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Novel approaches targeting 
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Glioma is a malignant brain tumor with a high mortality rate; hence novel treatment 
approaches are being explored to improve patient outcomes. Ferroptosis, a newly 
described form of regulated cell death, is emerging as a potential therapeutic 
target in glioma. Ferroptosis is characterized by the accumulation of lipid peroxides 
due to a loss of intracellular antioxidant systems represented by the depletion 
of glutathione and decreased activity of glutathione peroxidase 4 (GPX4). Since 
glioma cells have a high demand for iron and lipid metabolism, modulation of 
ferroptosis may represent a promising therapeutic approach for this malignancy. 
Recent studies indicate that ferroptosis inducers like erastin and RSL3 display 
potent anticancer activity in a glioma model. In addition, therapeutic strategies, 
including GPX4 targeting, lipid metabolism modulation, inhibition of amino acid 
transporters, and ferroptosis targeting natural compounds, have shown positive 
results in preclinical studies. This review will provide an overview of the functions 
of ferroptosis in glioma and its potential as a suitable target for glioma therapy.
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Introduction

Glioma is a highly malignant and aggressive brain tumor that originates from glial cells, 
which are the support cells of the brain (1). Historically, glioma has been classified according to 
the cell type, grade, and location within the brain. However, the recent advances in molecular 
profiling have revealed that gliomas are highly heterogeneous tumors with distinct molecular 
subtypes, which have different clinical behaviors and treatment responses (2). The pathogenesis 
of glioma is complex and multifactorial, involving genetic and environmental factors, as well as 
epigenetic and microenvironmental influences (3). The most common genetic alterations 
observed in glioma are mutations in isocitrate dehydrogenase (IDH1/2) (4), TP53 (5), and 
ATRX (6), as well as amplification of EGFR (7) and loss of PTEN (8). These mutations affect 
various cellular pathways, such as cell cycle regulation, DNA repair, and signaling, and contribute 
to the development and progression of glioma. In addition, epigenetic modifications, such as 
DNA methylation and histone alterations, as well as microenvironmental factors, such as 
immune cells, blood vessels, and extracellular matrix, play important roles in glioma 
pathogenesis (3, 9).

The current standard of care for glioma includes surgical resection, radiation therapy, and 
chemotherapy with temozolomide (TMZ) (10, 11). However, despite aggressive multimodal 
therapy, glioma remains a highly lethal disease with a median survival of less than two years for 
glioblastoma (12), the most common and aggressive subtype of glioma. The dilemma of glioma 
therapy lies in the limited efficacy of current treatments, as well as the potential toxicity and side 
effects associated with these treatments. Overall, glioma is a complex and challenging disease 
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that requires a better understanding of its molecular pathogenesis and 
the development of novel therapeutic strategies.

Ferroptosis in glioma

Ferroptosis is a type of programmed cell death that is distinct 
from apoptosis, necrosis, and autophagy (13). It is initiated by the 
accumulation of lipid hydroperoxides, which results from 
uncontrolled lipid peroxidation in the plasma membrane (13, 14). 
Ferroptosis is dependent on iron and is regulated by various 
molecular mechanisms, including glutathione peroxidase 4 
(GPX4), lipid metabolism, and the cystine/glutamate antiporter 
system (XC-) (14). GPX4 is a critical regulator of ferroptosis, as it 
catalyzes the reduction of lipid hydroperoxides and prevents the 
buildup of reactive oxygen species (ROS) (14). Dysregulation of 
GPX4 has been implicated in several types of cancer, including 
glioma (15).

Glioma cells have been shown to undergo ferroptosis in 
response to various stimuli, including chemotherapeutic agents, 
radiation, and nutrient deprivation (16–18). However, glioma cells 
are also capable of developing resistance to ferroptosis through 
various mechanisms, including the upregulation of antioxidant 
systems, altered iron metabolism, and alterations in the XC- system 
(19). Glioma cells are known to have high levels of antioxidants, 
such as glutathione and NADPH (20), which can counteract the 
increase in ROS levels that initiate ferroptosis. Additionally, glioma 
cells can upregulate the expression of transferrin receptor 1 (TfR1) 
and ferritin (21, 22), which are involved in iron uptake and storage, 
respectively. Increased expression of the XC- system is another 
mechanism by which glioma cells can evade ferroptosis (23, 24). 
The XC- system is responsible for the uptake of cystine, which is 
converted to cysteine and used in the production of glutathione 
(25). The dysregulation of the XC- system has been linked to 
resistance to ferroptosis in glioma cells.

The dysregulation of ferroptosis in glioma is a critical factor in the 
development and progression of this aggressive cancer. While the 
mechanisms underlying this dysregulation remain complex and 
multifaceted, the potential role of ferroptosis as a therapeutic target 
for glioma is a promising area of research. Further studies are needed 
to elucidate the molecular mechanisms that underlie the dysregulation 
of ferroptosis and to develop novel drugs that target this process 
in glioma.

Recent advances in novel approaches 
targeting ferroptosis in glioma

Several studies have suggested that targeting the key components 
of ferroptotic pathway may be a potential therapeutic strategy for the 
treatment of glioma (19). For example, the inhibition of GPX4 has 
been shown to induce ferroptosis in glioma cells and enhance the 
cytotoxicity of chemotherapeutic agents. Similarly, targeting the XC- 
system has also been proposed as a potential therapeutic strategy for 
the treatment of glioma, as it could enhance the sensitivity of glioma 
cells to ferroptosis.

GPX4 targeting
GPX4 is a key enzyme in the reduction of lipid peroxides, and its 

inactivation is a crucial step in the induction of ferroptosis. Numerous 
small molecule inhibitors have been developed and investigated for 
their ability to inhibit GPX4 and induce ferroptosis in various cancer 
types, including glioma (26). One of the most studied GPX4 
inhibitors is RSL3, which selectively binds to and inactivates GPX4, 
leading to an accumulation of lipid peroxides and subsequent 
ferroptotic cell death (27). Preclinical studies have shown that 
treatment with RSL3 results in a significant reduction in glioma cell 
viability and tumor growth inhibition (27). Another GPX4 inhibitor, 
ML162, effectively binds to GPX4, inhibiting its enzymatic activity 
and causing ferroptotic cell death (28). However, there are no 
evidence have shown that ML162 sensitizes glioma cells to ferroptosis. 
FIN56 is another novel inhibitor of GPX4 that promotes GPX4 
degradation and induces tumor ferroptosis. In multiple tumors 
including glioma, FIN56 has been shown to significantly decrease 
GPX4 expression, increase intracellular peroxide levels, induce cell 
ferroptosis, and effectively inhibit tumor cell proliferation (29–32). 
In addition, FIN56 can also activate squalene synthase to promote 
coenzyme Q10 depletion independent of GPX4 degradation (33). 
Coenzyme Q10 is an essential cofactor in the mitochondrial 
respiratory chain that protects cells from oxidative stress damage 
(34). Depletion of coenzyme Q10 by FIN56 potentially disrupts 
mitochondrial function and causes mitochondrial iron overload, 
leading to ferroptosis induction (35).

Lipid metabolism modulation
Alterations in lipid metabolism can influence the susceptibility of 

glioma cells to ferroptosis. Certain metabolic enzymes involved in 
lipid biosynthesis and metabolism, such as acyl-CoA synthetase long-
chain family member 4 (ACSL4) and stearoyl-CoA desaturase 1 
(SCD1), have been identified as potential targets (36). ACSL4 plays a 
crucial role in the synthesis of polyunsaturated fatty acids (PUFAs), 
which are precursors of lipid peroxidation (37). Inhibition of ACSL4 
decreases the incorporation of PUFAs into membrane lipids, leading 
to reduced lipid peroxidation and ferroptosis resistance in glioma cells 
(38). Similarly, SCD1 inhibition impairs the synthesis of 
monounsaturated fatty acids (MUFAs), promoting temozolomide 
(TMZ) sensitivity in glioma cells (39).

Iron nanoparticles
Recent studies have shown that Iron nanoparticles offer a 

promising means to induce ferroptosis selectively in glioma cells due 
to their unique physicochemical properties and ability to modulate 
iron metabolism. The combination of iron nanoparticles with other 
therapeutic agents, such as small interfering RNA (siRNA) and 
cisplatin, has demonstrated enhanced efficacy in selectively inducing 
ferroptotic cell death within glioma cells (40, 41). Through the 
exploitation of iron metabolism, this approach has the potential to 
specifically target and eradicate malignant glioma cells while sparing 
normal cells, thereby reducing systemic toxicity often associated with 
traditional therapies. The multifaceted nature of this novel treatment 
approach extends beyond therapeutic delivery and ferroptosis 
induction. Iron nanoparticles offer additional benefits, such as their 
capacity to serve as contrast agents for magnetic resonance imaging 
(MRI) (42). This dual functionality allows for both diagnosis and 
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treatment monitoring, providing a comprehensive framework for 
personalized glioma management.

Inhibition of amino acid transporters
Amino acid transporters, such as system x_c^– and solute carrier 

(SLC) 7A11, are essential for the uptake of cystine and other amino 
acids required for the synthesis of glutathione and other antioxidants. 
Recent studies have shown that inhibition of amino acid transporters, 
such as system x_c^– and SLC7A11, can induce ferroptosis in glioma 
cells and suppress tumor growth in glioma models (43).

Natural chemicals targeting ferroptosis
The investigation of natural compounds for their potential in 

targeting ferroptosis in the treatment of glioma is an intriguing and 
promising area of research. With the rising interest in alternative and 
complementary approaches to conventional cancer therapies, 
exploring the therapeutic potential of natural compounds is crucial. 
Natural compounds such as curcumin, fucoxanthin, terpinen-4-ol, 
Boric acid and dihydroartemisinin, have been found to possess 
remarkable anti-cancer properties, including the ability to induce 
ferroptosis (44–48). These compounds target ferroptosis through 
various mechanisms, including iron metabolism, glutathione 
peroxidase 4, and the cystine/glutamate antiporter system. By 
targeting the intricate mechanisms involved in ferroptosis, natural 
compounds offer a potential avenue for developing novel and less 
toxic glioma treatment options.

In addition to their ability to trigger ferroptosis, natural 
compounds often possess multiple other beneficial properties, such as 
anti-inflammatory and anti-proliferative effects (49). This could offer 
additional advantages in the treatment of glioma. One of the 
advantages of natural compounds is their relatively low toxicity 
compared to traditional chemotherapeutic agents, making them 
potentially suitable for combination therapy or as adjuvants alongside 
conventional treatments. Furthermore, the abundance and 
accessibility of these compounds can make them more cost-effective 
and widely available for patients who may benefit from them.

Overall, the exploration of natural compounds targeting ferroptosis 
in glioma treatment represents an exciting frontier in cancer research. 
Harnessing the power of nature’s resources has the potential to 
revolutionize treatment options and improve outcomes for patients 
with glioma, but extensive investigation and validation are still needed 
before these compounds can be incorporated into clinical practice.

Conclusions and perspectives

In conclusion, ferroptosis has emerged as a new promising 
therapeutic target for the treatment of glioma. To date, several novel 
approaches targeting ferroptosis have been identified, including 
natural compounds and small-molecule inhibitors of specific 
pathways involved in ferroptosis regulation. In vitro and in vivo 
experiments have shown these approaches to have significant anti-
tumor effects, validating the potential of ferroptosis-based therapy for 
glioma treatment. However, there are still challenges and limitations 
that need to be  overcome. Firstly, it is important to note that 
ferroptosis research is still in its early stages, and many of the 
mechanistic details remain to be fully elucidated. For example, the role 

of specific proteins such as GPX4 in ferroptosis regulation is still not 
completely understood. Future studies aimed at decoding ferroptosis 
regulation will provide valuable insights into the phenomenon, and 
might identify additional targets for therapeutic intervention. 
Secondly, glioma is a highly heterogeneous disease, with different 
subsets of cells often respond differently to treatment. The subset of 
cells that respond best to ferroptosis-based therapy may be different 
from those that respond best to traditional therapies. Therefore, a 
better understanding of glioma heterogeneity will help in designing 
more effective treatment strategies.

Additionally, the complex interaction between glioma cells and 
the microenvironment is also a key factor that needs to be taken into 
account. Glioma cells interact with other cells and signaling molecules 
in the microenvironment, which can influence their response to 
ferroptosis-based therapy. Therefore, future research should explore 
how the microenvironment can be utilized to enhance the effectiveness 
of ferroptosis-based therapy. Toxicity also remains a key consideration 
for any potential therapy. It would be  helpful to explore the 
toxicological profile of ferroptosis inducers in greater detail, including 
their toxic effects on normal cells, as well as any potential cumulative 
effects after long-term treatment. Lastly, ferroptosis-based therapy 
may also need to be combined with other modalities of treatment to 
optimize its effectiveness. This could include combining ferroptosis-
based therapy with radiation therapy or chemotherapy, or utilizing it 
in combination with immune checkpoint inhibitors or other 
immunotherapeutic approaches. A more comprehensive exploration 
of ferroptosis-based therapy’s limitations and challenges would assist 
in overcoming these obstacles and bring us closer to developing new 
treatment options for this difficult-to-treat disease.
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