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With the significant increase in the global prevalence of diabetes mellitus 
(DM), the occurrence of diabetic peripheral neuropathy (DPN) has become 
increasingly common complication associated with DM. It is particularly in the 
peripheral nerves of the hands, legs, and feet. DPN can lead to various adverse 
consequences that greatly affect the quality of life for individuals with DM. 
Despite the profound impact of DPN, the specific mechanisms underlying its 
development and progression are still not well understood. Advancements in 
magnetic resonance imaging (MRI) technology have provided valuable tools for 
investigating the central mechanisms involved in DPN. Structural and functional 
MRI techniques have emerged as important methods for studying the brain 
structures and functions associated with DPN. Voxel-based morphometry 
allows researchers to assess changes in the volume and density of different 
brain regions, providing insights into potential structural alterations related to 
DPN. Functional MRI investigates brain activity patterns, helping elucidate the 
neural networks engaged during sensory processing and pain perception in DPN 
patients. Lastly, magnetic resonance spectroscopy provides information about the 
neurochemical composition of specific brain regions, shedding light on potential 
metabolic changes associated with DPN. By synthesizing available literature 
employing these MRI techniques, this study aims to enhance our understanding 
of the neural mechanisms underlying DPN and contribute to the improvement of 
clinical diagnosis.
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FIGURE 1

MRI Studies of brain structure and function in DPN.

Introduction

According to the International Diabetes Federation, the diabetes 
mellitus (DM) prevalence is expected to grow substantially in the 
coming years worldwide (1). The projection indicates that by 2030, the 
number of people affected by DM will reach a staggering 643 million 
individuals (1). This sharp increase in prevalence is alarming as it 
implies a significant rise in the number of people struggling with this 
chronic condition on a global scale. Furthermore, the projections 
suggest that by 2045, the number of individuals living with DM is 
forecasted to further escalate to an astonishing 783 million (1). 
Diabetic peripheral neuropathy (DPN) is the most common 
complication of DM, affecting 13 to 58% of diabetes patients (2, 3). It 
is characterized by symmetric, length-dependent sensory and motor 
neuropathy, resulting from metabolic and microvascular changes 
caused by factors like high blood glucose levels (4). This condition 
often manifests in peripheral symptoms such as numbness, tingling, 
pain, and abnormal sensations (5). DPN patients often exhibit poor 
motor performance, which increases the risk of falls, fractures, and 
severe disabilities (6). While DPN is commonly regarded as a disorder 
that affects the peripheral nervous system, recent evidence suggests 
that alterations in the central nervous system may also play a role in 
the progression of this disease (7, 8).

In recent years, advancements in imaging technology, including 
voxel-based morphometry (VBM), resting-state functional MRI 
(rs-fMRI), task-state functional MRI (ts-fMRI), and magnetic 
resonance spectroscopy (MRS), have enabled researchers to gain 

insights into the structural and functional alterations that take place 
in the brains of individuals suffering from DPN. These imaging 
techniques have significantly advanced our knowledge of DPN by 
uncovering intricate structural and functional changes in the brain. 
These insights have not only enhanced our understanding of the 
neural basis of DPN but have also provided crucial diagnostic tools 
for this condition. By further exploring and refining the applications 
of MRI in DPN research, researchers have made significant strides in 
understanding DPN from both a structural and functional perspective. 
These advances have deepened our knowledge about the impact of 
DPN on the brain, with the ultimate goal of shedding light on the 
underlying mechanisms of the disease.

DNP study of brain structure

VBM

VBM is a method that involves comparing the probability of 
grey matter or white matter between different groups by comparing 
voxels, sometimes described as the density or concentration of grey 
or white matter (9) (Figure 1). Its importance lies in its unbiased 
evaluation and comprehensive assessment of anatomical differences 
throughout the entire brain, rather than focusing on a specific 
structure (10, 11). In a study conducted by Selvarajah et al., 277 
patients with type 1 DM (T1DM) and type 2 DM (T2DM), as well 
as 66 healthy volunteers, were included (12). The researchers 
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conducted a study on participants with DPN and classified them into 
two phenotypes based on their pain response (12). One type 
consisted of participants with easily irritable (IR) nociceptors, while 
the other type comprised of subjects with non-irritable (NIR) 
nociceptors (12). The analysis of brain imaging data using FMRIB 
Software Library (FSL) revealed significant reductions in cortical 
thickness in the primary somatosensory and motor cortices of 
participants with both painful and painless DPN compared to 
healthy individuals and participants without DPN. The severity of 
DPN, as measured by neurophysiological assessments, was found to 
be correlated with the thickness of the motor cortex. Additionally, 
there was a decrease in the volume of the ventral basal ganglia in 
both painless and painful DPN. Further investigation focused on 
comparing the two nociceptor phenotypes within the painful DPN 
group. This study demonstrated significant changes in the structure 
of important brain regions responsible for sensing touch and pain in 
individuals with painless DPN and those with painful DPN (12). 
Specifically, the study observed alterations in the IR and NIR types 
of nociceptors, which are sensory receptors that respond to noxious 
stimuli. These findings suggest that modifications in the cerebral 
structure play a crucial role in determining the clinical manifestation 
of painful DPN (12). This exciting development opens up new 
avenues for research to explore whether these structural changes can 
be utilized to classify patients based on the underlying mechanisms 
of their pain. Ultimately, this could lead to the development of more 
targeted treatments tailored to each individual’s specific needs (12). 
In a separate study conducted by Hansen et al., grey matter volume 
(GMV) and cortical thickness were assessed using voxel-based/
surface-based morphometry (13). The study involved adults with 
diabetic sensorimotor polyneuropathy (DSPN) and a control group. 
It was found that the total GMV was reduced in patients with DSPN 
compared to the control group (13). Furthermore, participants with 
painful neuropathy showed even more significant GMV loss 
compared to the control group. The researchers also explored the 
association between clinical features of DSPN and GMV loss. They 
found that features such as the severity of neuropathy and decreased 
concentration of N-acetyl aspartate/creatine (NAA/Cr) metabolite 
in the frontal lobes were associated with GMV loss in this cohort. 
Regional GMV loss was primarily observed in the bilateral thalamus, 
caudate, putamen, occipital lobes, and central precentral regions 
(13). In addition, cortical thickness reductions were observed 
specifically in frontal lobe regions (13). Overall, these studies 
provide evidence for significant structural alterations in the brain 
associated with diabetic neuropathy. Given the impact of clinical 
features on the observed total GMV loss, brain imaging can serve as 
a supplementary characterization tool for diabetic neuropathy.

In summary, GMV and the thickness of the cortex are two 
different measurements. The GMV reflects a combination of 
measurements including the volume, density, surface area of the 
cortex, sulcus, and gyrus patterns, as well as the thickness of the 
cortex. On the other hand, the thickness of the cortex only reflects the 
distance between the inner surface and outer surface of the gray 
matter on the cerebral cortex. The study conducted by Selverajah et al. 
found that participants with both painful and painless DPN had 
significantly reduced thickness in both the primary somatosensory 
and motor cortices (12). Additionally, Hansen et  al.’s research 
compared the total GMV between the experimental and control 
groups (13), and these two studies complement each other in 

providing a comprehensive description of morphological changes in 
brain structures.

DNP study of brain function

Rs-fMRI

Rs-fMRI can provide valuable insights into the overall activity and 
has made breakthroughs in exploring brain activity and functional 
connectivity (14–17) (Figure  1). In rs-fMRI studies of DPN, the 
commonly used analysis methods are the amplitude of low frequency 
fluctuation (ALFF), fractional amplitude of low frequency fluctuation 
(fALFF), and functional connectivity (FC). Xin et  al. (18) used 
rs-fMRI to study patients with DPN, non-DPN (NDPN), and normal 
subjects. We  calculated the ALFF, fALFF, and the regional 
homogeneity (ReHo). Compared to the NDPN group, the DPN group 
demonstrated substantial reduction in ALFF variables in the right 
superior orbital gyrus (ORBsup), and medial superior frontal gyrus 
(SFGmed), and increment in ALFF variables in the left inferior 
temporal gyrus (ITG). The fALFF in the right SFGmed was also 
decreased in the DPN group. Receiver operating characteristic curve 
analysis showed substantial differences in ALFF/fALFF variables in 
the right SFGmed and average ALFF variables in the left ITG and right 
ORBsup between the DPN and NDPN subjects. Patients with DPN 
showed atypical patterns of brain activity in the sensory-motor and 
cognitive regions. These irregularities in brain activation could 
potentially serve as critical indicators of underlying neurophysiological 
mechanisms responsible for DPN. Cauda et al. (19) studied resting-
state FC (rsFC) in DNP patients and compared them to a healthy 
control group. The connectivity of the dorsal and ventral attention 
networks and the connectivity of the dorsal anterior cingulate cortex 
(ACC) were generally decreased in DNP patients, which is related to 
enhanced processing. In the DNP group, the length of functional 
connections was generally shortened: the Euclidean distance between 
voxels connected in the DNP group was substantially shorter than that 
in the healthy control group across all examined networks. The 
top-down attention network involved in controlling attention was 
impaired in patients with diabetic neuropathy. Consistent with 
previous studies, chronic pain can disrupt the synchronization of 
common brain areas involved in self-monitoring, pain processing, and 
salience detection. Croosu et al. (20) conducted a study using rs-fMRI 
to investigate the brain activity and connectivity patterns in different 
groups of patients. The study included patients with T1DM and DPN, 
patients with T1DM and painless DPN, T1DM patients without DPN, 
and a group of healthy individuals as control subjects. Functional 
brain connectivity between the thalamus, posterior cingulate cortex, 
and insula was analyzed using seed-based connectivity analysis, and 
connectivity z-scores were correlated with peripheral nerve function 
measurements and pain scores. Overall, compared to DPN pain 
patients and healthy controls, T1DM patients without DPN showed 
increased connectivity between the thalamus and motor areas, as well 
as between the posterior cingulate cortex and motor areas. Poorer 
peripheral nerve function and higher pain scores were associated with 
lower connectivity between the thalamus and posterior cingulate 
cortex. Based on thalamic connectivity, the phenotype of T1DM can 
be divided into painful/painless DPN and T1DM without DPN. The 
current research findings support the use of functional MRI for 
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phenotype analysis, which may help in early detection and prevention 
of neuropathic complications.

Ts-fMRI

Ts-fMRI is a technique commonly used in neuroscience research 
to study the activation patterns of specific brain regions and circuits 
during different task execution processes (21–23) (Figure 1). In a 
study conducted by Ni et al. (24), the researchers examined a group 
of healthy individuals and participants with T2DM using a 
combination of neuroconduction tests, detailed cognitive 
assessments, olfactory behavioral tests, and odor-induced fMRI. The 
patients with T2DM were further assigned to NDPN and DPN 
groups. The researchers found that the DPN group demonstrated 
significant reductions in memory and processing speed scores, 
olfactory recognition and memory scores, when compared to the 
NDPN group. This suggests that individuals with DPN may 
experience cognitive deficits. Furthermore, the researchers 
discovered that the DPN group demonstrated decreased activation 
in the left frontal lobe, which is involved in various cognitive 
processes such as executive functions and decision-making. 
Additionally, there was a decreased seed-based FC in the right insula 
in DPN patients. The insula is a brain region implicated in emotional 
processing and interoception. These findings indicate that 
individuals with DPN have poorer cognitive abilities in terms of 
memory and processing speed compared to those with 
NDPN. Interestingly, the study also revealed that cognitive 
impairment can be predicted through olfactory behavioral tests and 
electrophysiological examinations, highlighting the potential utility 
of these non-invasive assessments in diagnosing and monitoring 
cognitive deficits in individuals with T2DM.

MRS

1H-MRS is a non-invasive imaging technique that allows 
researchers to study the neurochemistry of specific areas in the brain 
known as voxels (25, 26). By using different acquisition methods, 
researchers can detect various low molecular weight metabolites, such 
as NAA and Cr (27) (Figure 1). Sloan et al. (28). utilized 31P MRS to 
explore the bioenergetics in the primary somatosensory (S1) cortex of 
a group of patients with painful and painless DPN. They measured the 
ratio of phosphocreatine (PCr)/adenosine triphosphate (ATP), which 
serves as a measure of energy expenditure. The results exerted a 
substantial reduction in the PCr/ATP ratio in the group with painless 
DPN compared to the painful DPN group. This suggests that painful 
DPN patients have a higher energy consumption in the S1 cortex. 
Additionally, the relationship between PCr/ATP and neuropathic pain 
measurements indicates that S1 bioenergetics is associated with the 
severity of neuropathic pain. The findings suggest that S1 cortex 
bioenergetics could serve as a biomarker for painful DPN and may 
have the potential to be a target for therapeutic interventions. Another 
study by Sorensen et al. (29). used 1H-MRS to examine the brains of 
participants with and without painful DPN. The left thalamus, ACC, 
and dorsolateral prefrontal cortex (DLPFC) were investigated by 
1H-MRS. The diabetic patients exhibited reduced levels of NAA and 
Cr in the DLPFC compared to the control group. In the thalamus, the 

group with painful DPN showed lower NAA levels compared to the 
group without pain. These findings signify that NAA and Cr are 
different in the brains of DM patients compared to the control 
subjects, and the decrease in thalamic NAA levels in individuals with 
painful neuropathy could potentially contribute to the development 
of pain in certain cases. Overall, 1H-MRS is a valuable technique for 
studying the neurochemistry of specific brain regions and has 
provided insights into the differences in neuronal functionality and 
metabolite levels between individuals with and without painful 
DPN. These findings help to elucidate the intricate mechanisms of 
neuropathic pain and may inform the development of targeted 
interventions for pain management in individuals with DPN. Hansen 
et al. (30) conducted a cross-sectional study on patients with DSPN in 
T1DM and healthy controls. They utilized MRS to evaluate the levels 
of NAA/Cr in the thalamus. The results showed that compared to 
healthy individuals, there was a positive correlation between estimated 
thalamic volume and NAA/Cr levels in the thalamus. In patients with 
T1DM and severe DSPN, there was thalamic atrophy, which was 
associated with a decrease in NAA/Cr levels. This suggests that there 
is both structural loss and functional impairment in the thalamus, 
which may ultimately contribute to a deeper understanding of the 
pathophysiological processes that underlie the development and 
progression of DSPN.

Limitations

Currently, there are still several limitations in MRI studies on 
DPN. Firstly, the majority of studies conducted so far have been 
limited to a single healthcare center, which might restrict the 
generalizability of their findings. Moreover, the limited size of the 
samples used in these studies might potentially impact the accuracy 
and reliability of the findings. Secondly, another limitation lies in the 
relatively simplistic approach used for patient grouping in these MRI 
studies. This means that the researchers have mainly categorized 
patients into broad groups based on general DPN symptoms without 
considering the heterogeneity of the disease and its various stages. 
Consequently, this oversimplified patient grouping might overlook 
critical differences between individuals and impede the identification 
of specific imaging patterns associated with different stages or types 
of DPN. Furthermore, it should be noted that only one MRI technique 
has been commonly employed for experimental analysis in these 
studies. This single technique might fail to capture the comprehensive 
neuropathic changes occurring in DPN patients. It overlooks the rich 
diversity of mechanisms and manifestations in DPN pathology, which 
could be  better elucidated with a combination of multiple MRI 
modalities such as fMRI, or MRS. By combining the information 
generated by these different MRI techniques, researchers can obtain a 
multi-dimensional perspective of DPN, which can significantly 
enhancing our knowledge of the disease mechanisms involved. In 
summary, the current limitations in MRI studies on DPN include the 
restriction of single-center and small-scale studies, simplified patient 
grouping strategies, and the limited utilization of multiple MRI 
techniques. Overcoming these limitations through larger multi-center 
studies, more sophisticated patient stratification, and the integration 
of diverse MRI methods would undoubtedly offer a more detailed and 
holistic understanding of DPN and facilitate the development of more 
effective diagnostic and therapeutic strategies.
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Summary

In summary, MRI technology can clearly reflect the alterations in 
brain structure and function in DPN patients. In DPN brain structure 
studies, significant structural changes in specific key body movement 
or nociceptive brain areas of painless and painful DPN have been 
discovered using VBM, which can be  used as a supplementary 
representation of diabetic neuropathy. In patients with DPN, there is 
evidence of deviation from normal brain activity in specific regions 
related to sensory motor functions and cognitive processes. This 
abnormal brain activity may be considered as one of the underlying 
neurophysiological mechanisms contributing to the manifestation of 
DPN. Reduced NAA in the thalamus of painful DPN may explain the 
origin of pain in some cases.

In the future, it is necessary to further study the changes in DPN 
brain tissue by combining multiple methods, multi-center, and 
longitudinal MRI analysis. Additionally, the application and 
development of techniques such as neural networks, machine 
learning, and deep learning in the field of image processing can 
improve the accuracy of DPN diagnosis.
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