AUTHOR=Mei Qing , Shen Hui , Liu Jian TITLE=A nomogram for the prediction of short-term mortality in patients with aneurysmal subarachnoid hemorrhage requiring mechanical ventilation: a post-hoc analysis JOURNAL=Frontiers in Neurology VOLUME=14 YEAR=2024 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2023.1280047 DOI=10.3389/fneur.2023.1280047 ISSN=1664-2295 ABSTRACT=Background

Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating stroke subtype with high morbidity and mortality. Although several studies have developed a prediction model in aSAH to predict individual outcomes, few have addressed short-term mortality in patients requiring mechanical ventilation. The study aimed to construct a user-friendly nomogram to provide a simple, precise, and personalized prediction of 30-day mortality in patients with aSAH requiring mechanical ventilation.

Methods

We conducted a post-hoc analysis based on a retrospective study in a French university hospital intensive care unit (ICU). All patients with aSAH requiring mechanical ventilation from January 2010 to December 2015 were included. Demographic and clinical variables were collected to develop a nomogram for predicting 30-day mortality. The least absolute shrinkage and selection operator (LASSO) regression method was performed to identify predictors, and multivariate logistic regression was used to establish a nomogram. The discriminative ability, calibration, and clinical practicability of the nomogram to predict short-term mortality were tested using the area under the curve (AUC), calibration plot, and decision curve analysis (DCA).

Results

Admission GCS, SAPS II, rebleeding, early brain injury (EBI), and external ventricular drain (EVD) were significantly associated with 30-day mortality in patients with aSAH requiring mechanical ventilation. Model A incorporated four clinical factors available in the early stages of the aSAH: GCS, SAPS II, rebleeding, and EBI. Then, the prediction model B with the five predictors was developed and presented in a nomogram. The predictive nomogram yielded an AUC of 0.795 [95% CI, 0.731–0.858], and in the internal validation with bootstrapping, the AUC was 0.780. The predictive model was well-calibrated, and decision curve analysis further confirmed the clinical usefulness of the nomogram.

Conclusion

We have developed two models and constructed a nomogram that included five clinical characteristics to predict 30-day mortality in patients with aSAH requiring mechanical ventilation, which may aid clinical decision-making.