjects for each 
cross-validation split were further held-out as validation data and 
remaining training subjects were used for training. Data normalization 
was performed by subtracting the population mean from each sample 
and dividing the resulting values by the population standard deviation, 
where mean and standard deviations were estimated from the training 
set for each split. As the distribution of GDM vs. non-GDM windows 
was imbalanced, the training objective for each class was weighted 
with the ratio of the other class in training. The validation set was used 
for early-stopping of model training and for finding the optimal 
probability threshold to differentiate the two classes. The optimal 
threshold was found by taking the geometric mean of the true positive 
rate and the true negative rate (28).

We tested three state-of-the art classification methods for 
multivariate time-series signals to differentiate GDM activity windows 
from others. The models used were from the python package TSAI 
(29). To begin with, we  employed a decision-tree classifier using 
gradient boosting termed XGBoost. XGBoost was designed 
particularly to tackle small and imbalanced datasets via ensembling 
and pruning (30). Moreover, it outperformed other non-deep learning 
models in multivariate time-series classification tasks, including 
measuring activities of daily living (17), and attained comparable 
performance to deep learning (24).

One of the deep learning classifiers we  employed was a 
transformer model (24). To initialize the transformer classifier 
weights, an autoencoder model comprising a transformer encoder and 
a fully-connected decoder was trained over the multivariate time-
series samples in the training set by minimizing a masked 

reconstruction error loss in an unsupervised manner. The transformer 
encoder architecture followed the well-known design by Vaswani et al. 
(31), with the modifications of fully-trainable positional encoding, 
batch normalization and the same hyperparameters as optimized by 
Zerveas et al. (24). Following unsupervised pre-training, the decoder 
was replaced by a fully-connected layer with a scalar output and 
sigmoid activation. The resulting transformer classifier was fine-tuned 
by minimizing a cross-entropy loss to classify each input window as 
GDM or non-GDM. As transformer training took significantly longer 
than other methods, we tested this model via 5-fold cross validation 
with stratified partitioning over stroke survivors and controls.

The other deep learning approach was an eXplainable 
Convolutional Neural Network, which aggregated features from 1D 
and 2D convolutions with model interpretability via Gradient-
weighted Class Activation Mapping [XCM, (25)]. This model was 
designed for multivariate time-series classification and has been 
shown to outperform other models when classifying physiological 
signals. In our application, XCM also performed the best out of all 
competing methods, as we discuss below.

To demonstrate the utility of the trained model beyond GDM 
detection, we tested if features from the inferred GDM periods from 
both hands can better classify stroke survivors and controls compared 
to features extracted from all the recordings. In addition, we tested if 
FMA can be better predicted with GDM features from both hands 
compared to features from the entire recordings. Total of 28 features 
were estimated from the acceleration and velocity time series. The 
time series were either tri-axial or magnitudes over the three axes. 
Tri-axial measures included the correlation between axis pairs and the 
number, mean length and length entropy of zero crossing segments. 
Measures based on magnitude were the minimum, maximum, 
median, root mean square, the domain frequency over energy (the 
peak frequency divided by the total spectrum), skewness, kurtosis, 
and entropy. Elastic net regression was used to classify or predict, and 
LOSO validation was used to quantify the model performance.

Results

In total, 1,830 activity periods were labeled, with 961 task-free, 79 
passive, 249 unimanual and 541 bimanual activities. This corresponded 
to 608 h of task-free activity, 44.5 h of passive activity, 56 h of unilateral 
movements and 138.5 h of bilateral movements. The stroke 
participants represented 72.5% of the data. As only the affected side 
for stroke patients or the non-dominant side for controls was used 
during unimanual activities, the passive side was labeled as non-GDM 
for these activities. When a sliding window of 3 s with a 70% overlap 
was applied, the total number of windowed time series used for 
training and testing were 49,254, out of which 21% were labeled as 
goal-directed movements. This includes both right and left side IMU 
accelerometer data.

A LOSO cross validation was used to assess GDM activity 
detection performances of XGBoost, Transformer and XCM models. 
The model performance was calculated over the test set of each cross 
validation split with respect to Area under the receiver operating 
characteristic (AUC), sensitivity, specificity and F1 score metrics. 
Average AUC, sensitivity, specificity and F1 score metrics for all 
methods are reported in Table 2. XCM outperformed other shallow 
and deep models and attained 0.90 AUC, 0.81 sensitivity, 0.84 
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TABLE 3 Model performance for different tasks in stroke survivor and 
control groups.

Side Bimanual Unimanual Passive
Task 
free

Stroke participants

Affected 0.81 0.82 0.83 0.79

Unaffected 0.76 0.73 0.85 0.77

Control participants

Dominant 0.94 0.89 0.99 0.81

Non-dominant 0.91 0.76 1.0 0.83

specificity and 0.82 F1 score. The receiver operating characteristic 
curve (ROC) for the XCM model is visualized in Figure 1 for Positive 
class, i.e., GDM labels, includes the active hand during unimodal 
movements and both hands during bimanual activities, while 
non-GDM labels include the passive hand during unilateral 
movements and passive activities such as walking and standing up 
from a chair without armrest, and task-free periods where subjects are 
not performing either task. To further analyze the performance of the 
XCM model during different tasks, the accuracy in different tasks was 
calculated separately for the stroke survivors and controls, with results 
presented in Table  3. For both groups, accuracy calculated over 
different sides were close to each other, showing promise for 
generalization performance of XCM.

An elastic net logistic regression model (32) was trained to 
differentiate between stroke survivors and controls using features 
extracted solely from periods labeled as GDM by the XCM model and 
using features extracted from the entire recording. A LOSO 

cross-validation was used and the performance was assessed with 
average accuracy, sensitivity and specificity. The model using GDM 
features outperformed the setting of using entire recordings, with a 
balanced accuracy of 0.9, sensitivity of 1 and specificity of 0.8, 
compared to an accuracy of 0.75, sensitivity of 1 and specificity of 0.5. 
This indicates that features learned from GDM windows have more 
information to differentiate between groups, showing further promise 
for rehabilitation applications. Table 4 shows the group statistics for 
GDM features and their statistical significance.

Figure  2A shows the largest logistic regression coefficient 
magnitudes corresponding to features extracted from GDM periods 
that contributed most to classification. The regression performance for 
FMA scores was also higher when using GDM features, with a mean 
absolute error of 6.9 and an explained variance of 21%, compared to 
a mean absolute error of 8 and an explained variance of 0.6%. 
Figure 2B shows the largest elastic net linear regression coefficient 
magnitudes for the most important features in predicting FMA scores.

Discussion

In this study, we  trained three machine learning models on 
accelerometer data to detect goal-directed movements during tasks 
resembling activities of daily living. The best performing deep learning 
model achieved an AUC of 0.90 and a balanced accuracy of 0.83, 
which is a promising result for this type of task. Previously, (16) 
achieved an 0.87 AUC, a true positive rate of 0.79 and a true negative 
rate of 0.78, training on data from unimanual, bimanual and passive 
tasks using a Random Forest classifier. Our deep learning approach 
via XCM not only outperforms Random Forest in GDM detection 
with respect to three classification metrics (Table 2), but also does not 
discard task-free recordings. Thus, the proposed model has been 
trained on and can attain high accuracy over a wider range of ADL, 
and thus, is more generalizable to real-life applications.

An interesting aspect of our study is that 60% of the dataset 
comprised stroke survivors. The performance of the model was 
slightly lower for this group compared to the control group. This could 
be due to the nature of movements in stroke survivors, which can 
be more variable and less well-defined than in healthy individuals. An 
additional possible explanation for this discrepancy is that stroke 
survivors may exhibit idiosyncratic patterns of movement that are 
specific to individual types of stroke and locations of neurological 
damage. These individual differences may have impacted the model’s 
ability to accurately detect GDM. Therefore, future studies may need 
to account for these individual differences in order to improve the 
accuracy and generalizability of our approach. This could include 
collecting data from a larger and more diverse sample of stroke 
survivors, as well as analyzing the effects of different types of stroke 
and locations of neurological damage on movement patterns.

FIGURE 1

ROC-AUC for differentiating GDM from non-GDM movements.

TABLE 2 GDM activity detection performance.

Method AUC
Balanced 
accuracy

Sensitivity Specificity F1 score

XGBoost 0.83 0.76 0.75 0.77 0.75

Transformer 0.83 0.77 0.78 0.75 0.76

XCM 0.90 0.83 0.81 0.84 0.82
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The results in this study have important implications in clinical 
care for individuals with neurological, neuromuscular and muscle 
disorders, as well as for the field of rehabilitation, as automatic 
detection of goal-directed movements can be used to monitor patients’ 
progress and provide feedback to clinicians. While previous studies 
have used various algorithms to detect upper limb function (33–36), 
our use of state-of-the-art deep learning models is a relatively new 
approach to specifically detect GDM. Compared to previous studies, 
our model achieved comparable or even better results. For example, 
(37) reported an accuracy of 88% in controls and 70% in stroke 
survivors for detecting three types of arm movements using 
accelerometer data, while (38) reported an accuracy of 84.5% for 
detecting hand gestures using electromyography and 
accelerometer data.

Our study goes beyond simply detecting GDM and demonstrates 
the usefulness of extracting features from detected GDM periods. 

Specifically, we used these features to predict whether the participant 
was a stroke survivor or a control participant and to predict the FMA 
score, which is a stroke-specific performance-based impairment index. 
The model trained on features from GDM periods outperformed the 
model trained on features from the entire recording. Furthermore, 
we found that the performance of regression of FMA scores was also 
higher when using GDM features. These results suggest that not only 
can our deep learning model accurately detect goal-directed 
movements, but also the features extracted from these movements have 
additional information that can be used to differentiate between stroke 
survivors and control participants and to predict stroke-specific 
impairment. The most important features for classification and 
regression were related to zero crossings and indicate movement 
discontinuities with acceleration or velocity changing directions.

While wrist-worn accelerometers may not capture all movement 
nuances such as rotation and elevation, they offer a cost-effective 

TABLE 4 GDM extracted features group statistics.

Stroke survivors Control participants

Feature Mean ± SD Mean ± SD Cohen’s D p-value

Acc min (m/s2) 0.21 ± 0.1 0.5 ± 0.11 −2.81 <0.001

Acc median (m/s2) 2.04 ± 0.52 3.1 ± 0.39 −2.2 <0.001

Acc RMS 2.87 ± 0.58 4.14 ± 0.59 −2.18 <0.001

Acc crossing entropy 1.04 ± 0.02 1 ± 0.02 2.28 <0.001

Vel skewness 0.86 ± 0.24 0.37 ± 0.11 2.34 <0.001

Vel crossing entropy 1.07 ± 0.01 1.05 ± 0.01 2.3 <0.001

Vel median (m/s) 31.79 ± 7.49 46.76 ± 5.82 −2.14 <0.001

Acc entropy 6.55 ± 0.44 5.87 ± 0.18 1.84 <0.001

Vel RMS 41.76 ± 8.28 55.85 ± 6.45 −1.82 <0.001

Vel entropy 6.59 ± 0.46 5.89 ± 0.17 1.81 <0.001

Vel kurtosis 0.53 ± 0.77 −0.55 ± 0.17 1.69 <0.001

Vel crossing number (n) 75.61 ± 43.6 32.13 ± 5.1 1.21 0.004

Vel min 4.21 ± 1.54 5.92 ± 1.13 −1.2 0.004

Acc crossing average length (samples) 8.82 ± 2.1 11.2 ± 2.12 −1.13 0.007

Acc crossing number (n) 494.36 ± 376.97 159.91 ± 26.59 1.08 0.010

Vel corr XZ −0.02 ± 0.15 −0.17 ± 0.14 1.02 0.014

Vel max (m/s) 96.22 ± 13.46 107.81 ± 11.65 −0.9 0.028

Acc corr XZ −0.03 ± 0.09 −0.1 ± 0.09 0.81 0.045

Acc corr YZ −0.31 ± 0.11 −0.22 ± 0.12 −0.81 0.046

Acc max (m/s2) 10.78 ± 2.09 12.47 ± 2.17 −0.8 0.048

Acc kurtosis 5.81 ± 3.88 3.29 ± 1.6 0.76 0.060

Acc skewness 1.67 ± 0.46 1.38 ± 0.22 0.73 0.071

Vel corr YZ −0.55 ± 0.21 −0.48 ± 0.19 −0.37 0.347

Acc dom freq over energy 0.00013 ± 0.00015 9.37E-05 ± 2.78E-05 0.32 0.421

Acc corr XY 0.0137 ± 0.08 0.00078 ± 0.08 0.16 0.690

Vel crossing average length (samples) 44.83 ± 2.82 45.27 ± 3.6 −0.14 0.718

Vel corr XY 0.03 ± 0.13 0.01 ± 0.1 0.14 0.723

Vel dom freq over energy 5.60E-07 ± 1.87E-07 5.7E-07 ± 1.42E-07 −0.07 0.860

Acc, acceleration; Vel, velocity; corr, correlation; dom, domain; freq, frequency.
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FIGURE 2

Models feature coefficients. (A) Feature coefficients for classifying stroke survivors from controls. Red indicates that the mean in the stroke group is 
higher than controls. (B) Feature coefficients for regression FMA, colors from yellow to dark blue indicate larger to smaller correlation between the 
feature and FMA scores. (C) Boxplot for the feature with the largest contribution in the classification. (D) Scatter plot between FMA scores and the 
largest feature contributing to FMA prediction with a correlation coefficient of 0.6. Acc, acceleration; Vel, velocity; entro, entropy; N, number.

means for continuous monitoring. This approach, although not 
perfect, holds promise for applications like remote patient 
monitoring and rehabilitation. By continuously recording 
accelerometer data and then sending them to the cloud for 
processing, meaningful features from GDM can be extracted. These 
features can be valuable for clinical practitioners and as outcomes 
in clinical trials.

In conclusion, our study shows that a deep learning model can 
achieve high levels of accuracy for automatic detection of goal-
directed movements, even with data collected from stroke survivors, 
and suggests that deep learning models are a good candidate for 
monitoring upper limb function using wrist-worn accelerometers. 
Our results have important implications for the field of remote patient 
monitoring and rehabilitation.
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