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Background: Parkinson’s disease (PD) is a neurodegenerative disease with high 
incidence rate. Resting state functional magnetic resonance imaging (rs-fMRI), as 
a widely used method for studying neurodegenerative diseases, has not yet been 
combined with two important indicators, amplitude low-frequency fluctuation 
(ALFF) and cerebral blood flow (CBF), for standardized analysis of PD.

Methods: In this study, we  used seed-based d-mapping and permutation of 
subject images (SDM-PSI) software to investigate the changes in ALFF and CBF 
of PD patients. After obtaining the regions of PD with changes in ALFF or CBF, 
we conducted a multimodal analysis to identify brain regions where ALFF and CBF 
changed together or could not synchronize.

Results: The final study included 31 eligible trials with 37 data sets. The main 
analysis results showed that the ALFF of the left striatum and left anterior thalamic 
projection decreased in PD patients, while the CBF of the right superior frontal 
gyrus decreased. However, the results of multimodal analysis suggested that 
there were no statistically significant brain regions. In addition, the decrease of 
ALFF in the left striatum and the decrease of CBF in the right superior frontal gyrus 
was correlated with the decrease in clinical cognitive scores.

Conclusion: PD patients had a series of spontaneous brain activity abnormalities, 
mainly involving brain regions related to the striatum-thalamic-cortex circuit, and 
related to the clinical manifestations of PD. Among them, the left striatum and 
right superior frontal gyrus are more closely related to cognition.

Systematic review registration: https://www.crd.york.ac.uk/ PROSPERO 
(CRD42023390914).
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease with the 
pathological characteristics of loss of dopamine neurons and 
aggregation of Lewy bodies (1). In the United  States, Parkinson’s 
disease affects almost six per 1,000 people age 45 and over (2), and the 
incidence rate of Parkinson’s disease is increasing in most countries in 
the world (3, 4). Due to the increase in disease awareness, aging 
population, and environmental changes, the number of PD patients 
continues to increase, which has become a public health issue in aging 
societies across countries (5). The clinical manifestations of PD are 
divided into motor symptoms and non-motor symptoms. Motor 
symptoms include common symptoms such as tremor, bradykinesia, 
rigidity and gait disorders. With the deepening of research in recent 
years, cognitive disorders, sleep disorders, mood changes and other 
non-motor symptoms have gradually become the focus (6, 7). 
Especially cognitive impairment, which can lead to dementia, 
seriously affect patients’ health and increase social burden (8). 
Therefore, a better understanding of the neural substrates of cognitive 
impairment in PD is urgently required to direct effective and targeted 
treatment strategies.

In previous studies, researchers have tried many methods to 
clarify the physiological basis of PD, such as animal experiments, 
single photon emission computed tomography (SPECT) and resting 
state fMRI functional magnetic resonance imaging (rs-fMRI) (9, 10). 
Among them, rs-fMRI has been widely used in PD and other 
degenerative disease due to its advantages of non-invasive, efficient, 
and high spatial resolution imaging mode that can reflect the activities 
of the central nervous system. Amplitude of low-frequency 
fluctuations (ALFF) is an important indicator of rs-fMRI, obtained by 
measuring blood oxygen level dependent (BOLD) signals (11). 
Cerebral blood flow (CBF) is another important indicator obtained by 
measuring magnetic labeled endogenous arterial blood as a tracer 
using arterial spin labeling (ASL) technology (12, 13). The individual 
ALFF and CBF represent the neural activity and blood flow perfusion 
of the local brain region, respectively, and both indicators also reflect 
the intensity of neural activity in the brain region through direct and 
indirect means (14, 15). In addition, combining two indicators of the 
same brain region can reflect the neurovascular coupling state of a 
certain region (16, 17). Therefore, it is crucial to conduct research and 
analysis on these two indicators. Previous researchers have conducted 
years of research on PD based on ALFF and CBF, and have published 
many research results. However, due to differences in sample size, 
demographic information, ethnic distribution (many studies on East 
Asian populations), and clinical data, there may be  significant 
heterogeneity and bias among studies. Some researchers have 
attempted to integrate the results using meta-analysis and review. For 
example, previous ALFF meta-analysis results have shown that PD 
patients have a decrease in ALFF in areas such as the left superior 
temporal gyrus and left superior frontal gyrus, while an increase in 
ALFF in areas such as the right superior frontal gyrus and left superior 
parietal lobule (18). The retrospective analysis of brain perfusion in 
PD patients using the ASL technique in the past suggests that the main 
brain regions related to motor and non-motor symptoms of PD, such 
as the basal ganglia subregion, frontoparietal network, and visual 
network, have been identified as insufficient CBF perfusion (19). The 
above results have significant differences and high heterogeneity due 
to differences in inclusion criteria and specific analysis methods in the 

literature. Therefore, it is essential to explore the brain regions affected 
by ALFF and CBF in PD using consistent methods and a more 
comprehensive analysis process. Based on this, we  conducted 
this study.

The purpose of this study is to conduct multimodal meta-analysis 
of the changes of ALFF and CBF in PD compared with normal 
controls through whole-brain meta-analysis technology, and explore 
areas of the brain where ALFF, CBF, or both have changed, providing 
neuroimaging evidence for the clinical manifestations of PD, and 
attempting to identify neuroimaging biomarkers that lead to cognitive 
impairment, in order to assist in the early diagnosis and intervention 
of such patients.

2 Methods

2.1 Search strategy

The study followed the guidelines of the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) and 10 
simple rules for neuroimaging meta-analysis (20, 21). The protocol 
was registered in PROSPERO (CRD42023390914).1 Two databases 
were searched including PubMed, Web of Science, from Jan 1, 2007 to 
Dec 1, 2022. Based on the two indicators of ALFF and CBF, this search 
was divided into two parts. The first part used keywords: (“Parkinson’s 
Disease” OR “Parkinson Disease” OR “Parkinsonism” OR “Paralysis 
Agitans” OR “PD”) AND (“amplitude of low frequency fluctuation” 
OR “ALFF” OR “low frequency fluctuation” OR “LFF” OR “amplitude 
of low frequency oscillation” OR “LFO”). The second part used 
keywords: (“Parkinson’s Disease” OR “Parkinson Disease” OR 
“Parkinsonism” OR “Paralysis Agitans” OR “PD”) AND 
(“Cerebrovascular Circulation” OR “arterial spin labeling” OR “ASL” 
OR “Cerebral Blood Flow” OR “CBF”).

2.2 Study selection

After searching for studies, we first excluded duplicate studies. 
When reading and extracting information from the entire text, if there 
was any information not mentioned in the original text, such as 
coordinate values, non-online manuscripts, etc., the corresponding 
author would be  contacted by email. Extracting information and 
conducting research, studies conforming to the following criteria were 
included: (1) the exploration of ALFF or CBF alterations between PD 
patients and healthy controls (HCs); (2) the subjects are adults; (3) PD 
patients were in an off-state; (4) the article clearly depicted the peak 
coordinates (Talairach or MNI) in the three-dimensional stereo 
directional coordinates; (4) available t values, p value or z values are 
provided in the study; (5) original research published in peer-reviewed 
journals. Studies conforming to the following criteria were excluded: 
(1) no HCs; (2) subjects with other diseases of central system or 
affecting brain activity; (3) animal study; (4) not related to ALFF and 
CBF; (5) studies with ROI analysis (6) research on minors; (7) 
secondary study; (8) neuroimaging quality score<16 or JBI score<12.

1 https://www.crd.york.ac.uk/prospero/
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2.3 Quality assessment

We formulated the quality assessment method of this study 
referring to the previous high-quality research (22). Based on this, 
we used the checklist for objective evaluation of the quality of the 
neuroimaging meta-analysis research method (Supplementary  
Figure S1). In addition, the Joanna Briggs Institute (JBI) critical 
appraisal checklist (Supplementary Table S4) by the cross-sectional 
study was also used to conduct a secondary assessment of the quality 
of the included studies (23). Two reviewers (H.X and ZY.L, 
Radiologist) independently evaluated the quality of the article. If any 
differences were encountered during the process, the third reviewer 
(LF.Y, Deputy Chief Radiologist and Associate Professor) would make 
the final decision.

2.4 Voxel-wise meta-analysis of CBF and 
ALFF abnormalities

In this study, we used the SDM-PSI software (version 6.212) to 
analyze studies on ALFF and CBF separately. SDM-PSI is a voxel 
based meta-analysis software that recreates brain maps comparing the 
effectiveness of results by using peak coordinates reported in research 
results and statistical effects extracted from each original study. The 
specific analysis process was reported in detail in previous articles 
(23–26). The main processes were briefly summarized: (1) global 
analysis; (2) pre-processing; (3) mean analysis; (4) threshold analysis; 
(5) family-wise error (FWE) correction; (6) threshold analysis and (7) 
extract peak coordinates and bias test. Finally, we used MICRON3 
software to visualize the data results. The parameters used in this 
analysis were p < 0.005 uncorrected, minimum cluster extension>10 
voxels and SDM-Z > 1 (which can reduce the possibility of false 
positive) (25). These parameters were recommended by the software 
developer and can best balance false positive and false results to obtain 
the best results (21, 25).

2.5 Heterogeneity, sensitivity and 
publication bias

In this study, we used Stata software to evaluate the heterogeneity 
of the results and conducted statistical analysis by extracting the peak 
coordinates of meaningful results. The results of the I2 statistic were 
used to evaluate the heterogeneity between studies. I2<50% usually 
indicates a low heterogeneity of the results (27). In order to determine 
whether there was potential publication bias, we conducted Egger’s 
test and drew a funnel map for visual inspection. Asymmetric funnel 
map or Egger’s test result p < 0.05 indicated that there was significant 
publication bias (28). The sensitivity analysis based on whole-brain 
voxel used AES-SDM software to test the reliability of the results by 
eliminating one data set at a time and then performing the same 
analysis method (22, 29). If a region was significant in most data set 

2 https://www.sdmproject.com/

3 https://www.nitrc.org/projects/bnv/

combinations (>50%), the result was considered highly reproducible 
and trustworthy.

2.6 Multimodal analysis of ALFF and CBF

Areas of shared abnormalities between patient groups versus 
control subjects of ALFF and CBF were determined in conjunction 
analyses by computing p value overlap within each voxel from the 
original meta-analytic maps accounting for error. Conjunction 
analysis determined overlapping (or distinct) regions between patient 
groups across both modalities.

2.7 Meta-regression analysis

Meta-regressions were conducted within the PD group to examine 
effects of age, course of disease, and clinical scale results on ALFF and 
CBF abnormalities. In order to minimize the false correlation, 
we adopted a low probability threshold of 0.0005. We ignored the 
results that do not exist in the main meta-analysis (30, 31).

3 Results

3.1 Included studies

Figure  1 showed the flowchart of this meta-analysis. After 
preliminary screening of titles and abstracts, a total of 104 articles (54 
ALFF-related and 50 CBF-related) met the requirements. After 
reading the full text, 37 data sets of 31 studies were included, including 
25 data sets for 23 ALFF-related studies and 12 data sets for 8 
CBF-related studies. The quality score of the included study met the 
standard (Supplementary Tables S2, S3, S5).

3.2 Sample characteristics

Of the 23 original ALFF studies, 25 data sets reported the ALFF 
differences between 801 PD patients (457 males, 344 females, mean 
age = 60.3 years) and 738 healthy controls (382 males, 356 females, 
mean age = 59.8 years). Detailed demographic information, clinical 
features and imaging features were shown in Table  1 and 
Supplementary Table S6. After analyzing the extracted demographic 
and clinical information, we  found that there were differences in 
gender distribution (χ2=4.338, p = 0.037), cognitive assessment scales 
MOCA (standardized mean difference [SMD] = −1.49; 95% 
confidence interval [CI] = [−1.91, −1.07], Z = 6.95, P < 0.00001), and 
MMSE (SMD = −0.49; 95% CI = [−0.66, −0.31], Z = 5.44, P < 0.00001) 
between the two groups. There was no difference between the two 
groups in terms of age (SMD = 0.57; 95% CI = [−0.18, 1.32], Z = 1.48, 
p = 0.14) and years of education (SMD = 0.33; 95% CI = [−0.28, 0.93], 
Z = 1.05, p = 0.29).

A total of 12 data sets were obtained from the 8 studies on CBF, 
which included 285 PD patients (155 males, 130 females, mean 
age = 62.3 years) and 302 healthy controls (154 males, 148 females, 
mean age = 60.4 years). Detailed demographic information, clinical 
features and imaging features were shown in Table  2 and 
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Supplementary Table S7. After analyzing the extracted demographic 
and clinical information, we found that there were differences in age 
distribution (SMD = -1.56; 95% CI = [0.38, 2.75], Z = 2.59, p = 0.01), 
cognitive assessment scales MOCA (SMD = -2.54; 95% CI = [−3.10, 
−1.98], Z = 8.85, P<0.00001), and MMSE (SMD = -2.48; 95% 
CI = [−2.81, −2.16], Z = 15.05, P<0.00001) between the two groups. 
There was no difference between the two groups in terms of gender 
(χ2 = 0.677, p = 0.411) and years of education (SMD = −0.46; 95% 
CI = [−0.98, 0.07], Z = 1.71, p = 0.09).

3.3 Meta-analysis of ALFF

Compared with HCs, the ALFF of PD patients decreased in the 
left striatum (BA 48, MNI: −22, 4, 2; SDM-Z = −3.420, p < 0.0005) and 
the left anterior thalamic projections (BA 25, MNI: −10, 8, 6; 
SDM-Z = −2.731, p < 0.005) (Figure 2; Table 3). Compared with HCs, 
there was no area of increased ALFF in PD patients. These regions 
showed significant between-study heterogeneity, but there was no 
publication bias. The jackknife analysis results also suggested that they 
can be reproduced in most combinations. The forest map for assessing 
heterogeneity and the funnel map for assessing publication bias were 
shown in Figure 3.

3.4 Meta-analysis of CBF

Compared with HCs, the CBF index of PD patients decreased in 
the right superior frontal gyrus (R-SFG) (BA 10, MNI: 6, 58, 8; 
SDM-Z = −3.102, p < 0.001) (Figure 2; Table 3). Compared with HCs, 
there was no area of increased CBF in PD patients. The result of this 
brain area test showed that there was great heterogeneity, but there 
was no publication bias, and the jackknife analysis results also 

suggested that the results could be replicated in most combinations. 
The forest map for assessing heterogeneity and the funnel map for 
assessing publication bias were shown in Figure 3.

3.5 Multimodal analysis

PD patients relative to HCs showed no brain areas where ALFF 
and CBF increased or decreased simultaneously, nor did they showed 
any brain areas where ALFF increased and CBF decreased or ALFF 
decreased and CBF increased.

3.6 Meta-regression analysis

In the meta-analysis, the effects of potential risk factors (e.g., age, 
female proportion, duration of disease, MOCA score, MMSE score, 
H-Y stage and UPDRS III score) on the main results of the ALFF and 
CBF meta-analysis were studied, respectively. Regression analysis 
showed that the age, female proportion, course of disease, H-Y stage 
and UPDRS III score of PD patients had no effect on the main results, 
while lower MOCA score and MMSE score were associated with lower 
ALFF at the left striatum (Peak MNI coordinate: −18, 4, −2) and lower 
CBF at the R-SFG (Peak MNI coordinate: 6, 58, 8).

4 Discussion

In this study, we combined the brain nerve activity and cerebral 
blood flow changes of PD for the first time, and the correction method 
that best balances false positive and false negative results was selected 
for this systematic review and meta-analysis. The main results showed 
that the ALFF of PD in the left striatum and left anterior thalamic 

FIGURE 1

Flow diagram for identifying studies to be included in the meta-analysis.
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TABLE 1 Demographic and clinical characteristics of PD patients and HCs included in the meta-analysis of studies on ALFF.

Study Indicator Subjects (male/
female)

Mean age (SD) H-Y 
stage

UPDRS III 
score

Duration 
years (SD)

MMSE (SD) Education years 
(SD)

MoCA (SD)

PD HC PD HC PD HC PD HC PD HC

Harrington et al. 

(32)
ALFF 31(22/9) 30(11/19) 67.4(7.5) 68.6(7.2) / 38.1(14.6)a 5.4(3.8) 29.3(0.9) 29.5(0.7) 17.0(2.3) 16.5(1.8) / /

Hou et al. (33) ALFF 101(59/42) 102(60/42) 59.8(7.2) 59.9(7.1) 1.9(0.7) 25.5(11.5)a 7.2(4.4) 28.7(1.3) 29.0(1.1) / / / /

Kwak et al. (34) ALFF 24(22/2) 24(19/5) 64.3(8.0) 63.3(7.0) 2.2(0.3) 18.5(8.0)a 5.4(3.0) 28.8(1.0) 29.1(1.0) / / 26.0(3.0) 25.7(3.0)

Li et al. (35) ALFF 16(6/10) 19(11/8) 62.8(6.6) 62.7(8.1) 2.2(0.8) 22.1(12.5) 4.0(4.3) 27.6(2.4) / / / / /

Luo et al. (36) ALFF 37(17/20) 13(6/7) 61.5(9.5) 62.5(9.6) / 38.2(14.9) / 26.8(2.9) 28.1(1.8) / / 24.1(4.6) 28.8(1.1)

Luo et al. (37) ALFF 30(15/15) 30(15/15) 53.6(10.2) 51.9(7.7) 1.7(0.6) 26.8(12.4) 2.1(1.3) 27.0(2.8) 28.1(1.8) / / / /

Mi et al. (38) ALFF 31(20/11) 32(17/15) 58.0(9.8) 58.3(7.3) 1.9(0.6) 30.8(14.4) 5.2(3.5) 27.8(1.7) 28.6(1.4) / / 24.8(3.0) 26.2(3.4)

Rong et al. (39) ALFF 42(26/16) 33(17/16) 64.5(6.7) 63.3(5.3) 2.0(0.5) 31.2(13.2) 2.9(2.2) 28.2(1.9) 28.6(1.5) 10.8(3.3) 11.4(3.2) 23.3(3.3) 26.2(1.9)

Skidmore et al. 

(40)
ALFF 14(11/3) 15(9/6) 62.0(9.0) 65.0(13.0) / 37.0(13.0) / 27.0(3.0) 28.0(3.0) / / 25.0(3.0) 27.0(3.0)

Sun et al. (41) ALFF 26(14/12) 23(13/10) 59.6(10.0) 59.5(10.8) 1.9(0.6) 17.1(3.7) 2.0(0.9) 25.9(4.3) 25.6(4.4) 7.1(5.1) 7.9(6.0) 24.0(5.4) 23.6(6.3)

Tang et al. (42) ALFF 51(27/24) 50(21/29) 53.2(11.0) 51.5(10.7) 2.4(0.8) 48.6(23.4)a 5.8(5.0) 27.1(3.6) 27.8(3.2) / / 22.4(5.7) 25.2(5.0)

Wang et al. (43) ALFF 17(9/8) 25(14/11) 62.5(10.2) 64.7(5.2) 2.4(0.6) 48.4(13.9) 6.5(3.6) 24.8(4.2) 28.5(1.5) 10.8(4.2) 11.5(3.0) 19.7(5.8) 26.2(1.4)

Wang et al. (44) ALFF 33(24/9) 19(10/9) 69.5(6.0) 66.2(3.5) 2.4(0.6) 22.7(10.8) 4.4(3.0) 28.1(1.7) 28.8(1.0) 11.5(4.0) 10.6(3.2) / /

Wang et al. (45) ALFF 10(5/5) 13(11/2) 64.7(7.0) 62.9(9.0) 1.5(0.5) 29.3(9.6)a 5.4(7.9) / / / / 24.6(2.4) 27.9(1.1)

Wang et al. (45) ALFF 19(14/5) 13(11/2) 59.1(12.3) 62.9(9.0) 1.3(0.5) 25.7(11.8)a 9.5(10.8) / / / / 28.4(1.3) 27.9(1.1)

Wen et al. (46) ALFF 16(8/8) 21(13/8) 60.7(18.7) 55.4(16.4) 1.6(1.0) 33.8(24.2) 5.6(7.4) 29.2(2.2) / / / / /

Xiang et al. (47) ALFF 24(12/12) 22(11/11) 62.7(7.4) 65.6(6.9) 2.2(0.9) 22.0(7.0) 7.0(3.3) 27.3(2.1) 28.6(1.6) 13.6(3.1) 12.9(3.7) 25.9(3.7) 25.4(2.5)

Xu et al. (48) ALFF 19(11/8) 32(13/19) 60.3(11.3) 63.2(4.7) 1.4(0.5) 26.9(13.5) 3.2(3.3) 27.1(1.9) 28.7(1.3) 11.2(4.8) 9.8(3.8) / /

Yao et al. (49) ALFF 12(4/8) 14(6/8) 63.4(7.4) 64.1(4.0) 2.8(0.9) 18.0(12.9) 8.4(5.1) 28.5(1.7) 29.1(0.7) / / / /

Yue et al. (50) ALFF 26(16/10) 10(3/7) 60.8(3.5) 58.0(4.1) 1.4(0.6) 33.7(14.0) 1.8(1.2) 25.9(3.6) 27.9(1.3) / / 22.0(4.2) 26.5(3.2)

Yue et al. (50) ALFF 14(8/6) 10(5/5) 49.8(3.6) 49.7(2.3) 1.7(0.6) 34.7(10.6) 2.2(1.4) 26.4(4.4) 26.4(2.7) / / 24.4(4.4) 24.6(3.7)

Zhang et al. (51) ALFF 28(15/13) 28(14/14) 59.2(9.7) 58.2(6.5) 2.0(0.7) 29.1(8.7) 8.5(2.9) 27.6(1.3) 27.7(1.2) / / 24.4(2.5) 25.9(1.7)

Zhang et al. (52) ALFF 82(35/47) 77(31/46) 59.7(11.9) 58.6(8.5) / 20.2(8.4) 7.1(6.0) / / / / / /

Zhang et al. (53) ALFF 32(22/10) 25(12/13) 65(8.4) 64.6(4.5) 2.2(0.7) 21.6(10.0) 4.0(4.0) 28.3(1.8) / 11.4(3.5) 10.7(2.9) / /

Zhang et al. (54) ALFF 66(35/31) 58(29/29) 53.8(10.7) 51.7(10.8) 2.3(0.8) 30.7(15.3) / 26.8(3.7) 27.9(3.3) / / / /

Data are presented as mean (SD). PD, Parkinson’s disease; HCs, healthy controls; SD, standard deviation; H-Y stage, Hoehn-Yahr stage; UPDRS III score, unified Parkinson’s disease rating scale III score, MMSE, mini-mental state examination; MoCA, montreal 
cognitive assessment.
aOnly UPDRS total scores was given in the study.
/ means no relevant information was provided in the study.
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TABLE 2 Demographic and clinical characteristics of PD patients and HCs included in the meta-analysis of studies on CBF.

Study Indicator Subjects (male/
female)

Mean age (SD) H-Y 
stage

UPDRS 
III score

Duration 
years (SD)

MMSE (SD) Education years 
(SD)

MoCA (SD)

PD HC PD HC PD HC PD HC PD HC

Arslan et al. 

(55)
CBF 26(16/10) 15(11/4) 60.2(9.0) 58.7(6.3) 1.8(0.5) 26.0(10.8) 5.4(3.0) 29.4(0.8) 30.0(0.0) 10.1(3.8) 11.0(3.8) 26.7(1.9) 25.2(2.3)

Arslan et al. 

(55)
CBF 27(21/6) 15(11/4) 64.0(8.1) 58.7(6.3) 1.9(0.6) 32.4(13.1) 6.6(3.5) 28.2(1.4) 30.0(0.0) 9.0(3.8) 11.0(3.8) 22.4(2.5) 25.2(2.3)

Barzgari 

et al. (56)
CBF 30(24/6) 31(25/6) 66.1(9.0) 67.5(8.3) 1.8(0.7) 20.3(10.6) 6.1(3.9) / / / / / /

Jia et al. 

(57)
CBF 27(15/12) 25(11/14) 63.1(6.6) 59.4(5.8) 1.9(0.5) 23.8(7.4) 3.7(3.0) / / 13.4(2.9) 12.1(2.9) / /

Jia et al. 

(57)
CBF 27(16/11) 25(11/14) 62.6(6.6) 59.4(5.8) 1.7(0.7) 21.4(9.5) 3.7(2.9) / / 7.8(2.9) 12.1(2.9) / /

Lin et al. 

(58)
CBF 20(6/14) 22(7/15) 63.3(6.4) 59.9(6.0) 2.0(0.8) 22.9(15.1) 2.5(1.5) 22.6(7.4) 27.1(2.1) 8.8(4.9) 11.5(4.9) / /

Lin et al. 

(59)
CBF 17(6/11) 17(8/9) 63.7(8.5) 59.7(7.5) 2.0(2.0) 19a 3.5(2.4) 21.5(4.7) 28.7(2.0) 7.1(6.0) 10.2(6.0) / /

Lin et al. 

(59)
CBF 17(7/10) 17(8/9) 60.9(10.2) 59.7(7.5) 2.0(2.0) 17a 2.5(1.5) 28.3(2.3) 28.7(2.0) 9.3(6.0) 10.2(6.0) / /

Shang et al. 

(60)
CBF 42(18/24) 50(25/25) 66.8(8.4) 68.2(4.1) 1.8(0.9) 42.4(14.2) 2.2(1.0) 25.2(0.7) 28.3(1.2) 13.3(2.2) 13.2(2.2) 22.0(1.9) 28.3(1.4)

Suo et al. 

(61)
CBF 22(9/13) 36(15/21) 53.8(8.5) 53.7(7.3) 1.9(0.6) 23.2(10.2) 2.4(1.7) 27.6(2.1) 28.2(1.6) 10.3(2.9) 10.8(2.9) 19.1(2.9) 23.1(2.5)

Suo et al. 

(61)
CBF 17(10/7) 36(15/21) 54.0(8.2) 53.7(7.3) 1.8(0.6) 17.1(9.7) 2.2(1.6) 27.8(4.4) 28.2(1.6) 11.3(2.9) 10.8(2.9) 24.3(2.4) 23.1(2.5)

Zhao et al. 

(62)
CBF 13(7/6) 13(7/6) 61.9(9.2) 62.3(8.1) 1.4(0.5) 14.2(3.9) 3.8(2.9) 28.6(1.9) 28.8(1.1) 11.2(5.6) 13.0(5.6) / /

Data are presented as mean (SD). PD, Parkinson’s disease; HCs, healthy controls; SD, standard deviation; H-Y stage, Hoehn-Yahr stage; UPDRS III score, unified Parkinson’s disease rating scale III score; MMSE, mini-mental state examination; MoCA, montreal 
cognitive assessment.
aOnly the mean value of the data was given in the study.
/ means no relevant information was provided in the study.
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projections decreased, representing a decrease in neural activity. In the 
R-SFG, the CBF of PD decreased, which represents the decrease of 
local cerebral perfusion. In addition, the results of meta-analysis 
showed that the decrease in clinical cognitive scale scores was related 
to the decrease of ALFF in the left striatum and the decrease of CBF 
in the R-SFG. Jackknife analysis showed that the peak coordinates of 
the above results had high repeatability proving that the results 
were stable.

It is well known that the previous pathophysiology interpretation 
of PD focused on the degeneration of dopaminergic substantia nigra 
striatum neurons, because the striatum, as an important input node 
in the basal ganglia, played an important role in the control and output 
of movement (63–66). In particular, the changes in the dorsal striatum 
(caudate-putamen), because it received information directly from the 
dopaminergic neurons in the substantia nigra, the impairment of the 
activity of the dorsal striatum can lead to the dysfunction of the 
striatum-thalamus-cortex circuit (67–70), leading to a series of clinical 
manifestations of motor symptoms (71–73). In addition, a large 
number of studies observed that in addition to motor symptoms, PD 
patients also suffered from cognitive disorders, such as executive 
ability, working memory, planning strategies and attention set 
switching disorders (74–77). Further research has found that the 
cognitive impairment of PD patients was also closely related to the 
functional damage of striatum dopaminergic neural pathway. Previous 
pathological and PET studies have found that the dysfunction of the 
dopamine system in the caudate-putamen of the striatum was related 
to some features of cognitive impairment (78–80). And some 
structural MRI studies confirmed that compared with HCs, the 
caudate-putamen volumes of patients with PD accompanied by 
cognitive impairment were reduced (81, 82). The above results suggest 
that the striatum not only plays an important role in motor symptoms 
through the striatum-thalamus-cortex circuit in PD patients, but also 
may play an important role in cognitive impairment.

The results of this meta-analysis showed that the ALFF in the left 
striatum and left anterior thalamus projection in PD patients was 
significantly reduced. After the subdivision of the region, the left 
putamen and left caudate were included, and the putamen mass voxels 
were the largest. The above brain regions are important nodes in the 

striatum-thalamus-cortical circuit. The changes in ALFF have also 
been confirmed in previous studies to be related to motor disorders in 
PD (64, 73), which is also consistent with the physiological basis of the 
clinical motor symptoms of PD originating from the changes of 
dopaminergic neurons in the substantia nigra and striatum (68, 69). 
Other than motor symptoms, the neural activity of striatum has also 
been confirmed to be related to cognitive ability and learning ability 
by various experimental methods (83, 84). The results of this 
regression analysis showed that the change of ALFF in the left striatum 
was related to the change of cognitive score, which also suggested that 
striatum neuronal activity participated in the modulation of cognitive 
function in PD patients. In particular, putamen, in previous fMRI 
studies of PD, other studies also showed that putamen CBF decreased, 
and voxel-based morphological measurements showed volume 
reduction (82, 85). Previous studies have confirmed that the reliable 
reduction of ALFF in putamen was related to the increase of PD 
severity, and even suggested that the change of putamen can be defined 
as the imaging evidence of PD (42, 86, 87).

The results of the meta-analysis of CBF studies suggested that the 
CBF of PD in the R-SFG was lower than that of healthy controls. The 
R-SFG is also a part of the striatum-thalamus-cortex circuit, and its 
role was more related to cognition (73, 88). It is generally believed that 
this region is related to high-level cognitive functions, such as 
inductive reasoning, computation, and also responsible for working 
memory and procedural learning (89–91). The decrease in CBF in this 
region may be related to a significant statistical difference in cognitive 
scores between the two groups on baseline information. Regression 
analysis results showed that the reduced CBF in R-SFG was correlated 
with lower cognitive scores in the PD group on baseline information, 
which confirmed this hypothesis.

Combined with the regression analysis results of ALFF and CBF, 
the left striatum and R-SFG in the main results would be affected after 
the cognitive scale scores in the baseline information were added to 
the regression, which indicates that the above brain regions 
participate in the feedback of cognitive activities to the center in 
PD. The Striatum and prefrontal cortex are important components of 
dopamine’s mesocortical pathway, which is one of the three parallel 
pathways of dopamine, and is responsible for executive functions 

FIGURE 2

Differences in ALFF and CBF between PD and HCs groups. Meta-analyses results regarding. (A) ALFF difference between PD and HCs, (B) CBF 
difference between PD and HCs.
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closely related to cognitive ability (92). Impairment of pathways can 
affect patients’ cognitive function. Another study in intraoperative 
stimulation and diffusion tomography provides direct evidence for 
the involvement of fiber bundle pathways in striatum and prefrontal 
cortex in cognitive control (93).

The results of multimodal analysis showed that PD patients did 
not have brain regions where ALFF and CBF increased and decreased 
at the same time or one of them increased and the other decreased. It 
was previously believed that ALFF and CBF were independent 
indicators, but some studies have shown that ALFF calculated from 
BOLD signals can be regulated by changes in CBF (94). Due to the fact 
that only a single changed in ALFF or CBF resulted in coupling 
changes in ALFF-CBF in the left striatum, left anterior thalamic 
projections and R-SFG, we believed that neurovascular uncoupling 
occurred in the main outcome.

Neurovascular coupling describes the close temporal and 
regional connection between cerebral blood flow response and 
neural activity, and the consistency of coupling can quickly provide 
sufficient nutrition and eliminate metabolic waste (95, 96). Research 
had confirmed that the state of neurovascular coupling changes 
with age and was related to executive function (97). Combining 
fMRI indicators to evaluate neurovascular coupling has been widely 
used in clinical research, especially in the fields of cognitive 
impairment and dementia (17, 98). For PD patients, abnormal 
neuronal activity caused by dopamine or other non-dopamine 
dysfunction, as well as perfusion damage caused by blood–brain 
barrier disruption, can cause changes in neurovascular coupling 
during the progression of the disease (99–101). The occurrence of 
this state may lead to toxic molecules entering the brain due to 
changes in vascular permeability, or obstacles in the clearance of 

TABLE 3 Differences between PD patients and HCs.

Brain 
areas

MNI 
coordinate

SDM-Z p-
value

Voxels Breakdown 
(voxels)

Egger’s 
test (p 
value)

Heterogeneity 
(I2)

Jackknife 
analysis

PD<HCs in ALFF

Left striatum −22, 4, 2 −3.420 <0.0005 168 Left striatum (112) 0.709 98.70% 25/25

Left lenticular 

nucleus, putamen, 

BA 48 (32)

Left lenticular 

nucleus, putamen 

(22)

Left pons (2)

Left anterior 

thalamic 

projections

−10, 8, 6 −2.731 <0.005 22

Left anterior 

thalamic 

projections (16)

0.951 99.20% 23/25

Left caudate 

nucleus (4)

Left caudate 

nucleus, BA 25 (2)

PD<HCs in CBF

Right 

superior 

frontal gyrus, 

medial, BA 10

6, 58, 8 −3.102 <0.001 88

Left superior 

frontal gyrus, 

medial, BA 10 (39)

0.235 97.60% 11/12

Right superior 

frontal gyrus, 

medial, BA 10 (28)

Left superior 

frontal gyrus, 

medial (9)

Left anterior 

cingulate, BA 10 (6)

Right superior 

frontal gyrus, 

medial (3)

PD, Parkinson’s disease; HCs, healthy controls; ALFF, amplitude of low frequency fluctuation, CBF, cerebral blood flow.

https://doi.org/10.3389/fneur.2023.1289934
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xie et al. 10.3389/fneur.2023.1289934

Frontiers in Neurology 09 frontiersin.org

local metabolites leading to neuronal dysfunction, thereby playing 
a role in neurodegenerative diseases or cognitive disorders (102). 
Some researchers analyzed the neurovascular decoupling state of 
PD with cognitive impairment (103), and the results showed that 
the uncoupling region included the left striatum and the right 
frontal lobe, and participated in the regulation of PD cognitive 
impairment, which was consistent with the results of this study. In 
addition, another study showed that neurovascular decoupling in 
the visual cortex of PD patients was associated with visual 
functional impairment, and it was confirmed that changes in 
neurovascular coupling state were not related to changes in gray 
matter volume (GMV) after regression (104). GMV had always 
been an important confounding factor in neuroimaging, and the 
above studies suggested that neurovascular coupling may be  a 
potential analysis indicator unaffected by GMV, with broader 
application prospects.

Finally, there are some limitations in this meta-analysis. First, this 
study only included the literature that provided the peak coordinates, 
and excluded those that were not provided, which is also a common 
defect in the meta-analysis of neuroimaging studies (21, 26). 
Secondly, most of the research groups included are East Asian people, 
and the universality of the results is limited. In the future, it is 
necessary to enrich the database and update the meta-analysis to 
make the population more diverse, and the results have better 
applicability to different populations. Third, the analysis of 
concomitant cognitive impairment could not be sub-group analysis 
because there were few studies on clear diagnosis. Fourth, although 
we suspect that high heterogeneity may be caused by differences in 
GMV of subjects and software selection, parameter settings, and 
correction methods during data processing 
(Supplementary Tables S6–S7), there is not enough data to correct for 
these differences. Fifth, lack of data to further explore the potential 
neural mechanisms underlying the occurrence of various subtypes of 
cognition, such as memory, executive function, language, and 
abstract thinking, etc.

5 Conclusion

Compared with healthy controls, there was a series of brain areas 
with spontaneous abnormal brain activity in PD, mainly involving the 
striatum-thalamic-cortical circuit, which was related to the clinical 
symptoms related to movement disorders and cognitive decline. 
Specifically, the left striatum and left anterior thalamic projection 
ALFF decreased, and the right superior frontal gyrus CBF decreased. 
The left striatum and right superior frontal gyrus were more closely 
related to cognition. In conclusion, our study provides a reference for 
further exploring the changes of brain activity and the mechanism of 
cognitive impairment in PD.
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