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Iron physiology is regulated by a complex interplay of extracellular transport 
systems, coordinated transcriptional responses, and iron efflux mechanisms. 
Dysregulation of iron metabolism can result in defects in myelination, 
neurotransmitter synthesis, and neuronal maturation. In neonates, germinal 
matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result 
of blood breakdown in the ventricles and brain parenchyma which can lead to 
post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by 
which GMH-IVH results in PHH remain elusive. Understanding the molecular 
determinants of iron homeostasis in the developing brain may lead to improved 
therapies. This manuscript reviews the various roles iron has in brain development, 
characterizes our understanding of iron transport in the developing brain, and 
describes potential mechanisms by which iron overload may cause PHH and brain 
injury. We also review novel preclinical treatments for IVH that specifically target 
iron. Understanding iron handling within the brain and central nervous system 
may provide a basis for preventative, targeted treatments for iron-mediated 
pathogenesis of GMH-IVH and PHH.
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Introduction

Iron homeostasis is critical to a variety of neurodevelopmental processes. Iron deficiency 
has been linked to impaired myelination (1, 2), altered monoamine neurotransmitter synthesis 
(2), and reduced hippocampal neuronal metabolism (3) in neonatal rats. Conversely, brain iron 
overload can also be deleterious (4–10). Therefore, understanding the homeostatic mechanisms 
that maintain the delicate brain iron balance is important to better understand how we can 
preserve the neuronal developmental environment after peri- and neonatal iron-related 
pathology in the central nervous system.
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In preterm infants, brain iron homeostasis can be dramatically 
disrupted by germinal matrix hemorrhage-intraventricular hemorrhage 
(GMH-IVH) when bleeding from the immature, fragile vascular 
network of the germinal matrix releases red blood cells (RBCs) which 
subsequently lyse and release the blood breakdown products iron, 
hemoglobin, and bilirubin into the germinal matrix (Grade I), ventricles 
of the brain (Grades II, III), and brain parenchyma (Grade IV). 
Prognosis and mortality after GMH-IVH are related to the extent of 
hemorrhage, with higher grades of GMH-IVH associated with the worst 
neurodevelopmental outcomes (11, 12). In addition, 30% of infants with 
high grade (Grades III and IV) GMH-IVH develop post-hemorrhagic 
hydrocephalus (PHH) (13), a progressive dilation of the cerebral 
ventricles that results in secondary brain injury and for which definitive 
surgical management is difficult in preterm neonates (14).

While the mechanisms of PHH and other neurological sequelae after 
GMH-IVH are not clear, the cytotoxic effects of free iron for inducing 
DNA damage and disrupting oxidative processes are well documented 
(15), and clinical studies have shown a higher proportion of infants with 
PHH to have CSF free iron after GMH-IVH compared to control 
subjects (16). Unbound iron can participate in the Fenton reaction, in 
which Fe2+ can be oxidized by hydrogen peroxide to form hydroxyl free 
radicals and Fe3+ (17, 18). These free radicals can subsequently oxidize 
numerous cellular targets, causing significant damage and cell death. 
However, how free iron is directly linked to the pathogenesis of PHH and 
other devastating neurological sequelae after high grade (Grades III-IV) 
IVH has not been fully elucidated.

Complicating efforts to understand and target iron overload-
mediated brain injury following GMH-IVH, iron processing in the 
developing brain is not as well-understood as it is in the adult brain. 
Until recently, the primary cellular brain iron transporters reported in 
the neonatal brain were divalent metal transporter 1 (DMT1), 
transferrin receptor (TFR), and ferritin, iron transporters that are also 
involved in iron handling in other epithelial tissues like the intestine. 
Recent clinical studies have underscored the role of extracellular iron 
pathway proteins such as transferrin, ceruloplasmin, haptoglobin, and 
hemopexin that may have a role in CSF iron clearance after IVH (19, 
20). Nevertheless, the number of cellular iron transporters characterized 
in the neonatal brain is small by comparison to the number of iron 
handling proteins described in adult brain and neonatal peripheral 
tissues. This qualitative review summarizes our current understanding 
of iron transport and homeostasis in the brain, as well as the 
developmental time course of iron pathway protein expression. We also 
review the role these proteins may have in mediating iron and blood 
breakdown product clearance after neonatal GMH-IVH.

Brain iron transport and homeostasis

Iron exists in several different stable states within the human body. 
The availability of iron in different oxidative states makes it a prime 
player in intracellular metabolic processes essential to life. In the 
plasma, circulating iron is primarily bound to the iron binding protein 
transferrin in the form of Fe3+ (ferric) iron (21). Low (<1 μM) 
concentrations of non-transferrin bound iron (NTBI) can also 
be present in the plasma in either Fe2+ (ferrous) or ferric states bound 
to small organic molecules like citrate (22, 23). Within hemoglobin or 
myoglobin molecules, iron is much less accessible. In these heme-
bound states, ferrous iron is contained within the center of 

protoporphyrin IX scaffolds (24). Once inside a cell, ferrous iron 
represents the labile and active pool of iron that is readily used in 
biological processes, whereas ferric iron is usually stored complexed to 
the iron-storage protein ferritin (25). Mitochondrial ferritin (FtMt) is 
one of three ferritins that are encoded separately by the human body 
(the other two are the cytosolic L and H subunits) and is primarily 
found in the mitochondria of metabolically active organs like the brain 
and testis (26, 27). Mitochondria require iron to support the biogenesis 
of iron–sulfur clusters and heme synthesis (28–30), however close 
regulation of mitochondrial iron levels is needed to protect the 
mitochondria from iron-mediated oxidative damage. FtMt is believed 
to play a role in maintaining this mitochondrial iron homeostasis (31). 
In addition to ferritin, cellular iron can also be stored in complex with 
hemosiderin, but the iron in hemosiderin is not as readily available for 
use. Excess hemosiderin deposits form after hemorrhage and are 
thought to result from hemoglobin phagocytosis and subsequent heme 
breakdown into iron and biliverdin (12).

It is important to note that the majority of our understanding of 
brain iron metabolism is derived from experiments conducted in 
adult animals. As many of the following cellular iron transport 
proteins and mechanisms remain largely under characterized in the 
neonatal brain, and the developmental timelines of the expression of 
major iron handling proteins in the brain are still not known, it will 
be  crucial to verify these models of brain iron transport and 
homeostasis in fetal and neonatal animals to advance our 
understanding of iron-related pathology in the neonatal time period.

Systemic iron absorption and metabolism

The total amount of iron in the body is primarily determined by 
dietary intake and uptake from the gut (32, 33). Enterocytes, epithelial 
cells that line the lumen of the intestines, mediate dietary iron 
absorption in the duodenum and proximal jejunum of the small 
intestine (34). Non-heme dietary iron exists predominantly in its ferric 
form and must be reduced to its ferrous form by the ferrireductase 
duodenal cytochrome B on the apical brush border of enterocytes 
before it can be absorbed (35). Other ferrireductases may also play a 
role in converting ferric to ferrous iron (36). Ferrous iron enters the 
enterocyte via DMT1 expressed on the apical membrane of enterocytes 
and leaves the enterocyte via ferroportin 1 (FPN1) expressed on the 
basolateral surface (37, 38). Exported iron is oxidized to its ferric form 
via a ferroxidase and complexes with a protein (ie. transferrin) or iron-
binding small molecule (ie. citrate) to enter the plasma (35, 39).

When the body’s iron stores are sufficient, the liver peptide 
hormone hepcidin can inhibit iron export from the enterocyte by 
binding to and causing FPN1 internalization (25). This prevents 
additional iron entry into the plasma and drives intracellular storage 
of iron as ferritin (25). Ferritin within the enterocyte that is not used 
is excreted when enterocytes are sloughed off the intestinal mucosa at 
the end of their approximately 3-day lifespan (25).

Brain iron import across the blood brain 
barrier

Under physiological conditions, iron is transported into the brain 
from the circulation through a series of highly regulated and coordinated 
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steps. Early models of iron transport into the brain proposed that iron-
bound transferrin can bind to luminal TfR on microvascular endothelial 
cells of the capillaries and choroid plexus (ChP) that comprise the blood 
brain barrier (BBB) before being endocytosed and released into the brain 
extracellular space (i.e., transcytosis) (40–43). In more recent models of 
receptor mediated endocytosis brought on in part by the identification of 
DMT1 on brain capillary endothelial cells (BCECs) that form the BBB, 
endothelial cell iron release is thought to be  more nuanced, with 
endocytosed transferrin dissociating into ferric iron and apotransferrin 
in the acidified endosome (44). Ferric iron is reduced to ferrous (Fe2+) 
iron, which is then transported into the cytoplasm of the endothelial cell 
via DMT1, where it can either be stored intracellularly with ferritin or 
exported into the interstitial fluid via FPN1 when ferritin is saturated. The 
ferroxidase ceruloplasmin oxidizes Fe2+ back to Fe3+ (45), which 
recombines with apotransferrin to re-form transferrin in the interstitium 
where it can be taken up by glia and neurons. Transferrin-independent 
mechanisms of iron import into the brain may also exist, including but 
not limited to putative NTBI import via ferritin receptors (46, 47), 
however these mechanisms are not well-characterized.

Neuronal and glial iron uptake and homeostasis
Iron is present in neurons, astrocytes, microglia, and 

oligodendrocytes where it plays essential roles in cell respiration, 
neurotransmitter synthesis, myelination, DNA synthesis, and other 
cellular processes (1, 48–56). Studies in adult mice and rats have 
revealed several mechanisms by which these cells may take up iron 
from the interstitial fluid. Adult neurons, which express Tfr, can obtain 
iron from transferrin (57). In vitro studies have shown neurons also 
express ferrous iron transporters zinc regulated transporter and iron 
regulated transporter like protein 8 (Zip8) and Dmt1 at the cell surface 
to mediate NTBI uptake (57). Similarly, oligodendrocytes in the adult 
mouse brain express Tfr, and in vitro express the ferritin receptor 
T-cell immunoglobulin mucin domain 2 (Tim-2) to facilitate NTBI 
iron uptake via ferritin (48, 49). In vitro, microglia and astrocytes 
express Tfr and Dmt1 at the cell surface to facilitate iron uptake via 
transferrin and NTBI, respectively (58–60). There is comparatively less 
evidence for Tfr and Dmt1 expression on glia in vivo (61). Fpn1 has 
been detected in neurons and glia, but its expression varies by age and 
region (62–66).

Role of hepcidin in brain iron homeostasis

In non-inflammatory conditions, hepcidin reduces brain iron 
load by inducing endothelial cell Fpn1 internalization and degradation 
when interstitial Fe2+ levels rise (67–70). Hepcidin upregulation in 
inflammation can cause deleterious effects due to its role in inducing 
Fpn1 internalization in neurons and glia, which in turn increases 
intracellular iron levels (71). Therefore, regulation of hepcidin is an 
important and potentially targetable axis of iron homeostasis. It is 
known that systemic hepcidin produced from the liver can cross the 
BBB to enter the brain (72), and that increases in brain and systemic 
hepcidin after hemorrhagic or ischemic parenchymal brain injury lead 
to increased iron in the brain (72, 73). However, studies in adult 
rodents have shown that brain iron metabolism is not drastically 
altered in mouse models in which liver hepcidin production is 
knocked out (72), suggesting there are additional brain-specific 
hepcidin regulation pathways.

In vivo studies in adult rats and mice and in vitro studies in rat and 
human cells have shown that the expression of hepcidin in the brain 
is controlled through several mechanisms including the interleukin-6/
janus kinase 2/signal transducer and activator of transcription 3 (IL-6/
JAK2/STAT3), bone morphogenic protein/s-mothers against 
decapentaplegic (BMP/SMAD), and CCAT enhancer binding (C/
EBP) homologous protein (CHOP) pathways (70, 74–80). As a 
potential mechanism for the neurotoxic effects of hepcidin 
overexpression in inflammation, it is known that lipopolysaccharide 
(LPS) released during inflammation stimulates Toll-like receptor 4 
(TLR4), a signaling pathway which (1) has previously been shown to 
underlie ChP-CSF interface inflammation in both post-infectious 
hydrocephalus and PHH (81), and (2) induces the production and 
release of critical cytokines like interleukin-6 (IL-6) (82, 83). IL-6 can 
upregulate hepcidin expression in the brain via the JAK2/STAT3 
pathway (76, 77). The BMP/SMAD pathway has similar effects that are 
specific to hepcidin upregulation in microglia (76), and the CHOP 
pathway has been shown to play a role in pathology after subarachnoid 
hemorrhage (SAH) in adult rodents via its effect of upregulating 
hepcidin expression in neurons (84), thereby preventing iron export 
out of neurons, increasing neuronal iron content, and inducing 
apoptosis. Acute increases in brain iron load can also induce hepcidin 
upregulation (70).

Post-transcriptional coordination of brain 
iron homeostasis

In addition to the bidirectional effects of hepcidin regulation on 
iron load in the brain, the iron-responsive element (IRE) signaling 
pathway and cytoplasmic iron regulatory proteins (IRP-1 and IRP-2) 
play a major role in maintaining brain iron homeostasis at the post-
transcriptional level. IRP-1 and IRP-2 are iron and mRNA-binding 
proteins which can bind to IREs, relatively short and conserved 
hairpin-loops in the 3′ or 5′ untranslated region (UTR) of IRP target 
mRNA molecules (85–89). IRP-1 has additional functionality as a 
cytoplasmic aconitase in iron-rich conditions. Depending on where 
in the target mRNA the IRE is localized (90, 91), IRP binding can (1) 
block ribosome binding, translation, and synthesis of key iron pathway 
proteins including ferritin and Fpn1 (86, 92–97), or (2) stabilize the 
mRNA to increase the synthesis of iron pathway proteins like Tfr and 
Dmt1 (87, 98). Iron binding to IRPs decreases their affinity for IREs 
and induces their dissociation from mRNA molecules (87, 88, 99), 
offering a mechanism to control iron pathway protein synthesis that 
is responsive to iron levels in the brain.

Disruptions in the homeostatic 
balance of brain iron after GMH-IVH

Hemorrhage in neonatal IVH most commonly originates from the 
immature blood vessels of the germinal matrix and is associated with 
significant morbidity and mortality in preterm infants (100). RBC lysis in 
the CSF after IVH releases blood breakdown products including bilirubin, 
hemoglobin, and unbound ferrous iron, the latter of which can 
be oxidized in the Fenton reaction to form cytotoxic hydroxyl free radicals 
and ferric iron (12). While iron homeostasis mechanisms keep free iron 
levels under control in physiologic conditions, IVH may release amounts 
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of hemoglobin and free iron that overwhelm iron handling and clearance 
systems in the brain.

Free iron in the CSF may be particularly deleterious due to its 
free access to the ependymal cells that line the surfaces of the 
ventricles and the CSF-producing cells of the ChP (81), in addition 
to its proximity to the cells that make up neurodevelopmentally-
important periventricular structures including the subventricular 
zone, white matter, and hippocampus (Figure 1). This may make 
these cells particularly susceptible to iron uptake and overload. In 
fact, previous research from Strahle et al. reported subventricular 
zone iron overload after IVH (101), and Garton et al. demonstrated 
iron-mediated cell death in hippocampal neurons in a rodent IVH 
model (102). This was consistent with studies conducted in humans 
showing perinatal brain injury is associated with smaller hippocampal 
size in preterm infants (103).

Other studies have shown intracellular iron accumulation within 
perihematomal neurons and glia after GMH in rodents (104); ependymal 
and subependymal hemosiderin deposition, ferritin expression, and iron 
accumulation after IVH (105, 106); as well as hemosiderin deposition, 
ependymal cell death, and subependymal damage in human neonates 
with IVH-PHH (107). It is also possible that free iron and hemoglobin 
released into the ventricles after IVH may be  transported to distant 
intraparenchymal regions via the CSF (108), as intraventricular 
radioactive iron has been shown to distribute to distant anatomic areas of 
the brain parenchyma in neonatal rats (109).

Iron transporters, scavengers, and 
related proteins in the neonatal brain

Recent studies have highlighted the role that the iron handling 
proteins/scavengers haptoglobin, hemopexin, and ceruloplasmin play 
in blood and blood breakdown product clearance in the neonatal 
brain after IVH (19, 20). In this section, we review the developmental 
time course of iron handling protein expression in the fetal and 
neonatal brain parenchyma and CSF (Supplementary Table  1). 
We start with extracellular iron transporters and scavengers in the 
serum including transferrin, haptoglobin, hemopexin, and 
ceruloplasmin. We then discuss the expression and localization of the 
cellular iron transporters ferritin, TFR, DMT1, FPN1, low-density 
lipoprotein receptor-related protein 1 (LRP1), CD163, and the heme 
oxygenases. We also discuss proteins that play other key roles in 
neonatal brain homeostasis, including hepcidin, the IRPs, and 
amyloid precursor protein (APP). Understanding the molecular 
mechanisms that mediate iron transport and metabolism in the 
neonatal brain is necessary to advance our understanding of 
pathologic iron overload after IVH that leads to inflammation, PHH, 
and other forms of immediate and delayed injury to the brain.

Extracellular iron transporters and 
scavengers that have been identified in the 
neonatal brain

Transferrin
Transferrin is a glycoprotein that binds to and transports ferric 

iron through the circulation prior to intracellular delivery. 
Transferrin is primarily produced by liver hepatocytes, and 

transferrin-mediated delivery of iron accounts for the majority of 
iron transport into the brain from the circulation (110, 111). 
However, the observed rate of iron import into the brain is 
significantly higher than the rate of transferrin import across the 
developing BBB (112–114), suggesting there are additional brain 
endogenous transferrin production mechanisms.

Specifically, transferrin found in the interstitial fluid is produced 
by oligodendrocytes and the ChP of the lateral and third ventricles 
(115–118). Endogenous transferrin functions to rapidly bind imported 
ferric iron ions to mediate delivery to neurons and other cell types. 
Transferrin has also been shown to play role in oligodendrocyte 
maturation and enhancing myelinogenesis (119, 120). β-2 transferrin 
is a desialylated isoform of transferrin synthesized in the brain that is 
found in the CSF and perilymph only (121).

Developmental time course of transferrin expression in 
the brain

Brain transferrin levels peak at birth before declining over the first 
2–3 postnatal weeks, stabilizing at postnatal day 24 (122–129), and 
remaining constant throughout the rest of life (113). This decline in 
mouse and rat brain transferrin levels is region-specific, with a faster 
rate of decline in the cortex and hindbrain compared to the midbrain 
(113). In contrast to other cell types, BCEC transferrin expression 
remains high throughout development (127).

In addition to parenchymal brain transferrin, there is 
transferrin in fetal rat CSF (130), with a three-fold increase in CSF 
transferrin from 12 days gestation to 22 days (birth) followed by a 
significant decrease by postnatal day 10 (130). CSF transferrin has 
also been detected in human fetuses (131). Transferrin is 
transported via the CSF to periventricular structures including the 
medial habenular nucleus, mamillary bodies, interpeduncular 
nucleus, and brainstem after intraventricular injection into the 
lateral ventricles of neonatal postnatal day 7 rats (109). The exact 
role of CSF transferrin in the neonatal brain is not well understood, 
but it may have a role in transporting iron throughout the 
developing brain via the CSF.

Transferrin after neonatal GMH-IVH
Mahaney et al. previously demonstrated in humans that there are 

no significant differences in CSF transferrin levels after low- and high-
grade IVH compared to neonates without IVH (19). However, when 
Strahle et al. followed CSF iron pathway protein levels over time in a 
separate study, there was an association between longitudinal increases 
in ventricular CSF transferrin levels after neonatal IVH-PHH and 
improved cognitive outcomes at 2 years of age (20). Because CSF 
transferrin is typically fully saturated with ferric iron in physiologic 
conditions, the blood breakdown products and iron released into the 
CSF after IVH may overwhelm the iron-binding capabilities of 
endogenous transferrin. This may lead to high levels of free iron 
within the ventricular system and subsequent damage to 
periventricular structures like the hippocampus and white matter (16, 
102, 103). Increases in CSF transferrin may thus represent an adaptive 
physiological mechanism that protects against further injury, however 
this warrants further investigation.

Haptoglobin
The hemoglobin-binding scavenger haptoglobin plays an 

important role in mediating iron recycling and clearance, preventing 
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oxidative damage by sequestering hemoglobin, and facilitating other 
anti-inflammatory activities in both physiologic and pathologic 
conditions. Haptoglobin is primarily produced by liver hepatocytes as 
an approximately 85 kDa multimeric protein with two H chains which 
can each bind an alpha beta dimer of free extracellular hemoglobin to 
prevent autoxidation and oxidative tissue damage (132). The 
haptoglobin-hemoglobin complex is irreversibly stable and is cleared 
by CD163 receptor-mediated endocytosis followed by intracellular 
degradation in a variety of cells including macrophages, monocytes, 
and microglia (133–139). Recent studies in rodents have reported 
CD163 is upregulated on hippocampal neurons after intracranial 
hemorrhage (ICH) (140, 141). CSF haptoglobin has also been 
previously characterized in human neonates (142).

Developmental time course of haptoglobin expression in 
the brain

Haptoglobin is present in low quantities in human serum at birth 
before increasing to adult levels over the first year of life (143, 144). 
Low levels of haptoglobin synthesis have been identified in the human 
brain at various stages of fetal development, with the highest 
haptoglobin expression identified in neurons at 6–8 weeks’ gestation 

(145). These levels decrease to variable levels of expression at 
9–22 weeks’ gestation before rising again at 25–36 weeks’ gestation 
(145). Compared to neurons, there is less haptoglobin expression 
within endothelial cells, with variable levels of haptoglobin from 6 to 
10  weeks’ gestation that decrease to no expression after 14 weeks’ 
gestation (145). No haptoglobin was identified in glia at any fetal 
timepoints evaluated in this study (145).

In a separate study of human fetal brains from 10 to 18 weeks’ 
gestation, haptoglobin mRNA was not present in brain tissue until 
14–18 weeks’ gestation (146). Qualitatively, the authors reported the 
highest immunopositivity for haptoglobin mRNA at the last timepoint 
studied (18 weeks) (146). Haptoglobin mRNA levels at postnatal 
timepoints were lower than those observed during fetal development 
with regional differences across the basal ganglia, hypothalamus, and 
cortex (146).

Haptoglobin after neonatal GMH-IVH
The role of haptoglobin in the context of hemoglobin scavenging 

after neonatal IVH is still being elucidated. In vivo studies in rabbits 
have demonstrated that intraventricular injection of haptoglobin 
attenuates hemoglobin-induced inflammation, cytotoxicity, and 

FIGURE 1

Blood breakdown product release into the CSF after intraventricular extension of germinal matrix hemorrhage. Bleeding from the ruptured immature 
blood vessels (BV) of the germinal matrix (GM) results in red blood cell (RBC) release into the GM and lateral ventricle (LV) and subsequent lysis to 
release blood breakdown products including hemoglobin, ferritin, bilirubin, and iron into the CSF. CSF hemoglobin and ferritin (asterisks in top panels) 
are elevated in the setting of post-hemorrhagic hydrocephalus. Subsequent ependymal and choroid plexus uptake of blood breakdown products from 
the CSF may lead to toxic iron and heme overload (top panel). RBC lysis in the LVs can release free hemoglobin into the CSF, which may undergo 
cytotoxic autoxidation in the presence of H2O2 and/or NO and release free heme/hemin into the CSF (bottom panel). Hemoglobin may also be bound 
and stabilized by the scavenger haptoglobin for cellular uptake and subsequent degradation into heme and Fe2+ ions leading to overload in the setting 
of GMH-IVH (bottom panel).
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structural damage (147). In vitro experiments incubating ChP cells 
from human neonates with IVH in haptoglobin recapitulate these 
results (147).

Mahaney et al. previously reported that there are no significant 
differences in CSF haptoglobin levels between human neonates with 
and without IVH (all grades) or PHH (19). In conjunction with a 
study showing haptoglobin expression in the cord blood of premature 
neonates in response to inflammation is associated with decreased risk 
of IVH and cerebral palsy (143), these results may suggest that 
haptoglobin-mediated hemoglobin scavenging mechanisms are 
exhausted after IVH and that upregulating brain haptoglobin may be a 
potential target to explore to prevent hemoglobin-mediated 
neurotoxicity (143). Alternatively, elevated haptoglobin may allow for 
increased haptoglobin-hemoglobin complex formation and 
subsequent internalization and degradation into heme and iron in 
CD163-expressing brain cells, leading to iron overload.

Hemopexin
Hemopexin is primarily produced by the liver and then released 

into the plasma. Analogous to haptoglobin binding of hemoglobin, 
hemopexin scavenges and binds to heme, a molecule composed of a 
ferrous iron ion coordinated to a porphyrin ring. Also known as Fe2+ 
protoporphyrin IX, heme is a precursor to hemoglobin and comprises 
the non-protein component of hemoglobin. Hemopexin-bound heme 
is an important co-factor involved in a variety of physiological 
processes in the brain including neuronal differentiation, growth, and 
survival (148–152).

Like most iron-containing compounds, heme can also have 
potentially deleterious effects on surrounding tissues when not bound 
to hemopexin or other hemoproteins. Free heme can be released from 
unbound, oxidized hemoglobin in times of haptoglobin saturation and 
subsequently participate in Fenton reactions. Hemopexin plays a role 
in blocking heme’s pro-oxidative activity and facilitating cellular heme 
uptake via CD91/LRP1 (153).

Developmental time course of hemopexin expression in 
the brain

There have been several reports of hemopexin synthesis in 
neurons and ependyma in the adult human and mouse brain (154–
157), however the developmental time-course of hemopexin 
expression patterns in the parenchyma of the neonatal and postnatal 
brain is not well-defined. In the human fetal brain, hemopexin protein 
is expressed in neurons from 6 to 36 weeks’ gestation (145). 
Hemopexin mRNA has not been identified in the human fetal brain 
from 10 to 18 weeks’ gestation (146).

Hemopexin after neonatal GMH-IVH
Hemopexin has been identified in the neonatal and adult 

human CSF in physiologic and pathologic states including 
Alzheimer’s disease (158), diffuse large B cell lymphoma (159), 
degenerative disk disease (160), SAH, and IVH (19, 161). Mahaney 
et  al. previously reported CSF hemopexin is not elevated after 
IVH-PHH in human neonates, and CSF hemopexin levels are 
positively correlated with ceruloplasmin and transferrin levels 
after IVH-PHH (19). In a separate study in human neonates, 
Strahle et  al. also reported CSF hemopexin is the only iron 
scavenger that increased between temporary and permanent CSF 

diversion, and that ventricle size after IVH was inversely correlated 
with CSF hemopexin levels (20). In the context of previous studies 
showing the induction of hemopexin expression improves 
outcomes after ICH in mice (162), and elevated CSF hemopexin is 
predictive of poor neurological outcomes after SAH in adult 
humans (163), understanding the role of hemopexin in heme 
scavenging after IVH represents a pertinent potential therapeutic 
and diagnostic direction.

Ceruloplasmin
Ceruloplasmin is a ferroxidase that oxidizes ferrous iron ions to 

their ferric form, which is then bound by transferrin. Within the 
brain, ceruloplasmin is thought to play a critical role in facilitating 
both cellular iron export (via FPN1) and import to maintain iron 
homeostasis (164–170). Because ceruloplasmin produced in the liver 
cannot cross the BBB in significant quantities (171), cells in the adult 
and neonatal brain, ChP, and retina produce an alternatively spliced 
form of glycosylphosphatidylinositol (GPI)-anchored ceruloplasmin 
which comprises the majority of brain endogenous ceruloplasmin 
(172–174).

Developmental time course of ceruloplasmin expression 
in the brain

In 1988, Møllgård et al. reported ceruloplasmin mRNA expression in 
the human fetal brain from 14 to 36 weeks’ gestation (145). The protein 
was identified in neurons starting at 14–18 weeks’ gestation all the way 
through 36 weeks’ gestation (145). Weak ceruloplasmin expression was 
also reported in glia from 14 to 22 weeks’ gestation (145).

A more recent study of ceruloplasmin expression in the fetal 
mouse brain reported GPI-anchored ceruloplasmin protein appeared 
at embryonic day 12.5 (175), while diffusible ceruloplasmin (defined 
as ceruloplasmin secreted from the liver and/or released by the GPI 
anchor) was not detected until embryonic day 17.5 (175). 
GPI-anchored and diffusible ceruloplasmin levels increased from the 
time they were initially detected until postnatal day 1, before 
plateauing at postnatal day 7 and then subsequently decreasing (175). 
GPI-anchored ceruloplasmin expression on the surface of astrocytes 
has separately been reported in postnatal day 3 rats (174), however the 
timeline of postnatal cell-specific and regional expression patterns is 
not otherwise well-defined.

While low in concentration relative to serum levels, ceruloplasmin 
has also been reported in fetal and neonatal CSF in humans 
(6.57 ± 3.53 μg/mL in CSF vs. 20–130 μg/mL in serum) (19, 171, 176). 
No significant differences in CSF ceruloplasmin concentration over 
the course of gestation were identified, however sex differences in CSF 
ceruloplasmin were identified with male fetuses having higher CSF 
ceruloplasmin concentration than females (171).

Ceruloplasmin after neonatal GMH-IVH
Mahaney et al. previously reported no significant differences in 

CSF ceruloplasmin in humans after neonatal IVH-PHH when 
compared to control neonates (19), however there were correlations in 
CSF ceruloplasmin with CSF transferrin and hemopexin. Strahle et al. 
also reported no significant changes in CSF ceruloplasmin between 
temporary and permanent CSF diversion in human infants with PHH 
(20). The role of ceruloplasmin and other ferroxidases in brain iron 
metabolism throughout development merits further investigation.
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Membrane iron transporters and 
scavengers that have been identified in the 
neonatal brain

Transferrin receptor
Expressed on the apical cell surface, the dimeric transmembrane 

glycoprotein TFR mediates cellular uptake of ferric iron by binding to 
its ligand, transferrin, in a pH-dependent and reversible manner 
(177). The transferrin-TFR complex is internalized by receptor-
mediated endocytosis, and subsequent acidification of the endosome 
causes transferrin to release its ferric iron for transport into the cytosol 
of the cell (61). Apotransferrin has a high affinity for TFR at low pHs, 
and they are together recycled back to the plasma membrane 
via exocytosis.

Developmental time course of transferrin receptor 
expression in the brain

To facilitate peripheral transferrin-mediated brain iron import, 
developing BCEC in mice express Tfr from the time they differentiate 
(178), with the peak in Tfr expression on rat BCECs occurring around 
postnatal week 2 between postnatal day 10 and postnatal day 21 (179). 
This coincides with the increase in iron import into the rat brain 
during the first two postnatal weeks in addition to rapid brain 
development and growth (180). Tfr expression in BCEC and neurons 
is also increased in iron deficient conditions in rats (41, 180).

The timeline of Tfr expression on other cells within the brain is 
distinct from that of BCEC Tfr because while variable low levels of Tfr 
expression in the neonatal rat ependyma, glia, and cerebral cortex and 
striatal neurons have been demonstrated as early as postnatal day 5 
(181), and Tfr expression has been reported in the rat medial habenula 
at birth (179), robust and substantive Tfr expression is not seen in 
until at least postnatal day 15 in rats (181). The peak expression of 
neuronal Tfr does not occur until postnatal weeks 3–4 after reaching 
a plateau around postnatal day 21 (179). ChP epithelial cells and 
hippocampal neurons in rats display virtually no Tfr expression at 
postnatal days 5 and 10, however become strongly positive by 
postnatal day 15 (181).

The delayed peak in Tfr expression on rat neurons and glia until 
at least the third postnatal week has previously been hypothesized to 
be physiologically linked to the decrease in iron import into the brain 
from the circulation around the same time and the onset and increase 
of oligodendrocyte transferrin synthesis during postnatal days 10–25 
(118, 179, 180). In conjunction with data showing that iron deficiency 
enhances brain Tfr expression during all ages (179), it is possible that 
Tfr expression serves as a compensatory mechanism for neurons and 
other brain cell types to maintain iron uptake necessary for 
development and function as overall brain iron levels decrease.

Tfr expression after neonatal GMH-IVH has not been extensively 
explored and merits further investigation.

Divalent metal transporter 1
DMT1 is a proton-coupled divalent metal ion symporter found in 

the plasma membrane and endosomes of various cell types in the body 
(61). In the brain, DMT1 is best known for its role in cellular iron 
uptake by transporting non-heme ferrous iron from acidified 
endosomes into the cytosol of neurons after receptor-mediated 
endocytosis of transferrin from the brain interstitium (182). While 
there have been several conflicting reports of DMT1 expression on 

non-neuronal cell types in the brain in vivo (37, 61, 181, 183, 184), 
DMT1 is now generally accepted to be expressed in low levels in 
BCEC endosomes to facilitate brain iron uptake across the BBB via 
receptor-mediated endocytosis of transferrin (182). Dmt1 has also 
been identified in developing rat ChP epithelial cells and glia including 
astrocytes and oligodendrocytes (181), however it is likely that there 
are other non-Dmt1-dependent mechanisms for iron uptake in these 
cells (61). Dmt1 has also been implicated as a mediator of ferroptosis 
after brain hemorrhage in rats (185).

First identified in mice in 1995 as the natural resistance-associated 
macrophage protein 2 (Nramp2) before its functional characterization 
as the proton-coupled metal-ion transporter divalent cation 
transporter-1 (Dct-1) in 1997 (37, 186), DMT1 was later understood 
to have 4 isoforms encoded by the Solute Carrier Family 11-member 
2 (SLC11A2) gene that are now known to be differentially expressed 
across organs and within organelles. Two isoforms have alternative 
transcripts differing in the 3’ UTR, where one contains an iron 
response element (Type 1, +IRE) and the other (Type 2, -IRE) does 
not (187). The third (1A) and fourth (1B) isoforms differ in mRNA 
processing in the 5′ end, where the 1A transcript starts in Exon 1A, 
which is upstream of Exon 1B where the 1B isoform transcript starts, 
and skips over Exon 1B to be spliced directly to Exon 2 (188).

Developmental time course of divalent metal transporter 
1 expression in the brain

Dmt1 mRNA expression in the neonatal rat brain has been 
reported as early as postnatal day 3 (189), with the highest regional 
expression localized to the corpus callosum and on Purkinje cells of 
cerebellum (190). A separate study identified +IRE mRNA expression 
and low-level -IRE Dmt1 mRNA expression in the cortex, 
hippocampus, striatum, and substantia nigra in postnatal week 1 rats 
(191), which increased in all regions by postnatal week 3 (191). +IRE 
Dmt1 mRNA subsequently decreased from postnatal weeks 3–28 in 
the cortex, hippocampus, and striatum, but increased in the substantia 
nigra (191). Over the same developmental time period, -IRE Dmt1 
mRNA increased or stayed relatively constant in the rat hippocampus, 
striatum, and substantia nigra, but decreased in the cortex (191).

In a study evaluating cellular Dmt1 expression at postnatal days 
5, 10, and 15, high levels of Dmt1 expression (isoform unspecified) 
were identified in blood vessels and ependymal cells at all three 
timepoints (181). Variable Dmt1 expression was identified in rat ChP 
epithelial cells from postnatal day 5 to 10 before turning into more 
robust expression by postnatal day 15 (181, 183). Dmt1 expression in 
glia followed a similar developmental time course (181, 183). Similarly, 
neuronal Dmt1 expression was variable at postnatal days 5 and 10 
before increasing by postnatal day 15, with slight variations by brain 
region in the earlier timepoints (183).

Together, these studies indicate low-level Dmt1 expression in the 
neonatal rat brain that substantially increases over the first 2–3 weeks 
of rat postnatal development. This timeline mirrors developmental 
changes in brain iron and transferrin uptake from the circulation, 
which increase over the first 2–3 postnatal weeks (180), in addition to 
the peak in TFR expression on brain ECs between postnatal days 
10–21 (179).

Ferroportin 1
Ferroportin 1, also known as solute carrier family 40 member 1 

(SLC40A1), metal transporter protein 1 (MTP1), and iron-regulated 
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transporter 1 (IREG1), is a transmembrane ferric iron transporter 
protein and the only known iron transporter responsible for cellular 
iron export (192). Initially characterized as an iron export protein on 
the basolateral surface of duodenal enterocytes (193), the basal surface 
of placental syncytiotrophoblasts (38), and the cytoplasmic 
compartment of reticuloendothelial cells (96), Fpn1 has more recently 
been implicated in transporting iron across the abluminal membrane 
of endothelial cells that comprise the BBB, depositing excess iron into 
the brain interstitial fluid when ferritin stores are replete (66).

Developmental time course of ferroportin 1 expression in 
the brain

Although the majority of studies of brain Fpn1 localization and 
function have been performed in adult rodents (63, 194), several studies 
have reported Fpn1 expression in various cell types across several regions 
of the developing brain. A 2001 paper by Burdo et al. mentions Fpn1 
expression in the embryonic rat central nervous system (195), and a study 
by Yang et al. describes its expression in BCEC at postnatal day 0 with 
decreasing expression through postnatal week 8 (196). Fpn1 expression 
has also been identified in the soma, dendrites, and axons of cortex, 
striatum, hippocampus, midbrain, brainstem, and cerebellar neurons 
from postnatal day 7 to 70 (65), with the highest regional expression in 
the hippocampus (64). Fpn1 levels in the brain generally increase with 
age, with the lowest expression seen at postnatal week 1 followed by a 
progressive increase to postnatal week 9 with subsequent declines out to 
postnatal week 28 (64). Fpn1 has also been identified in postnatal 
oligodendrocytes and Schwann cells (65, 197).

Ferroportin 1 after neonatal GMH-IVH
FPN1 expression has not been studied in the context of neonatal 

IVH-PHH, however previous investigations have reported 
decreased Fpn1 expression in the cortex and hippocampus after 
SAH (198). Injection of hepcidin, a hormone that regulates Fpn1 
expression by inducing Fpn1 internalization, further reduced Fpn1 
levels after SAH leading to cytotoxic cellular iron overload (198). A 
separate study demonstrated Fpn1 upregulation in perihematomal 
brain tissue after intracerebral hemorrhage (199). Experimentally 
knocking out Fpn1 expression in the striatum with stereotaxic 
AAV-Cre injection in a Fpn-floxed mouse model significantly 
worsened iron-related pathology and neurologic outcomes after 
ICH induction (199). The role of FPN1 in attenuating cellular iron 
overload after neonatal IVH should explored as a potential 
therapeutic target.

Low-density lipoprotein receptor-related protein 1
LRP1, also known as CD91, is a transmembrane heme, 

hemopexin, and heme-hemopexin complex receptor protein (200). 
Beyond its roles in mediating heme clearance, LRP1 is also involved 
in tissue-specific functions including intracellular signaling (201), cell 
migration (202–204), lipid homeostasis (205–208), and protein 
scavenging (209). Of LRP1’s CNS-specific functions, two of the most 
widely studied are BBB regulation and amyloid-beta trafficking 
clearance (209–211).

Developmental time course of low-density lipoprotein 
receptor-related protein 1 expression in the brain

Lrp1 expression has previously been reported in mature neurons 
in the hippocampus, cortex, and cerebellum of the adult rat brain (212, 

213), as well as radial glia in the embryonic mouse brain (214). More 
recently, Lrp1 expression in the CNS was reported to vary by age and 
cell type (215). In a 2016 study of Lrp1 expression in the embryonic 
day 13.5 to postnatal day 60 mouse brain, total Lrp1 was reported to 
peak during postnatal development with stable expression in radial 
glia, neuroblast, microglia, astrocytes, and neurons through 
development and adulthood (215). Specifically, Lrp1 was highly 
expressed in radial glia at embryonic days 13.5–18, astrocytes at 
postnatal day 5, microglia at embryonic day 13 through postnatal day 
60, neuroblasts at embryonic days 13.5–18, and neurons at postnatal 
day 5-adulthood (215). The proportion of oligodendrocyte precursor 
cells expressing Lrp1 increases dramatically across embryonic and 
postnatal brain development, with approximately 69% of 
oligodendrocyte precursor cells expressing Lrp1 at embryonic day 
15.5 and ubiquitous expression in adulthood (215).

Low-density lipoprotein receptor-related protein 1 after 
neonatal GMH-IVH

While LRP1 expression in the brain is not well-characterized in 
the context of IVH, Lrp1 upregulation has been reported after ICH 
(200). Lrp1 has previously been shown to clear heme-hemopexin 
complexes after ICH (216), and prophylactic intraventricular 
administration of recombinant human LRP1 protein 20 min before 
ICH induction in adult mice led to a reduction in hematoma volume, 
BBB permeability, and other brain injury (216). Lrp1 has also 
separately been shown to attenuate white matter injury after SAH in 
rats (217). These results suggest LRP1 has neuroprotective effects, 
potentially by preventing heme overload and heme-mediated 
cytotoxicity and deserves further investigation as a therapeutic target 
after neonatal IVH.

CD163
CD163 is a high-affinity scavenger receptor that mediates 

endocytosis and internalization of the haptoglobin-hemoglobin 
complex from extracellular spaces including the interstitial fluid (138). 
While CD163 expression was initially thought to be  restricted to 
macrophages and monocytes, CD163 is expressed in neurons and 
upregulated after exposure to hemoglobin (102, 140, 218). Soluble 
CD163 (sCD163) sheds from CD163-positive cells to circulate in the 
serum and CSF. Subsequent studies have reported that sCD163 
scavenges intrathecal hemoglobin-haptoglobin complexes after SAH 
in adult humans (219).

In addition to its role in scavenging hemoglobin by way of binding 
and taking up the hemoglobin-haptoglobin complex, CD163 is also 
involved in anti-inflammatory signaling in macrophages (220). 
CD163 expression can induce interleukin-10 (IL-10) secretion after 
binding haptoglobin-hemoglobin complexes containing specific 
haptoglobin genotypes, which in turn promotes heme oxygenase-1 
(HMOX-1) synthesis (221). IL-10 has also been shown to upregulate 
CD163 expression on monocytes and macrophages (222, 223), while 
proinflammatory markers like interferon-ɣ are known to decrease 
expression (223).

CD163 after neonatal GMH-IVH
Whereas CD163 likely serves an anti-inflammatory role in 

macrophages, neuronal CD163 may play a deleterious role after ICH 
and IVH (140, 218, 224). Because hemoglobin is cytotoxic to neurons, 
which lack key iron sequestering machinery present in macrophages 
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including widespread HMOX-1 induction in response to hemorrhage 
(106, 225), increased haptoglobin-hemoglobin complex uptake by way 
of CD163 upregulation post-hemorrhage may lead to iron overload 
and neuronal cell death.

Consistent with this hypothesis, rat hippocampal neurons 
expressing CD163 co-localize with phosphorylated-Jun N-terminal 
kinase (p-JNK) after neonatal IVH (102). As p-JNK is a kinase that 
plays a key role in the apoptosis cascade, this suggests a mechanism 
by which CD163 facilitates excessive hemoglobin influx into neurons 
after IVH to result in cellular ferrous iron overload, oxidative damage, 
and ultimately cell death (218).

Six-transmembrane epithelial antigen of the 
prostate proteins

The six-transmembrane epithelial antigen of the prostate (STEAP) 
family of proteins is comprised of metalloreductases, among which 
several are ferrireductases that reduce ferric iron to its ferrous state. 
Of the four identified members of the Steap family (Steap1, Steap2, 
Steap3, Steap4), Steap2 is arguably best characterized in the brain, 
where it has been reported in hippocampal neurons and the 
embryonic mouse ChP (57, 226). At postnatal day 7, Steap2 expression 
is present in the cerebellar Purkinje cells, and within the superior 
colliculus, olfactory bulb, and various other anatomic regions in the 
mouse brain (227). Steap3 was first identified in erythroid precursors 
where it localizes to endosomes to facilitate transferrin-bound iron 
uptake (228), however it has also been reported in the lumbar dorsal 
root ganglion (229, 230). Steap1 and 4 are expressed more ubiquitously, 
with additional Steap1 upregulation in the prostate and Steap4 
enrichment in the bone marrow, placenta, fetal liver, and adipose 
tissue (226). Within cells, all four Steap proteins partially co-localize 
with transferrin and TFR, with Steap2 showing the highest degree of 
co-localization (226).

It is not clear what role the STEAP family of proteins may have 
in iron homeostasis after intracerebral or intraventricular 
hemorrhages. STEAP expression and localization in relation to brain 
iron levels and the specific role of STEAP proteins in the setting of 
brain iron overload has not yet been evaluated and merits 
further investigation.

T cell immunoglobulin and mucin domain 
containing proteins

The TIM family of proteins are receptors for H ferritin that 
mediate ferritin uptake into cells. Tim-2, the rodent ortholog of the 
human TIM-1 receptor, has been identified on oligodendrocytes as 
the primary mechanism of oligodendrocyte iron uptake by way of 
ferritin endocytosis (48, 49, 231, 232). In addition to oligodendrocytes, 
Tim-2 expression has been identified in neurons, astrocytes, and 
microvasculature in the mouse brain and is seen at postnatal day 7, 14 
and 22 (233).

Intracellular iron transporters and 
scavengers that have been identified in the 
neonatal brain

Ferritin
Ferritin is a major iron storage protein that can be found both 

intracellularly, where it functions as a ferroxidase to sequester ferrous 

iron, and extracellularly in the cerebrospinal fluid and serum. Once 
ferrous iron enters a cell, ferritin binds and uses its di-iron ferroxidase 
centers to convert it to the ferric form for storage in the ferritin 
mineral central cavity (234–240). Iron can be subsequently released 
from ferritin in response to metabolic demand (241).

Ferritin can hold up to 4,500 iron atoms. Early buffer extraction 
studies showed that about 1/3 of non-heme iron in the brain is stored 
as ferritin (242). Subsequent reports have estimated that this figure 
could be as high as 90% (242–244). Therefore, ferritin is a key player 
in maintaining iron homeostasis by regulating the labile iron pool 
within the brain.

Developmental time course of ferritin expression in the 
brain

A developmental study of iron handling proteins in rats showed 
ferritin levels in the brain peak on postnatal day 2 before decreasing 
over the course of the first 2 postnatal weeks (113). This downward 
trend is reversed by postnatal day 17 when brain ferritin levels begin 
to rise again before stabilizing at high levels similar to those seen at 
postnatal day 2 by postnatal week 11 (113). 200–500% increases in 
ferritin levels occur between postnatal day 17 and 2 years, with the 
most dramatic increases seen in the cortical, pontine, and cerebellar 
regions (113).

On a cellular level, while one study reported that ferritin mRNA 
is exclusively found in neurons in the postnatal rat brain, the ferritin 
protein is in multiple cell types throughout the postnatal brain with 
differential localization of two functionally distinct ferritin subunits 
(H and L) across cell types (245). H ferritin, which has redox potential, 
was identified in oligodendrocytes in postnatal day 21 rats while L 
ferritin was found in oligodendrocytes, microglia, and astrocytes 
(245). Neurons express both H and L ferritin (245).

Other studies in adult non-human primates have shown that 
neurons predominantly express H ferritin (246), and that astrocyte 
L ferritin expression is primarily localized to the corpus striatum 
(247). In human fetuses, ferritin has been reported in glia from 6 
to 36 weeks’ gestation, with an increase at 19–22 weeks’ gestation 
(145). More recently, FtMt has been identified in humans as a 
ferritin that exists only in the mitochondria and whose 
transcription is not dependent on iron unlike cytosolic ferritins 
(248). In the context of neurodevelopment, studies in rats have 
characterized the majority of ferritin-containing cells at postnatal 
day 5 as microglia, while the majority at postnatal day 30 are 
oligodendrocytes (247).

Ferritin after neonatal GMH-IVH
In additional to intracellular ferritin within cells in the 

parenchyma, extracellular CSF ferritin is a valuable indirect measure 
of brain iron load and has previously been considered as a potential 
marker for pathology related to Alzheimer’s Disease (249–252), SAH 
(253), glioblastoma (254), meningitis (255, 256), amyotrophic lateral 
sclerosis (257), and other disease processes (258).

Specific to IVH-PHH, Strahle et al. recently reported in neonatal 
humans that longitudinal decreases in CSF ferritin levels between 
temporary and permanent CSF diversion after PHH are associated 
with improved scores on cognitive and motor aspects of the Bayley 
III examination at 2 years of age (20). Larger ventricle size at the time 
of permanent CSF diversion was also associated with higher levels 
of CSF ferritin (20). Mahaney et  al. also previously showed that 

https://doi.org/10.3389/fneur.2023.1287559
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Pan et al. 10.3389/fneur.2023.1287559

Frontiers in Neurology 10 frontiersin.org

elevated CSF ferritin levels were associated with early and severe 
ventriculomegaly after IVH-PHH (259). These data, in addition to 
rodent studies showing increases in ferritin positive cells in the 
hippocampus and periventricular area after IVH, may represent a 
compensatory increase in ferritin that is reflective of ferritin’s 
function in preventing iron toxicity in times of overload (260). 
Specifically, ferritin levels may increase to prevent ferrous iron 
released into the ventricles after IVH from reacting with H2O2 and 
producing cytotoxic hydroxyl radicals in the Fenton reaction. 
Alternatively, elevated CSF ferritin may be  secondary 
to inflammation.

Heme oxygenase-1 and 2
HMOX-1 and HMOX-2 are two of three isoforms of heme 

oxygenase, an antioxidant enzyme that catalyzes the rate-limiting 
step of heme degradation. In contrast to the constitutively expressed 
HMOX-2 that is found in high levels in the brain, HMOX-1 
expression in the adult CNS is low at baseline and must be induced 
by its substrate, heme, and/or a variety of other oxidative stimuli that 
cause cellular stress (261, 262). Once induced, HMOX-1 degrades 
heme using NADPH, O2, and cytochrome p450 reductase in a series 
of three monooxygenation cycles to create the molecule biliverdin 
in addition to the byproducts carbon monoxide and ferrous iron. 
Biliverdin can subsequently be  converted to bilirubin, a potent 
antioxidant with anti-inflammatory properties. Ferrous iron can 
be stored within ferritin, and carbon monoxide can participate in 
downstream cytoprotective signaling cascades. HMOX-2 degrades 
heme by the same mechanism.

Developmental time course of heme oxygenase 
expression in the brain

While robust Hmox-2 expression has been reported in neurons, 
glia, and blood vessels, Hmox-1 expression in adulthood is limited to 
hippocampal and olfactory neurons in relatively low levels (263). 
Using a transgenic Hmox-1-luciferase reporter mouse, Hmox-1 
transcription in postnatal day 1 cerebral cortex was shown to be 
higher than in adult mice (264). Hmox-1 transcription decreases 
through postnatal days 2–14 before reaching levels similar to those 
seen in adult mice (264). Similarly, Hmox-1 mRNA and protein levels 
are highest at postnatal days 1 and 3 before steadily declining over the 
perinatal time period (264). While Hmox-2 transcription was not been 
measured in vivo, Hmox-2 mRNA and protein levels in the developing 
mouse cortex remain relatively constant from embryonic day 14 to 
postnatal week 6 (264).

Heme oxygenase after neonatal GMH-IVH
As the HMOX-catalyzed heme degradation pathway is one of the 

only mechanisms for cytotoxic heme removal from cells, HMOX-1 and 
HMOX-2 likely play essential roles in mediating iron clearance in a 
variety of iron overload-related pathologies including ICH, IVH in 
adults after hemorrhagic stroke, and neonatal GMH-IVH. In the 
context of these diseases, there has been a focus on HMOX-1 as it can 
be induced by its substrate heme, which is released from hemorrhage 
(265). Specifically, Hmox-1 is highly expressed in vasculature, microglia, 
and macrophages adjacent to the area of hemorrhage following ICH 
induction via collagenase VII-S injection into the caudate putamen in 
adult mice (266). Iron accumulation in a rat model of adult IVH 
(identified as T2* MRI hyperintensities) has also been associated with 

Hmox-1 upregulation (267). Hmox-1 expression in periventricular 
areas and the hippocampus and cortex is also increased 24 and 72 h after 
neonatal GMH-IVH in mice (101). In vitro evidence in cells derived 
from humans, mice, and rats, and in vivo experiments in rodents show 
that HMOX-1 has regional neuroprotective effects when experimentally 
upregulated via pharmacologic induction in neurons (268–277), which 
have physiologically high and ubiquitous Hmox-2 expression but low 
Hmox-1 expression. Together with HMOX-1’s role in catalyzing heme 
degradation, these findings may suggest HMOX-1 has a specific 
function to attenuate heme-related damage after brain hemorrhage and 
protect against subsequent cellular heme/iron overload.

Other proteins important in neonatal brain 
iron homeostasis

Hepcidin
Hepcidin is a peptide hormone that is primarily produced in the 

liver. Through binding to and inactivating (via inducing 
internalization) the cellular iron exporter Fpn1 (278), hepcidin 
regulates intracellular iron load. While hepcidin synthesis in the brain 
remains somewhat controversial, studies in adult animals have 
reported hepcidin protein and/or mRNA expression across the 
olfactory bulbs, cortex, ChP, corpus callosum, subventricular zone, 
and hippocampus of rat, mouse, and human brains (279–282).

The role of hepcidin in the neonatal brain is even less well 
characterized, where developmental changes in hepcidin expression 
are poorly understood beyond a general increase in hepcidin mRNA 
from postnatal week 1 to adulthood in the murine cortex, striatum, 
and hippocampus (281). Strahle et al. previously reported hepcidin in 
the CSF after neonatal IVH in humans (20), with no changes in CSF 
hepcidin levels between temporary and permanent CSF diversion 
for PHH.

Iron regulatory proteins 1 and 2
IRP-1 and IRP-2 carry out post-transcriptional regulation of 

cellular iron uptake, storage, and efflux by binding to IREs within the 
UTRs of mRNAs that code proteins which play crucial roles in brain 
iron homeostasis. The IREs within the mRNA of the iron exporter 
FPN1 and the iron storage proteins ferritin H and ferritin L are 
located in the 5’-UTR, and IRP binding during iron-deficient 
conditions functions as a post-transcriptional control by inhibiting 
translation (38, 96, 193, 283–285). TFR and DMT1 mRNA contain 
IREs within the 3’-UTR (37, 88, 98, 286–288), and IRP binding helps 
protect the mRNA against endonuclease degradation to promote 
translation of the proteins to facilitate cellular iron uptake (289, 290). 
In physiological iron replete conditions, IRPs dissociate from IREs 
(291, 292), allowing ferritin and Fpn1 translation and TFR and DMT1 
mRNA degradation.

Developmental time course of iron regulatory protein 
expression in the brain

Over the course of neurodevelopment, variable Irp-1 and Irp-2 
expression has been identified in the neonatal rat brain across ChP 
epithelia, ependyma, blood vessels, glia, and neurons as early as 
postnatal day 5 (181), with robust expression of both proteins by 
postnatal day 15 (181). The percentage of cells with IRP expression 
varies by anatomic brain region across different ages (181). IRP2 
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mRNA has been identified in human fetal brain tissue, where it is 
present in significantly greater quantities than IRP1 mRNA (293).

Iron regulatory protein after neonatal GMH-IVH
In the context of neonatal GMH-IVH, Irp2 expression has been 

reported to decrease 1–5 days after neonatal GMH-IVH induced in 
postnatal day 7 rodents, an effect that was attenuated by intraperitoneal 
administration of the iron chelator deferoxamine (294). Irp1 levels did 
not change in response to GMH-IVH (294).

Amyloid precursor protein
APP is an integral membrane protein found in various tissues 

and organs including the brain and spinal cord (295). While it does 
not directly handle iron, APP helps regulate iron homeostasis in 
neurons, BCECs, and other brain cells by stabilizing cell surface 
presentation of the iron exporter FPN1 (296–298). APP and 
Amyloid-Precursor Like Proteins have additional physiological 
functions in neurodevelopment, where they are thought to contribute 
to neurogenesis (299–304), neurite growth (305–314), and 
synaptogenesis (315–318).

Downstream proteolytic processing of APP where APP is 
cleaved by α-secretase can produce soluble amyloid precursor 
protein α (sAPPα) (319, 320). APP can also be cleaved by β-secretase 
and γ-secretase to produce the Aβ1-42 peptide and sAPPβ (321–
325), which is a precursor to soluble amyloid-beta. In humans, CSF 
sAPP is a potential diagnostic biomarker for diseases like Alzheimer’s 
Disease and Multiple Sclerosis (316, 320, 326), and as a potential 
predictor of neurodevelopmental outcomes after neonatal 
GMH-IVH (327, 328).

Developmental time course of amyloid precursor protein 
in the brain

APP is expressed in the fetal and perinatal brain at various stages 
of neurodevelopment. In a study investigating App expression in 
embryonic day 8.5–13.5 mice, APP was identified in hindbrain and 
spinal cord motor neurons and cranial ganglia neurons as early as 
embryonic day 9.5 (299). APP expression increased to embryonic day 
10.5, with continued increases in intensity and spread to the last time 
point studied (299). App mRNA was also identified in these brain 
regions at embryonic day 13.5, suggesting CNS-endogenous App 
production. Other studies have shown that App mRNA is expressed 
in the mouse brain at embryonic day 12, with subsequent increases up 
to 15-fold before it plateaus at postnatal day 10 (299). App has also 
been identified in radial glial cells in the fetal and neonatal mouse 
brain (300).

Amyloid precursor protein after neonatal GMH-IVH
Specific to neonatal IVH, CSF levels of sAPPα are significantly 

elevated after IVH-PHH in humans compared to control infants (328, 
329), and furthermore CSF APP levels are associated with ventricular 
size after neonatal IVH (327). As APP is released by axonal injury 
(330–332), this finding may be  related to axonal stretch in 
periventricular regions due to ventricular distention (327). 
Alternatively, as it is known that APP is upregulated in the presence 
of free iron (333), and that iron plays a key role in the pathogenesis of 
PHH after IVH (101), it is possible that APP reflects high brain iron 
levels after IVH in neonates that develop the most 
severe ventriculomegaly.

Iron pathway and related proteins that 
have not been functionally 
characterized in the neonatal brain

Beyond DMT1, TFR, and FPN1, the localization and 
developmental expression of few if any cellular iron handling proteins 
known to be important in iron handling in the adult brain and other 
tissues outside of the CNS have been reported in the neonatal brain. 
This section discusses the role of several additional iron handling 
proteins in peripheral tissues in the neonate, reviews their function in 
the adult brain, and proposes potential roles they may play in the 
neonatal brain. It is important to consider additional iron transporters 
in the neonatal brain as they may play key, therapeutically targetable 
roles in iron handling after GMH-IVH (Figure 2).

Heme responsive gene 1
Heme Responsive Gene 1 (HRG1), also known as solute carrier 

family 48 member 1 (SLC48A1), is a transmembrane receptor 
involved in mediating cellular heme homeostasis. Initially identified 
as an Hrg4 paralog in the C. elegans genome (334), subsequent 
experiments in zebrafish demonstrated Hrg1 mRNA expression 
throughout the embryonic CNS (334). Functional experiments 
revealed that Hrg1 has a role in neurodevelopment and erythropoiesis 
in the zebrafish embryo (334). Notably, Hrg1 knockdown in zebrafish 
embryos using antisense morpholinos induced hydrocephalus and 
yolk tube malformations (334), however the mechanism by which this 
happens is not clear. Unlike Hrg4 which transports heme from the 
extracellular environment into the cell, Hrg1 specifically functions to 
transport endocytosed heme from endosomal compartments into the 
cytosol (334, 335). In vitro experiments in mouse macrophages 
undergoing erythrophagocytosis show that Hrg1 transports heme 
from the phagolysosome out to the cytosol (336, 337).

In adult mammals, HRG1 expression has been identified in brain, 
kidney, heart, skeletal muscle tissue, liver, lung, placenta, and small 
intestine in lower quantities (334). Hrg1 protein expression has also 
been reported on the apical surface of murine renal cortex epithelial 
cells following neonatal hemolysis (335), and the apical membrane of 
porcine duodenal enterocytes in piglets fed hemoglobin-enriched 
diets (338).

Neither the role of HRG1  in the adult brain nor the specific 
patterns of HRG1 expression in the neonatal brain are well 
understood. The potential roles of HRG1 in heme transport in the 
neonatal brain, particularly in connection with cellular heme and iron 
overload after IVH, merits further investigation alongside other 
proteins in the HRG family including HRG-3 (339).

Heme carrier protein 1
Like HRG1, heme carrier protein 1 (HCP1) is a transmembrane 

protein that transports heme in addition to folate and heme-
hemopexin complexes. Also known as solute carrier family 46 
member 1 (SLC46A1) and proton-coupled folate transporter 
(PCFT), Hcp1 was initially characterized on the brush-border 
membrane of murine duodenal enterocytes where it mediates heme 
uptake and intestinal heme transport (340). Subsequent studies 
have reported HCP1 protein and/or mRNA expression on human 
macrophages and cultured astrocytes (341, 342), and within the 
human retina and retinal pigment epithelium, and mouse 
duodenum, liver, and kidney (340, 343).
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Within the CNS, variable levels of Hcp1 expression have been 
identified in the cortex and hippocampus of adult rats (344), and in 
vitro experiments demonstrated neuronal heme uptake via Hcp1 
(344). HCP1 is also expressed on the basolateral surface of the 
neonatal and adult ChP as a proton symporter that mediates folate 
transport into the CSF (345). The role of ChP HCP1 in heme transport 
is not as well-explored.

Lipocalin 2
Lipocalin 2 (LCN2) is an inducible protein secreted by a variety 

of cell types in the brain, liver, and uterus that mediates intercellular 
communication, innate immune responses to bacterial infections, and 
iron homeostasis. Specific to iron, LCN2 mediates transferrin-
independent iron delivery and removal from cells by way of 
sequestering sidephores (346, 347), iron chelators that scavenge 
ferrous iron with high affinity and specificity. While LCN2 is not well-
characterized in the neonatal brain, LCN2 secretion from neurons and 
glia has previously been reported to be inducible in vitro by exposure 
to amyloid-beta (348), and in vivo by hemoglobin (349), kainic acid 
(350), and other compounds. LCN2 is also known as neutrophil 

gelatinase-associated lipocalin (NGAL), 24p3, and p25, and more 
archaically siderocalin and uterocalin.

Lcn2 signaling in the adult brain can be  upregulated by CNS 
pathology including spinal cord injury, autoimmune 
encephalomyelitis, and ICH, and is generally considered to have a role 
in mediating downstream neurotoxic effects (351–357). Lcn2 is 
expressed in astrocytes and ECs in the adult mouse brain after middle 
cerebral artery occlusion in a murine stroke model (358), while the 
Lcn2 receptor is expressed in neurons, astrocytes, and endothelial cells 
(358). Similarly, Lcn2 is involved in ischemic stroke reperfusion injury 
(358, 359) and increases in brain Lcn2 levels after stroke play a role in 
mediating subsequent brain injury by activating astrocytes (360). 
LCN2 is also upregulated after traumatic brain injury and has been 
shown to be a chemokine inducer in the murine adult CNS both in 
vitro and in vivo (361, 362).

In a mouse model of adult IVH, intraventricular hemoglobin 
induced Lcn2 upregulation and ventriculomegaly (349) where Lcn2-
deficient mice were protected against hemoglobin-induced 
ventricular dilation, glial activation, and mortality (349). This 
finding mirrors a report of reduced white matter damage and 

FIGURE 2

Model of possible cellular iron transporters that may be involved in iron uptake into the ependyma and choroid plexus (ChP) from the CSF after 
germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH). While the exact mechanism of ependymal and choroid plexus uptake of CSF 
blood and blood breakdown products after GMH-IVH is unknown, it is possible that cellular iron transporters involved in blood breakdown product and 
iron uptake in other cells of the neonatal and adult brain, neonatal peripheral tissue, and other organs may be involved. Specifically, we model 
ependymal uptake of hemoglobin-haptoglobin (Hb-Hp) from the CSF via the CD163 receptor (1); heme-hemopexin (hpx) and heme via CD91, heme 
carrier protein 1 (HCP1), and heme responsive genes 4 and 1 (2); ferritin and Fe3  +  −containing lipocalin 2 (LCN) complex via scavenger receptor class A 
member 5 (Scara5), T cell immunoglobulin and mucin domain containing protein 1 (TIM-1), and LCN2 receptor (LCN2R) (3); transferrin (Tf) via 
transferrin receptor (TfR) (4); and ferrous iron ions (Fe2+) via the zinc regulated transporter and iron regulated transporter like proteins 8 and 14 (ZIP8 
and ZIP14) (5). Intracellular processing in the endosomal compartment to convert receptor-mediated endocytosed blood breakdown product 
compounds into Fe2+ ions for export into the cytosol via divalent metal transporter 1 (DMT1) and six-transmembrane epithelial antigen of the prostate 
protein 2 (STEAP2) converting Fe3+ ions into Fe2+ ions are also shown. To our knowledge, the majority of these transporters (including but not limited 
to ZIP8, ZIP14, Scara5, TIM-1, LCN2R, CD163, CD91, HCP1, HRG4) have not been identified on the ependyma, and are only modeled in this figure as 
playing a hypothetical role in transporting their corresponding blood breakdown/iron product to guide future investigations.
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decreased BBB disruption after SAH in Lcn2-deficient mice 
compared to wild-type controls (363). Lcn2 causes morphological 
changes in neuronal dendritic spines to decrease spine density and 
promote spine elimination in stress conditions (364), supporting its 
role in responding to adverse and/or noxious stimuli to result in 
inflammatory or neurologic injury.

LCN2 has been studied in peripheral tissues in developing and 
neonatal organisms. In vitro Lcn2 expression in embryonic day 13 
ureteric bud cells derived from the developing rat kidney was reported 
to induce mesenchymal cell differentiation into epithelial cells (365). 
Lcn2 also functions as an iron delivery protein to transport and deliver 
iron to kidney epithelial progenitors and stroma cells during 
embryonic organogenesis in vitro (365). In humans, serum, urine, 
stool, and umbilical cord levels of LRP2 have been used as diagnostic 
and predictive markers for renal impairment/injury (366–372), 
necrotizing enterocolitis (373), sepsis (374), and other conditions in 
preterm neonates with acute and chronic pathologies. While LCN2 
has not been reported in the neonatal brain, the Lcn2 receptor megalin 
is expressed in the neural tube and developing rat and mouse brain 
where it plays a role in neurodevelopment (375, 376).

Scavenger receptor class A member 5
Scavenger receptor class A member 5 (SCARA5) belongs to a class 

of membrane receptors and can recognize and bind a variety of 
substrates including serum ferritin to mediate ferritin-bound 
non-transferrin iron uptake and delivery (377, 378). SCARA5 
recognizes both H- and L-ferritin in a Ca2+-dependent manner and is 
expressed in the adult human and mouse retina (379, 380), the 
developing mouse kidney (377), and epithelial cells in the murine 
testis, bladder, trachea, adrenal glands, skin, lung, brain, and ovary 
(378). In vitro experiments in cells derived from human spleen report 
SCARA5 directly binds to and mediates the intracellular 
internalization of Von Willebrand Factor, a large multimer that plays 
an essential role in clotting and hemostasis (381).

While there have been few reports investigating cellular SCARA5 
localization in the central nervous system, experiments from an in 
vitro model of the BBB show SCARA5  in brain endothelial cells 
mediates substrate uptake into brain endothelial cells to cross the BBB 
(382). Similar results have been reported in vivo in mice with Scara5-
mediated ferritin uptake across the blood-retina barrier (379). 
Low-level Scara5 expression has been reported on cultured astrocytes 
derived from neonatal mouse brains (383). In adult humans, SCARA5 
is highly enriched in the ChP, with additional expression in the 
cerebral cortex, basal ganglia, cerebellum, and spinal cord (384).

In a study using Mendelian randomization to identify biomarkers 
for stroke, SCARA5 levels were associated with a decreased risk of 
SAH, potentially implicating SCARA5 in baseline risk for hemorrhage 
(385). SCARA5 also had consistent but non-significant effects on ICH 
risk (385). It is not clear whether this effect is mediated by SCARA5’s 
interactions with ferritin, or alternatively its role in binding 
VWF. SCARA5 expression in the brain has not been investigated after 
adult or neonatal IVH.

Hypoxia-inducible factor
Hypoxia-inducible factor (HIF) is a heterodimeric transcription 

factor which mediates the adaptive homeostatic response to hypoxia 
(386, 387). HIF has been studied as a link between iron homeostasis 
and erythropoiesis (388, 389). HIF binds to hypoxia-responsive 

elements (HREs) in the regulatory regions of target genes including 
genes crucial to iron homeostasis like Tfr (390), transferrin (391), 
ceruloplasmin (392), and Hmox-1 (393).

While the role of HIF in pathologic conditions in the neonatal 
brain like hypoxic–ischemic injury are well-studied, its role in 
neonatal brain iron homeostasis in physiologic conditions is not well-
explored. HIF subunits and their transcriptional pathways are essential 
regulators of iron homeostasis in the intestine (389, 394–396). In vivo 
studies in mice have reported intestinal Dmt1 and Fpn1 are direct 
transcriptional targets of HIF-2α (394–397), and disrupting Hif-2α 
signaling in the intestine leads to impaired iron absorption (394). As 
Hif-1α, Hif-2α, and Hif-1β are expressed in the developing brain and 
are crucial for healthy brain development (398, 399), HIF may be a 
targetable aspect of brain iron homeostasis to prevent iron overload 
after neonatal IVH.

Zinc regulated transporter and Iron regulated 
transporter-like proteins

Zinc regulated and Iron regulated transporter-like proteins (ZIP) 
are a family of metal ion transporters encoded by the SLC39 gene that 
imports divalent metal ions including Zn2+, Fe2+, and Mn2+ into the 
cytoplasmic compartment of cells. ZIP8 and ZIP14 are closely related 
and are the most-studied ZIP proteins in the context of iron trafficking. 
Both proteins have been identified in vitro on human-derived BCECs 
that constitute the BBB and hippocampal neurons (57, 400), and Zip8 
and Zip14 have separately been shown to mediate cellular NTBI 
uptake (57, 401, 402). Zip14 may also have additional roles in iron 
acquisition from endocytosed transferrin in vitro (403). Additional in 
vitro studies report Zip8 is localized at the cell surface of the neuronal 
soma and dendrites, where it co-localizes with Steap2 and Tfr, while 
Zip14 concentrates within the cytosol and nucleus (57). Of note, Zip8 
expression has been identified in mouse neural progenitor cells both 
in vitro and in vivo at E14, with expression significantly decreasing 
after differentiation (404).

While ZIP-mediated transport of zinc and several other divalent 
metal ions is known to play a crucial role in healthy development and 
growth (405, 406), ZIP8 and ZIP14’s roles in iron transport in the 
neonatal brain are relatively underexplored. Likewise, while a ZIP8 
missense variant in humans has been associated with cerebrovascular 
disease and ICH (407), ZIP8 and ZIP14 expression and localization in 
the CNS after ICH, SAH, and/or IVH is not well-understood. As Zip8 
expression has been shown to be upregulated in cell iron overload in 
the retina, and knock down of Zip14 is able to prevent iron overload 
in hepatocytes in a mouse model of hereditary hemochromatosis 
(408), elucidating ZIP8 and ZIP14 expression patterns (1) in the 
developing brain, and (2) after hemorrhage represent potential next 
steps toward understanding ZIP8 and ZIP14 as potential therapeutic 
targets to prevent brain iron overload after neonatal IVH.

Downstream pathways of blood 
breakdown product and iron overload 
after IVH

When physiologic mechanisms of iron transport and regulation 
fail to keep up with accumulating iron levels in the brain after IVH, 
ferrous iron may react with hydrogen peroxide to generate free radical 
oxygen species via the Fenton reaction. Hydrogen peroxide is widely 
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available as a small-molecule messenger in the brain, with the 
mitochondria serving as the major intracellular site of hydrogen 
peroxide production (409, 410). An imbalance in ferrous iron levels 
can thus result in rapid and fulminant production of reactive oxygen 
species that overwhelm the brain’s antioxidant capabilities, leading to 
oxidative stress.

There are several mechanisms by which oxidative stress is 
hypothesized to lead to cellular toxicity. Reactive oxygen species can 
react with a variety of biological macromolecules including lipids, 
proteins, nucleic acids, and carbohydrates (411). The polyunsaturated 
fatty acyl side chains in polyunsaturated fatty acids which make up 
cellular membranes are particularly susceptible to damage via lipid 
peroxidation (412, 413). This process can disrupt cell and organelle 
integrity directly via peroxidation of the inner mitochondrial 
membrane phospholipid cardiolipin (412, 414–416), and indirectly by 
producing signaling molecules (i.e. those in the NF- κB, mitogen-
activated protein kinase, and protein kinase C signaling pathways) 
capable of inducing both intrinsic and extrinsic apoptotic pathways 
(415, 417, 418). Lipid peroxidation can also drive ferroptosis, a 
recently identified mechanism of iron-dependent oxidative stress 
which leads to non-apoptotic programmed cell death (419), however 
the precise mechanism by which lipid peroxidation and ferroptosis are 
connected is not well understood (420). Ferroptosis induction in the 
ChP has recently been identified as a potential mechanism of cell 
death after PHH (421, 422), and iron chelators like deferoxamine 
(DFX) are thought to inhibit lipid peroxidation (415, 423).

In addition to oxidative stress, IVH also induces 
neuroinflammation and innate neuroimmune activation (424, 425). 
A recent study using a rat model of IVH induced via intraventricular 
hemoglobin injection demonstrated acute increases in brain-wide 
cytokine production and microglia reactivity followed by localized 
oxidative stress in the white matter (424). Acute ChP and lateral 
ventricle ependyma inflammation via NF- κB activation has also been 
reported in rats in response to intraventricular autologous blood 
(426), as well as inflammation mediated by the TLR4-dependent 
cytokine TNF-α (147, 427–429). Autologous blood injected into the 
ventricles of adult mice has also been shown to increase cytokine 
secretion at the ChP-CSF interface mediated by activation of 
ChP-associated macrophages (81). Unlike reactive oxygen species 
generation via the Fenton reaction and oxidative stress, the 
mechanisms of neuroinflammation after IVH have not specifically 
been linked to iron overload. While hemoglobin and iron released 
into the CSF after IVH can increase macrophage and resident 
microglia activation to facilitate HMOX-1-mediated heme 
degradation, thrombin, periredoxin 2, methemoglobin, and other 
blood and blood breakdown product components represent additional 
candidates (427, 428, 430–433).

The role of iron in the pathogenesis of 
post-hemorrhagic hydrocephalus and 
brain injury following intraventricular 
hemorrhage

Approximately 30% of infants with high grade (grade III or IV) 
IVH develop PHH (14), an imbalance in the production and efflux of 
CSF resulting in symptomatic ventriculomegaly. While it is known 
that blood within the ventricles and brain is the primary risk factor for 

PHH after IVH, the specific etiology of PHH after IVH is unclear with 
various potential mechanisms (iron-mediated toxicity, impaired CSF 
dynamics, inflammation, CSF hypersecretion, ependymal denudation 
etc.) (12, 81, 424, 434–436).

Strahle et al. previously reported that intraventricular injection of 
hemoglobin and iron, but not the iron-deficient heme precursor 
Protoporphyrin IX, results in ventriculomegaly 24 h post-injection in 
rats (101). Clinical studies have reported elevated CSF non-protein-
bound iron in preterm infants with posthemorrhagic ventricular 
dilation compared to control infants (16). Iron chelation with both 
peripheral and intraventricular deferoxamine has been shown to 
reduce ventriculomegaly after IVH in rats (101, 437–440). Together, 
these results suggest iron is linked to PHH pathogenesis, however the 
mechanism by which the two are connected is not clear.

One mechanism by which free iron in the CSF and brain 
parenchyma may lead to PHH is via its cytotoxic effects on specific 
structures that play key roles in maintaining homeostasis between 
CSF production and drainage. In one theory of PHH pathogenesis, 
iron-mediated ependymal and cilia dysfunction is hypothesized to 
hinder normal CSF circulation and lead to CSF accumulation. E1 
ependymal cells, which are one of three subtypes of ependymal cells 
(E1–E3), line the ventricles and have motile cilia on their apical 
surface that are damaged and sloughed off by blood breakdown 
product release into the CSF (441–444). Primary cilium on E2 and 
E3 ependymal cells, which play a sensory role in detecting chemical 
and mechanical changes in the CSF (441, 445–447), may also 
be  damaged by iron. The resultant cilia loss and ependymal 
denudation may (1) expose underlying cells to blood and CSF leading 
to edema and gliosis of subependymal tissue, (2) impair ventricle wall 
ependyma-ChP communication and feedback, and (3) alter the 
velocity, turbulence, and/or vorticity of CSF flow patterns (448). In 
combination, these effects may contribute to the onset of 
hydrocephalus by disrupting CSF homeostasis by way of altering CSF 
flow, however this hypothesis has recently been questioned in light of 
data suggesting cilia are not the primary drivers of CSF movement in 
the ventricular system in humans (434, 449–452).

Aberrant CSF production in response to iron-mediated ChP 
damage and ChP inflammation has been posited as an alternative 
mechanism of PHH. In a rodent model of neonatal IVH, 
intraventricular blood was reported to induce early ChP epithelial cell 
activation and transient increases in ChP Na+/K+/2Cl− co transporter 
(NKCC1) expression and phosphorylation (436), both which have 
been linked to subsequent hydrocephalus development and/or 
increases in PHH severity (436, 453). A separate study also reported 
ChP transporter activation after IVH and the resultant CSF 
hypersecretion contribute to PHH onset (454), however it is not clear 
if this is a direct effect of iron cytotoxicity or if these effects are 
secondary to inflammation (454–456). Recently, a mechanism by 
which autologous blood may induce a TLR4-mediated inflammatory 
response at the ChP has been proposed (81), serving as a potential link 
between blood breakdown product release into the CSF in IVH, ChP 
inflammation, CSF hypersecretion, and the onset of PHH.

Other proposed mechanisms of PHH development implicate the 
complement cascade (457, 458); aquaporins 1, 4, and 5 upregulation 
(437, 459, 460); CSF pathway obstruction by blood breakdown 
products, blood clots, debris, or fibrosis secondary to inflammation 
(12, 461–463); and dysfunction of the blood–brain and blood-CSF 
barriers (464). Altogether, these proposed mechanisms fall under two 
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major categories – CSF underdrainage and CSF overproduction (465). 
While it is not entirely clear how iron may be directly linked to either 
under- or overdrainage, it is clear that intraventricular iron is 
necessary, but not sufficient, to induce hydrocephalus after IVH. Other 
genetic factors may underlie development of hydrocephalus in 
response to IVH (466). Therefore, it will be important to consider how 
iron may contribute to both CSF under resorption and hypersecretion 
in tandem to best uncover the mechanism(s) by which iron may 
be linked to PHH onset.

Iron and blood-breakdown products have been implicated in 
the pathogenesis of not only PHH, but also direct injury to the 
brain. Intraventricular injection of hemoglobin in neonatal rats has 
previously been linked to neuronal degeneration in the 
hippocampus via the c-Jun N-terminal kinase (JNK) pathway 
(102). Exposure to intraventricular hemoglobin resulted in 
significant decreases in hippocampal volume, a finding which was 
reversable with iron chelation with deferoxamine (102). A separate 
study conducted in human neonates reported that very preterm 
infants with high-grade IVH and PHH had the smallest 
hippocampal volumes and the worst neurodevelopmental 
outcomes at 2 years of age compared to full-term infants and very 
preterm infants without brain injury (103). In conjunction with 
previous studies which demonstrated associations between smaller 
hippocampal size and worse cognitive and motor outcomes in 
humans (467, 468), these results together suggest that iron overload 
and toxicity after IVH may lead to hippocampal neuronal 
degeneration, which in turn leads to impaired neuromotor 
developmental outcomes. Furthermore, to directly relate 
intraventricular blood breakdown product levels with behavioral 
outcomes, intraventricular hemoglobin injection in rodents has 
been directly associated with an impaired acoustic startle response 
(437), a behavioral impairment which was prevented when rodents 
were treated with intraventricular deferoxamine at the time of IVH 
(437). Future studies should investigate the precise mechanisms by 
which iron and blood breakdown product exposure may lead to 
hippocampal neuron toxicity (ie. oxidative stress, ferroptosis) to 
identify targetable mechanisms for prophylactic treatment and 
prevention of IVH-induced brain injury and resultant 
neurodevelopmental effects.

Therapeutic directions for 
neurological sequelae after GMH-IVH 
that target iron homeostasis in the 
neonatal brain

Despite the devastating long-term neurodevelopmental 
consequences and mortality risk of PHH, there are currently no 
curative or preventative solutions available. Up to 34% of very low 
birth weight infants with persistent ventricular dilation after IVH 
require surgical intervention for CSF diversion with a shunt (469). 
While CSF diversion remains the gold standard treatment for 
hydrocephalus, it is associated with short and long-term complications 
including shunt failure rates of 33% with a mean time to failure of 344 
days (470). Endoscopic third ventriculostomy (ETV) with or withhout 
ChP cauterization (CPC) is an alternative treatment option however 
it does not have high success rates for the treatment of PHH 
(471–474).

In line with the hypothesis that iron plays a role in PHH 
pathogenesis, recent pre-clinical studies have investigated iron 
chelators as a possible treatment to prevent PHH after adult and 
neonatal IVH (101, 104, 437–440, 475). DFX is an iron chelator that 
sequesters free iron and has been used in the clinical setting to treat 
hemochromatosis (476, 477), thalassemia (478–480), and other iron-
overload syndromes. Previous research in an adult rat model of 
IVH-PHH reported that consecutive intraperitoneal deferoxamine 
administered in 12-h intervals over 7 days starting 3 h post-IVH 
decreased CSF iron and brain ferritin levels and reduced the incidence 
of ventriculomegaly 7 and 28 days after the start of DFX treatment 
(438). Gao et al. also demonstrated intraventricular co-injection of 
deferoxamine with lysed RBCs markedly reduced ventricular 
enlargement compared to rats injected with lysed blood cells in a rat 
model of adult IVH (475). In neonatal rodents, intraventricular 
administration of deferoxamine at the time of hemorrhage in a 
neonatal rat model of hemoglobin-induced IVH delays the onset of 
PHH for 11 days and prevents long-term behavioral deficits (437). In 
addition, intraperitoneal administration of deferoxamine 2 h after 
IVH followed by bis in die intraperitoneal administration over 24 h 
reduced hemoglobin-induced ventricular enlargement (101). These 
findings have been replicated where deferoxamine reduced 
ventriculomegaly, improved motor and cognitive function, and 
prevented other neurological sequelae in a rodent model of neonatal 
GMH-IVH (439).

In addition to deferoxamine, the tetracycline antibiotic 
minocycline has also been shown to inhibit ferritin upregulation, 
reduce edema, and prevent hydrocephalus after hemorrhage induction 
in a rodent collagenase model of GMH by way of chelating iron to 
reduce brain iron overload (104). Hemoglobin sequestration 
compounds including haptoglobin and α1-microglobulin have also 
been explored as neuroprotective treatment options to attenuate the 
neurotoxic and inflammatory consequences of excess hemoglobin 
released in IVH (481, 482). Intraventricular administration of 
erythropoietin and melatonin, hormones with roles in the survival 
and maturation of developing neural cells and in reducing 
neuroinflammation and oxidative stress, has also been shown to 
preserve neonatal neurodevelopment and prevent ventriculomegaly 
in a rat model of neonatal chorioamnionitis-IVH (442). The efficacy 
of melatonin and erythropoietin in combination to prevent PHH after 
IVH is also currently being evaluated in a clinical trial.

Potential therapeutic avenues that have 
not yet been explored

Beyond ongoing research into the efficacy of these and other 
therapeutic strategies for preventing PHH after IVH, other potential 
treatment options that address additional aspects of IVH-PHH 
pathophysiology and warrant further investigation include 
experimentally up/down regulating iron transporters on ependyma and 
other brain cells, adapting drugs used clinically for other disorders 
causing iron overload, and combining these strategies with techniques 
that improve the delivery of drugs to the brain.

Specifically, one of the cellular iron transporters we discussed in this 
manuscript, FPN1, may represent a particularly intriguing candidate for 
experimental up- or downregulation after IVH as the only known 
non-heme iron exporter that has been identified in mammals. In adult 
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Lewis and LEWzizi rats, Fpn1 is localized to the apical surface of ChP 
epithelial cells and the basolateral surface of ependymal cells (483). FPN1 
expression patterns along the ventricular system of neonates are not as 
clear and should be characterized for use as a potential target against iron 
overload in the ependyma, ChP, and/or brain parenchyma.

In addition to targeting the expression of iron transporters to 
prevent CSF iron from accumulating in cells and resulting in cellular 
iron overload, facilitating iron removal from the CSF with drugs used 
clinically for systemic iron overload (ie. previously studied examples 
of DFX and minocycline) represents an alternative therapeutic avenue. 
Beyond DFX and minocycline, adapting drugs which have been 
shown to reverse hemochromatosis and brain siderosis may present 
alternative options for iron chelation after IVH. For example, Hudson 
et al and Hale et al previously showed in mice that whole animal and 
intestine-specific genetic knockout of the lithium-sensitive enzyme 
bisphosphate 3′-nucleotidase (Bpnt1) enzyme leads to iron deficiency 
anemia and can rescue hemochromatosis (484, 485). Lithium may 
thus have potential to reduce iron levels after IVH and can be further 
investigated as a therapeutic agent; however, lithium may have off 
target effects.

Finally, the BBB presents a major challenge to brain iron chelation 
that is not present in treatment of systemic disorders of iron overload. 
However the BBB, in conjunction with the blood-CSF barrier, can 
be targeted with techniques that improve the delivery of drugs to the 
brain. Combining drug candidates with nanoparticles to circumvent 
the BBB (486–488), using focused ultrasound to open localized 
regions of the BBB (489–495), and other evolving drug-delivery 
strategies all represent solutions that may improve the efficacy, 
efficiency, and breadth of future investigations into the potential 
therapeutic avenues we  describe in this manuscript and should 
be taken advantage of going forward.

Conclusion

Maintaining the delicate balance in brain iron levels is vital 
for healthy brain development and is facilitated by a variety of 
iron handling proteins with specialized roles in brain and cellular 
iron import and export. GMH-IVH results in major disruptions 
to brain iron homeostasis during the neonatal time period 
through release of blood and blood breakdown products into the 
ventricular system. IVH is thought to be linked to PHH via iron 
overload-mediated pathogenesis, however the specific 
mechanisms by which this occurs are not clear. Determining the 
iron-mediated mechanisms by which IVH results in PHH is 
complicated due to a relative paucity of understanding for the 
function of baseline iron transport proteins in the developing 

brain. Identifying additional iron transport proteins in the 
neonatal brain and investigating their role in iron handling after 
neonatal IVH may lead to additional treatment strategies to 
address and prevent iron-mediated neurological sequelae of 
GMH-IVH including PHH.
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