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Introduction: Neural mobilization (NM) is a physiotherapy technique involving 
the passive mobilization of limb nerve structures with the aim to attempt to restore 
normal movement and structural properties. In recent years, human studies 
have shown pain relief in various neuropathic diseases and other pathologies as 
a result of this technique. Improvement in the range of motion (ROM), muscle 
strength and endurance, limb function, and postural control were considered 
beneficial effects of NM. To determine which systems generate these effects, it 
is necessary to conduct studies using animal models. The objective of this study 
was to gather information on the physiological effects of NM on the peripheral 
and central nervous systems (PNS and CNS) in animal models.

Methods: The search was performed in Medline, Pubmed and Web of 
Science and included 8 studies according to the inclusion criteria.

Results: The physiological effects found in the nervous system included the 
analgesic, particularly the endogenous opioid pathway, the inflammatory, by 
modulation of cytokines, and the immune system.

Conclusion: On the basis of these results, we can conclude that NM physiologically 
modifies the peripheral and central nervous systems in animal models.
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1 Introduction

Neural mobilization (NM) is a physiotherapy procedure involving the passive 
mobilisation of limb nerve structures to restore normal movement and structural properties 
(1). Most research has been conducted using this technique in patients with chronic 
peripheral nerve pathologies who present with pain. Studies have shown a decrease in these 
symptoms in patients with cervical radiculopathy (2, 3), tension headache (4), cervical-
brachialgia (5–7), sciatica (8), low back pain (9) and an increase in pain threshold in people 
with no pathology (10, 11). This technique also reduces pain caused by other pathologies 
that cause neuropathies, such as leprosy (12) or cancer (13), or due to other causes such as 
rheumatoid arthritis (14), osteoarthritis (15) and epicondylalgia (16).

Other effects of NM are increased ROM in subjects with (10, 17–20) and without 
pathology (3, 5, 21), changes in the muscular system, increasing strength (12, 15) and 
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endurance (3), and increased recovery from fatigue (22). NM has also 
shown positive effects at a functional level by reducing disability in the 
affected limbs (3, 5, 6, 8, 12) and improving postural control in athletes 
(23). Finally, another phenomenon studied in cadavers has been the 
increased dispersion of intraneural fluid after the technique, which 
may be beneficial if intra-aneural edema is present (24, 25).

Even if these studies show that NM generates beneficial effects on 
different systems and subjects, research in humans does not allow us 
to describe which physiological mechanisms are involved in changes 
in pain perception and intensity, range of motion, and muscle 
strength, among others. To determine which systems are involved, it 
is necessary to look for basic research articles in which this technique 
has been used in animal models. In the literature, there are studies 
where physiotherapy techniques are applied to measure changes in 
biomarkers related to pain and inflammation and others to understand 
the processes involved in the changes produced by the techniques of 
this profession.

Suppose we use massage as an example and apply it to animal 
models. In this case, it has been studied to generate analgesic effects 
related to increased oxytocin in the periaqueductal gray matter (26) 
and changes in some genes that regulate inflammation (27). Another 
example that we  can consider is passive joint mobilisations. They 
decrease pain by activating serotonergic and noradrenergic pathways 
(28, 29), whereas they decrease pro-inflammatory cytokines and 
increase anti-inflammatory cytokines (30, 31). The technique has also 
been studied to improve the repair of tissues such as bone (32) and 
cartilage (33, 34) by stimulating the tissues.

This systematic review aims to unify the information in the basic 
research literature on the physiological effects of NM on the peripheral 
and central nervous system (PNS and CNS) in animal models.

2 Methods

2.1 Search strategy

This review was performed following the guidelines of the 
Systematic Review Center for Laboratory Animal Experimentation 
(SYRCLE) (35) and the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) principles (36). The protocol 
was registered in the International Prospective Register of Systematic 
Reviews (PROSPERO, CRD42022316225).

Two independent researchers performed the search (F.S. and 
L.M.-C.) in MEDLINE/PubMed and the Web of Science (WoS) 
between the 10th and 13th of February 2022 of articles published 
between January 1, 2012, and December 31, 2021. The search included 
the terms: “Neural mobilization OR Neurodynamics OR Nerve 
Mobilization” AND “Rats [MeSH] OR Mice [MeSH] OR Rabbits 
[MeSH] OR Cats [MeSH] OR Guinea Pigs [MeSH].” The search was 
limited to articles published only in English and performed in 
non-human species (other animals).

2.2 Study selection

For the study selection, two independent review authors (F.S. and 
L.M.-C.) screened titles and abstracts of retrieved documents to 
exclude irrelevant studies. After the duplicates were eliminated, 

abstracts were reviewed to identify eligible trials; at this stage, the 
inclusion and exclusion criteria were applied, and the selection was 
performed. Discrepancies between reviewers were resolved 
by discussion.

Studies meeting the following PICO criteria were selected: (i) 
Participants: rats, mice, rabbits, cats or guinea pigs with a model 
of neuropathic pain, (ii) Interventions: nerve mobilisation 
technique performed manually by an experimenter, (iii) 
Comparators: healthy controls and/or sham-operated animals, 
different intensity and frequency of interventions and (iv) 
Outcomes: central and/or peripheral biomarkers, pain-behavioral 
or other outcomes. The manuscripts selected included preclinical 
animal interventional studies.

Articles were excluded if they performed medical, veterinary 
studies, human studies or “in vitro” and “ex vivo” studies. They were 
also excluded if any drugs, invasive techniques, therapeutic exercise 
as the only therapy, or any bandages as treatment were applied. 
Systematic reviews, case reports and descriptive studies were excluded 
too. At least one control group had to be included.

2.3 Data extraction

Two independent reviewers (F.S. and L.M.-C.) extracted data from 
the selected studies. A third author was consulted in case of 
uncertainty (SV). The following data were extracted: (1) Authors and 
publication year, (2) Type of neuropathic pain model, (3) Groups, (4) 
Animal species, (5) Information about the intervention, (6) Outcomes.

2.4 Risk of bias and quality assessment

SYRCLE tool was used to analyse the risk of bias in each study 
(SV). This tool is based on Cochrane’s Risk of Bias tool for randomised 
clinical trials (RoB Tool) (37). It contains 10 items related to 6 types of 
bias (selection, performance, detection, attrition, reporting and 
others). The items were labelled as “yes” if they were free of risk of bias 
and “no” if they were not. When information was not reported, the 
risk of bias could not be discarded, and authors labelled the entry as 
“unclear.”

The methodological quality of the selected studies was evaluated 
by two independent authors (F.S. and S.V.) with the ARRIVE tool (38), 
consisting of 21 items to assess the reliability of the animal studies; the 
items were reported as “yes” (information included in the manuscript), 
“no” (information not included in the manuscript) or “X” 
(not applicable).

3 Results

3.1 Selection of the studies

A total of 137 manuscripts were retrieved after the systematic 
search. After duplicate exclusion, 94 publications were assessed 
for eligibility. Of those, 85 were excluded because they did not 
meet the inclusion criteria. Finally, 8 articles were included in the 
systematic review. Figure  1 shows the flow diagram of the 
selection process.
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3.2 Study characteristics

Table 1 shows the methodological characteristics of the studies. 7 
articles performed preclinical studies of neuropathic pain in male 
Wistar and one in male Sprague–Dawley rats (39). 5 of them used a 
chronic constriction injury (CCI) model in the sciatic nerve. The CCI 
injury model was described by Bennet and Xie (40) and in brief, it 
consists of the exposure and ligation of the sciatic nerve (4 ligatures at 
a spacing of 1 mm) with a 4.0 chromic gut (41–45). In 2 studies (46, 
47) the median nerve compression (MNC) protocol described by 
Chen et al. (48), performing 4 ligatures around the median nerve, was 
used. Only in one study (39) diabetic neuropathy (DN) induced by 
streptozocin injection was developed in Sprague–Dawley rats.

All the studies included at least one control group. In those cases 
where the CCI injury was performed, a sham group (nerve exposure 
without compression) and a naive group were used as controls (41–
45). The MNC protocol without NM served as a control in the articles 
of Marcioli et al. (46, 47) and the diabetic neuropathy model included 
a sham (saline injection) and a naïve group (39). The sample size 
varied from 5 to 10 animals per group. A total of 192 animals were 
included in the studies.

Regarding the interventions, the NM protocol started 3 (46, 47, 49), 
10 (39) or 14 (41–45) days after the neuropathic induction and consisted 
of repeated oscillations of the scapular limb (46, 47) or the ankle joint 
(39, 41–45, 49). The mobilisations were performed in a wide range of 

time, from 1 or 3 min (46, 47) to 10 min (39, 41–45, 49) and the duration 
of the treatment lasted from 10 days (41–47, 49) to 3 weeks (39).

3.3 Risk of bias and reporting quality

All the selected articles were assessed for six different types of risks 
of bias using SYRCLE tool Table 2. When information was reported, 
most of the studies (41, 43–46, 49) were free of selection bias, whereas 
one (39) was not for showing differences between animal groups at the 
baseline. None of the studies reported information about allocation 
generation and concealment. Concerning performance bias, none of 
the studies reported random housing, so those whose dependent 
variables could be affected by light or room temperature (pain, mostly) 
were not considered free of performance bias (39, 41, 46, 49). However, 
the rest of the articles were not performance-biased (42–47). Similarly, 
although investigator blinding was not reported in any study, outcome 
assessment was considered free of detection bias in most cases (39, 41, 
42, 45–47, 49) since computer-based techniques were used. The 
attrition bias could not be studied since most of the studies did not 
report information about it, except for two studies (39, 41) which were 
not biased. Only one did show unexplained missing data and was 
considered likely to have attrition bias (45). When reported, all the 
articles but one (47) were free of reporting bias due to the use of 
thorough study protocols. Lastly, the authors considered 5 studies 

FIGURE 1

Flow Diagram PRISMA.
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bias-free for other reasons (39, 41, 42, 44, 45). Only 3 studies (43, 46, 
47) did show some concerns, mainly about study design or lack of data 
dispersion. In summary, most of the studies (41, 43–45, 47, 49) only 
showed one risk of bias, or two (39, 46) and (42) were free of any 
analysed bias when enough information was reported.

Table 3 summarises the reporting quality of the selected studies 
using the updated ARRIVE tool. In agreement with SYRCLE tool, there 
was a significant lack of information for several items (labelled as “no”). 
None of the studies reported information about allocation 
randomisation, investigators blinding or describing protocols to reduce 
suffering. Remarkably, experimental procedures were reported in all 
cases, providing detailed information about time, frequency and reasons 

for intervention. Moreover, in all cases, the background was enough and 
coherent, and the objectives and rationale were well scientifically 
explained. Also, animal handling and wellness are maintained across the 
studies as required in animal research to preserve their welfare and 
prevent or reduce their suffering during studies (ethics and husbandry).

3.4 Main outcomes and results

Table  4 shows the main results of the studies included in the 
review. Among the selected studies, only two performed NM on the 
upper limbs (46, 47) and the rest on the lower limbs (39, 41–45, 49).

TABLE 1 Methodological characteristics of the selected studies.

Author, year Neuropathic Pain 
model

Groups Animal sp. Treatment(s) Measurements

Santos et al. (2012)
NP

CCI

E1: (n = 6) CCI + NM

E2: (n = 6) CCI

S: (n = 6) Sham + NM

N: (n = 6)

Male Wistar Rats NM SN 2

NGF

GFAP

Mechanical Hyperalgesia

Mechanical Allodynia

Thermal Hyperalgesia

Marcioli et al. (2013)
NP

MNC

E1: (n = 6) MNC only

E2: (n = 6) 

MNC + 1 min NM

E3: (n = 6) 

MNC + 3 min NM

Male Wistar Rats NM MN

Mechanical Allodynia

Fibre diameter

Axon diameter

Myelin sheath diameter

Santos et al. (2014)
NP

CCI

E1: (n = 5) CCI + NM

E2: (n = 5) CCI

S1: (n = 5) Sham + NM

S2: (n = 5) Sham

N: (n = 5)

Male Wistar Rats NM SN 2

DOR

KOR

MOR

Sciatic Functional Index

Muscle Function

da Silva et al. (2015)
NP

CCI

E1: (n = 6) CCI + NM

E2: (n = 6) CCI

S: (n = 6) Sham + NM

N: (n = 6)

Male Wistar Rats NM SN 2

NGF

MPZ

Fibre diameter

Axon diameter

Myelin sheath diameter

Giardini et al. (2017)
NP

CCI

E1: (n = 5) CCI + NM

E2: (n = 5) CCI

N: (n = 5)

Male Wistar Rats NM SN 2

BDNF

GFAP

OX-42

Santos et al. (2018)
NP

CCI

E1: (n = 10) CCI + NM

E2: (n = 10) CCI

S1: (n = 10) Sham + 

NM

S2: (n = 10) Sham

N: (n = 10)

Male Wistar Rats NM SN 2

Substance P

TRPV1

DOR

KOR

MOR

Marcioli et al. (2018)
NP

MNC

E1: (n = 6) MNC only

E2: (n = 6) 

MNC + 1 min NM

E3: (n = 6) 

MNC + 3 min NM

Male Wistar Rats NM MN
NGF

BDNF

Zhu et al. (2018) DN

E: (n = 6)

S: (n = 6)

N: (n = 6)

Male Sprague–

Dawley
NM SN 2

TNFα

IL-1β

BDNF, Brain-derived neurotropic factor; CCI, Chronic Constriction Injury; DN, Diabetic Neuropathy; DO, δ-opioid receptor; E, Experimental; GFAP, Glial Fibrillary Acidic Protein; IL-1β, 
Interleukin 1 beta; KOR, κ-opioid receptor; MNC, Median Nerve Compression; MOR, μ-opioid receptor; MPZ, Myelin Protein Zero; N, Naive; NGF, Neural Growth Factor; NM, Neural 
Mobilization; OX-42, Microglial Cell OX-42; S, Sham; SFI, Sciatic Functional Index; TNFα, Tumor Necrosis Factor Alpha; TRPV1, Transient Receptor Potential Vanilloid 1.
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TABLE 2 Risks of bias analysis of the selected studies using the SYRCLE tool.

Selection bias Performance bias Detection bias Attrition bias Reporting 
bias

Other

Study 1. Sequence 
generation

2. Baseline 
characteristics

3. Allocation 
concealment

4. Random 
housing

5. Researchers 
or caregivers 
blinding

6. Random 
outcome 
assessment

7. Assessors 
blinding

8. Incomplete 
outcome 
reporting

9. Selective 
outcome 
reporting

10. Other 
sources 
of bias

Santos et al. 

(2012)

Unclear Yes Unclear No Unclear Unclear Yes Yes Yes Yes

Marcioli 

et al. (2013)

Unclear Yes Unclear No Unclear Unclear Yes Unclear Yes
No

Santos et al. 

(2014)

Unclear
Unclear

Unclear Yes Unclear Unclear Yes Unclear Yes
Yes

da Silva 

et al. (2015)

Unclear Yes Unclear Yes Unclear Unclear Unclear Unclear Yes
No

Giardini 

et al. (2017)

Unclear Yes Unclear Yes Unclear Unclear Unclear Unclear
No Yes

Santos et al. 

(2018)

Unclear Yes Unclear Yes Unclear Unclear Yes
No

Yes Yes

Marcioli 

et al. (2018)

Unclear
Unclear

Unclear Yes Unclear Unclear Yes
Unclear Unclear No

Zhu et al. 

(2018)

Unclear
No

Unclear
No

Unclear Unclear Yes
Yes

Yes Yes

Items are labelled “yes” when are free of risk of bias, “no” when they are not, and “unclear” when information was not reported, and risk of bias cannot be discarded.
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TABLE 3 Quality report of the selected studies using the updated ARRIVE tool.

1. Study 
design

2. Sample 
size

3. Inclusion and 
exclusion 
criteria

4. 
Randomisation

5. 
Blinding

6. 
Outcome 
measures

7. 
Statistical 
methods

8. 
Experimental 
animals

9. Experimental 
procedures

10. 
Results

1.a 1.b 2.a 2.b 3.a 3.b 3.c 4.a 4.b 5.a 6.a 6.b 7.a 7.b 8.a 8.b 9.a 9.b 9.c 9.d 10.a 10.b

Santos et al. (2012) Yes Yes Yes No No No Yes No No No Yes No No No Yes No Yes Yes Yes Yes Yes x

Marcioli et al. (2013) Yes Yes No No No No Yes No No No Yes No No Yes No No Yes Yes Yes Yes Yes x

Santos et al. (2014) Yes Yes No No No No Yes No No No Yes No Yes No Yes No Yes Yes Yes Yes Yes x

da Silva et al. (2015) Yes Yes No No No No Yes No No No Yes No Yes No Yes No Yes Yes Yes Yes No x

Giardini et al. (2017) Yes Yes No No No No Yes No No No Yes No Yes No Yes No Yes Yes Yes Yes Yes x

Santos et al. (2018) Yes Yes No No No No Yes No No No Yes No Yes No No No Yes Yes Yes Yes Yes x

Marcioli et al. (2018) No Yes No No No No Yes No No No Yes No Yes No Yes No Yes Yes Yes Yes Yes x

Zhu et al. (2018) Yes Yes Yes No Yes No Yes No No No Yes No Yes No No No Yes Yes Yes Yes Yes x

11. 
Abstract

12. 
Background

13. 
Objectives

14. Ethical 
statement

15. 
Housing 
and 
husbandry

16. Animal care 
and 
monitoring

17. 
Interpretation/ 
scientific 
implications

18. 
Generalisability/ 
translation

19. Protocol 
registration

20. 
Data 
access

21. 
Declaration 
of interests

11. a 12. a 12. b 13. a 14. a 15. a
16. 
a

16. 
b

16. 
c

17. a 17. b 18. a 19. a 20. a 21. a 21. b

Santos et al. (2012) Yes Yes Yes Yes Yes Yes No No No Yes No Yes No Yes Yes No

Marcioli et al. (2013) Yes Yes Yes Yes Yes Yes No No No Yes No Yes No Yes Yes No

Santos et al. (2014) Yes Yes Yes Yes Yes Yes No No No Yes No Yes No Yes Yes No

da Silva et al. (2015) Yes Yes Yes Yes Yes Yes No No No Yes No No No Yes Yes No

Giardini et al. (2017) yes yes no yes yes yes no no no yes no yes no yes yes no

Santos et al. (2018) Yes Yes Yes Yes Yes Yes No No No Yes No Yes No Yes Yes Yes

Marcioli et al. (2018) No Yes Yes Yes Yes Yes No No No Yes Yes No No Yes Yes No

Zhu et al. (2018) Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes No Yes Yes No

Items are labelled “yes” when requirements are met by the publication, “no” when they are not and “x” if question is not applicable to the study.
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The NM treatment induced changes in biomarkers at both central 
and peripheral levels when applied at least 10 days after the 
neuropathic pain induction protocol. Thus, in the CCI injury model, 
there was a decrease in Neural Growth Factor (NGF), Glial Fibrillary 
Acidic Protein (GFAP), substance P and Transient Receptor Potential 
Vanilloid 1 (TRPV1) and an increase of μ-opioid receptor (MOR) in 
dorsal root ganglion (39, 41, 45) after NM. In contrast, in the 
peripheral nerve, an increase of NGF and Myelin Protein Zero (MPZ) 
(43) and a decrease of Tumor Necrosis Factor Alpha (TNFα) and 
Interleukin 1 beta (IL-1β) (39) were shown. Others opioid receptors, 
DOR and KOR did not suffer changes in the dorsal root ganglion (45). 
Significant changes were found in the spinal cord, where there was a 
decrease in NGF levels (41) and periaqueductal grey and thalamus, 
showing an increase in opioid receptors DOR and KOR (42) and a 
decrease of Brain-derived neurotrophic factor (BNDF), GFAP and 
markers of Microglial Cell OX-42 (OX-42) levels (44). On the 
contrary, when the NM was applied only 3 days after the neuropathy 
induction, it did not change the peripheral nerve’s NGF and 
BDNF (47).

The same pattern was observed regarding pain-behavioral 
outcomes: both mechanical and thermal hyperalgesia and allodynia 
decreased when the nerve mobilisation was applied at least 10 days 
after the neuropathy induction (39, 41), but no differences with the 
control group were found in mechanical allodynia in the study of 
Marcioli et al. (46), where the mobilisation protocol started only 3 days 
after surgery.

The fibre diameter, axon diameter and myelin sheath diameter of 
the injured nerves were studied by Marcioli et al. (46), who did not 
find changes using the nerve mobilisation protocol applied 3 days after 
surgery, while da Silva et al. (43) found an increase in axon, sheath and 
myelin diameters when the NM protocol was applied 14 days after the 
CCI was performed.

4 Discussion

This review gathered information on the physiological effects of 
NM on the PNS and CNS. Our results show that there is medium to 

TABLE 4 Results of the selected studies.

Author Peripheral Biomarkers Central Biomarkers Pain-Behavioral Outcomes Others

Santos et al. (2012)

DRG

↓ NGF

↓ GFAP

SC

NGF: No differences

↓ GFAP

↓ from 2nd session:

Mechanical Hyperalgesia

Mechanical Allodynia

Thermal Hyperalgesia

─

Marcioli et al. (2013) _ _ Mechanical Allodynia: No differences

No differences:

Fibre diameter

Axon diameter

Myelin sheath diameter

Santos et al. (2014) _

PAG

↑ DOR

↑ KOR

MOR: No differences

─
↑ SFI

↑ Muscle Function

da Silva et al. (2015)

Nerve

↑ NGF

↑ MPZ

_ ─

↑ Fibre diameter

↑Axon diameter

↑ Myelin sheath diameter

Giardini et al. (2017) _

Thalamus and PAG

↓ BDNF

↓ GFAP

↓ OX-42

─ ─

Santos et al. (2018)

DRG

↓Substance P

↓TRPV1

↑ MOR

DOR: No differences

KOR: No differences

_ ─ ─

Marcioli et al. (2018)

Nerve

NGF: No differences

BDNF: No differences

_ ─ ─

Zhu et al. (2018)

Nerve

↓ TNFα

↓ IL-1β

_ ↓ Mechanical Allodynia ─

BDNF, Brain-derived neurotropic factor; DOR, δ-opioid receptor; DRG, Dorsal Root Ganglion; GFAP, Glial Fibrillary Acidic Protein; IL-1β, Interleukin 1 beta; KOR, κ-opioid receptor; MOR, 
μ-opioid receptor; MPZ, Myelin Protein Zero; NGF, Neural Growth Factor; OX-42, Microglial Cell OX-42; PAG, Periaqueductal Gray; SC, Spinal Cord; SFI, Sciatic Functional Index; TNFα, 
Tumor Necrosis Factor Alpha; TRPV1, Transient Receptor Potential Vanilloid 1.
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high evidence, considering that all studies were RCTs, but it has not 
been possible to perform a meta-analysis of the results.

Concerning bias and quality of studies, none of the studies 
provided information about allocation concealment and researchers’ 
blinding. Implementation of tools preventing the risk of bias.

According to the results of this systematic review, inflammation 
decreases when NM is applied 10 days after CCI, as shown by the 
reduction of most inflammatory molecules. GFAP is a marker of 
activated satellite glial cells in PNS, which increases after CCI and 
nerve ligation in rodents (50, 51). Substance P, IL-1β and TRPV1 also 
contribute to inflammatory responses related to rodent neuropathic 
pain (52–55). NGF appears to mediate chronic neuropathic pain and 
increases after CCI in rodents (56). However, its levels are reduced 
after NM only in the DRG and spinal cord, whereas the peripheral 
nerve remains unchanged.

Moreover, the increase in MPZ may be related to Schwann cell 
regeneration, nerve recovery, and remyelination. An increase in opioid 
receptors has been linked to higher tolerance to pain (57). Thus, the 
increase of MOR in the PNS observed after NM, along with the 
reduction of the inflammatory mediators listed above, may contribute 
to the analgesic effects of NM reported in the studies of this systematic 
review. These effects have not been found if NM was performed only 
3 days after surgery, probably because the effects are not the same if it 
is an acute pathology phase.

Animal models of neuropathic pain have limitations, and their 
translation to humans is complex. However, it is well described how 
nerve damage-induced release of inflammatory mediators sensitises 
and activates nociceptors and contributes to chronic pain (58). 
Therefore, we hypothesized that the NM induces analgesia observed 
in patients (2–16), which may be  mediated by the reduction of 
inflammatory mediators by glial cells and the activation of the 
opioid system.

The information found in this study agrees with a recent review 
of the effects of other physical therapy techniques on biomarkers 
related to neuropathic pain (59). The authors conclude that most 
physiotherapeutic interventions modulate the expression of molecular 
mediators of pain.

Finally, although NM has been shown to cause changes in the 
muscular system in humans (3, 12, 15, 22), no studies in animal 
models have examined the physiological mechanisms involved. This 
could be an area of research for future studies.

5 Conclusion

We conclude that NM changes the peripheral and central nervous 
systems of animal models. The physiological changes studied are 
related to pain modulation and include the endogenous opioid 
analgesic system at both the central and peripheral levels and 
inflammatory modulators at the central and peripheral levels. Another 
system involved in both the PNS and CNS is the immune system, 
which relates to and modulates the other two systems, analgesic and 
inflammatory. We  suggest further investigation and focus on 
improving the quality of the studies following the ARRIVE criteria 
and finding if more systems are involved in the changes in muscles 
and other structures.

6 Limitations

There are some limitations to be considered when reading this 
study. First, we included only studies in English. Regarding the quality 
of the studies, none described the randomization of groups, blinding 
of investigators, or protocols to reduce animal suffering. Another 
significant limitation was that we could not perform a meta-analysis 
because the articles did not study the same outcomes. Finally, more 
research is needed to transfer the effects studied in these animal trials 
to humans.
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