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Patient-specific modeling for
guided rehabilitation of stroke
patients: the BrainX3 use-case
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1Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands,
2Eodyne Systems S.L., Barcelona, Spain, 3Department of Information and Communication Technologies,
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BrainX3 is an interactive neuroinformatics platform that has been thoughtfully
designed to support neuroscientists and clinicians with the visualization, analysis,
and simulation of human neuroimaging, electrophysiological data, and brain
models. The platform is intended to facilitate research and clinical use cases,
with a focus on personalized medicine diagnostics, prognostics, and intervention
decisions. BrainX3 is designed to provide an intuitive user experience and is
equipped to handle di�erent data types and 3D visualizations. To enhance
patient-based analysis, and in keeping with the principles of personalized
medicine, we propose a framework that can assist clinicians in identifying
lesions and making patient-specific intervention decisions. To this end, we are
developing an AI-based model for lesion identification, along with a mapping
of tract information. By leveraging the patient’s lesion information, we can gain
valuable insights into the structural damage caused by the lesion. Furthermore,
constraining whole-brain models with patient-specific disconnection masks
can allow for the detection of mesoscale excitatory-inhibitory imbalances that
cause disruptions in macroscale network properties. Finally, such information
has the potential to guide neuromodulation approaches, assisting in the
choice of candidate targets for stimulation techniques such as Transcranial
Ultrasound Stimulation (TUS), which modulate E-I balance, potentiating cortical
reorganization and the restoration of the dynamics and functionality disrupted due
to the lesion.
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Introduction

Stroke, being the second leading cause of disability and death on a global scale, poses a

considerable burden to individuals and society alike (1). The staggering number of disability-

adjusted life-years (DALYs) lost,∼116million in 2016 alone, underscores the urgent need for

effective stroke management (2). Despite some improvements in age-standardized mortality

rates for ischemic stroke (IS) and hemorrhagic stroke (HS) from 1990 to 2010, there was

a substantial increase in the absolute number of incident IS and HS cases by 37 and 47%,

respectively (3). Given statistics, the importance of rehabilitation in stroke care cannot be

overstated. Effective rehabilitation interventions play a crucial role in minimizing disability,

optimizing recovery, and improving the quality of life for stroke survivors. Early and tailored

rehabilitation efforts are essential to address the diverse physical, cognitive, and emotional

challenges faced by stroke patients, ultimately empowering them to regain independence and

participate fully in their daily lives.
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The decreased quality of life in stroke patients is a result of the

associated symptoms which extend beyond the well-known motor

impairments, to the domains of sensory processing and higher-

order cognition (4–6). In addition, stroke-related side effects such

as depression and chronic pain can also have a significant impact

on a patient’s quality of life (7, 8). While some of these symptoms

can be directly attributed to the loss of lesioned areas, post-stroke

functional disruptions spread beyond the lesioned area to the rest

of the brain, a phenomenon known as diaschisis (9). In fact, stroke

lesions have been shown to lead to diverse changes in cortical

functional connectivity and its network properties (9, 10), which

often correlate with some of the pathological deficits observed

in stroke patients (11, 12). Importantly, these are not limited to

edge-specific changes in FC and disruptions in complex graph

properties of functional networks have been related to stroke

deficits and progression. More specifically, lesions in connector

hubs (i.e., nodes connecting functional modules), as opposed to

lesions in sub-network hubs affect the integrity of functional

network organization (13) through decreases in both local (14)

and global (14, 15) graph efficiency. In addition, studies also

show a decoupling between structural and functional connectivity,

correlated with motor function (15). On another note, modularity,

quantifying the balance between the integration and segregation

of functional networks (16), is also affected in stroke patients.

Importantly, modularity evolves toward healthy levels over a

time scale of months, relating to the recovery of higher-order

cognitive functions such as memory and language (16). All in

all, the literature points out connectional diaschisis as a pivotal

phenomenon in stroke patients, pushing the focus away from focal

deficits caused by gray matter loss toward network dysfunction (9).

Perhaps more intriguing than the phenomenon of diaschisis

itself is the fact that cortical networks, being highly plastic,

particularly during stroke recovery (17), can reorganize to recover

abstract properties of FC such as modularity toward pre-lesion

levels (18). In that regard, recent work suggests that the recovery of

local balance during the months following a stroke may not only be

a key piece of recovery (17, 19) but also underlie the re-emergence

of disrupted properties of functional networks in the neocortex,

such as modularity (18, 20). This view is strongly supported by

literature, which indicates a relationship between stroke recovery

and persistent increases in local excitability (21–29). Therefore, we

suggest that the framework of mesoscale E-I homeostasis and its

impact on macroscale properties of functional networks is essential

in understanding, and thus potentiating, the process of stroke

recovery. Under this framework, large-scale models of the human

brain provide a useful tool for the study of how local E-I balance

shapes macroscale dynamics and networks, given that changes in

excitability are difficult to probe non-invasively (18, 20). Therefore,

we argue that whole-brain models, constrained by patient-specific

lesion information and accounting for local homeostasis can be

a powerful tool to assess the critical changes required to recover

local balance and, consequently, promote the reorganization of

large-scale networks.

Therefore, to enhance the prognostic ability of current clinical

practices, new pipelines should be developed to account for patient-

specific mapping of lesioned networks, together with models that

allow not only the prediction of patient recovery but also the testing

of neuromodulation approaches. For that reason, in this article,

we introduce a pipeline for lesion detection and patient-specific

whole-brain modeling within the versatile framework of BrainX3.

As a cutting-edge neuroinformatics platform, BrainX3 offers a

promising avenue for integrating these methodologies seamlessly

(Figure 1).

In BrainX3 (34), we foresee a transformative integration

of AI-based lesion identification and whole-brain models,

ushering in a new era of personalized medicine. More specifically,

through accurate lesion detection, classification, and subsequent

integration in whole-brain models, this pipeline enables a dynamic

understanding of neural interactions, paving the way for enhanced

diagnosis and prognostic insights. Leveraging this holistic

knowledge, BrainX3 can help to identify potential targets for non-

invasive neuromodulation techniques like Transcranial magnetic

stimulation (TMS), transcranial direct current stimulation (tDCS),

and transcranial ultrasound stimulation (TUS), revolutionizing

intervention strategies with personalized precision.

In the following sections, we discuss current techniques

for automatic lesion segmentations, state-of-the-art large-scale

modeling studies and the key aspects of their application to the

context of stroke and the potential of techniques such as TMS for

targeted stimulation of key areas for stroke recovery. Finally, we

present a unifying framework, within BrainX3, for the seamless

integration of all these steps in a pipeline for clinical use.

Automatic lesion segmentation

Medical imaging techniques, such as Computed Tomography

(CT), CT perfusion (CTP), Positron Emission Tomography (PET),

and Magnetic Resonance Imaging (MRI), have shown great

promise in providing essential information about stroke lesions’

shape, size, location, and metabolism. Utilizing these imaging

modalities can aid clinicians in increasing the survival rate of

patients affected by ischemic stroke. Among these techniques,

Magnetic Resonance Imaging (MRI) is preferred due to its

sensitivity to early parenchymal changes of infarction (35).

Numerous biomedical image segmentation methods based

on thresholding, region growing, statistical pattern recognition,

fuzzy modeling, and Markov random field techniques have been

explored in recent literature (36–38). While some methods require

user interaction and are not fully automated, many automatic

segmentation approaches rely on hand-designed features (39, 40).

These techniquesmay produce erroneous results when dealing with

small lesions or lesions in close proximity to normal tissue. To

address these challenges, the application of Convolutional Neural

Networks (CNNs) such as U-Net has gained significant interest for

image classification and segmentation in various fields, including

stroke lesion segmentation from multi-modal MRI (30, 41–45).

U-Net architecture involves incorporating a substantial number

of feature channels during the upsampling phase. This allows the

network to propagate context information to higher resolution

layers, resulting in a U-shaped architecture with the expansive

path mirroring the contracting path. Notably, the network does

not include any fully connected layers and solely utilizes the valid

part of each convolution. Consequently, the segmentation map

contains only the pixels with complete context available in the input
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FIGURE 1

Workflow illustrating the comprehensive approach proposed in the article. The process begins with automatic lesion detection (30), which generates
a lesion mask from neuroimaging data (31). This lesion mask serves as a foundation for patient-specific modeling, facilitating the creation of
personalized brain models. These models encompass both structural and functional aspects, providing a holistic representation of the individual’s
brain. Subsequently, non-invasive transcranial ultrasound stimulation (TUS) (32) is applied to target specific regions for neurorehabilitation. This
integration of lesion detection, patient-specific modeling, and TUS presents a cohesive framework for advancing personalized medicine in
neurological care. The representative Unet architecture image, whole brain biophysical model and transcranial ultrasound stimulation are adapted
from Ronneberger et al. (30), Pathak et al. (33), and Transcranial Ultrasound Stimulation and Its Applications in Neurosciences, (32) respectively.

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2023.1279875
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Sharma et al. 10.3389/fneur.2023.1279875

image. This strategic approach enables the smooth segmentation of

arbitrarily large images through an overlap-tile strategy (30).

The adoption of the U-Net architecture can play a pivotal

role in facilitating the identification of lesion sites, which holds

immense significance in the analysis of patient-specific disruptions

in structural connectivity and simulation of whole brain activity.

Therefore, more accurate lesion segmentation enables clinicians

and neuroscientists to precisely pinpoint areas of structural damage

caused by the lesion. Consequently, when combined with other

neuroinformatics tools, such as BrainX3 (46), the U-Net-based

lesion identification can provide valuable insights into the patient’s

connectome and contribute to a comprehensive understanding of

irregularities in large-scale brain dynamics. At SPECS lab we are

working on training a U-Net architecture on a publicly available

database for the identification of lesions and further solidifying the

BrainX3 clinical use case.

Computational modeling for stroke

Since the dawn of connectomics (47, 48) estimates of white-

matter structural connectivity of the human cortex can be obtained

from MRI recordings and used to constrain models of interacting

populations. The dynamics of such populations can be abstracted

using mean-field models, which allow for the modeling of large-

scale dynamics at a higher level of abstraction which is more

computationally viable and tractable (49). Since the study by Honey

and colleagues (50) macaque structural connectivity, large-scale

models of the brain have been used to elucidate the relationship

between structure and functions and how properties such as

conduction delays, local excitatory-inhibitory (E-I) balance and

oscillatory dynamics underlie proper cortical function (51–56).

Such approaches have also proven useful in the context of

stroke. The first model of the effect of localized lesions on the

macaque cortex showed that lesions to structural hubs of the

connectome lead to larger changes in system dynamics, spread

even beyond the vicinity of lesions, akin to the phenomenon of

diaschisis (57). Ever since further stroke models have elaborated

on the fragility of subnetworks to structural damage (58) and how

disconnection affects the graph properties of FC (59).

Furthermore, by relying on local interactions between

excitatory and inhibitory populations, approaches such as the

Wilson-Cowan model (60) allow for the analysis of cortical

microcircuitry at the mesoscale level (e.g., E-I coupling). Indeed,

recent results suggest that FC of stroke patients can be optimally

fitted when local inhibition is decreased, compared to healthy

controls (61), in line with previous results (24) supporting the

participation of E-I homeostasis in recovery (18).

Furthermore, due to the plastic nature of cortical networks

and the evidence of relevant plasticity occurring after stroke (17,

19, 62), particularly at the level of E-I homeostasis (63), it is

relevant to account for such mechanisms in whole-brain models of

stroke. Vattikonda et al. (64) were the first to demonstrate that E-I

homeostasis was able to return resting-state FC close to pre-lesion

levels and that the extent of recovery correlated with the graph

properties of lesioned areas. Further studies with other homeostatic

mechanisms have shown their importance for not only FC but also

network dynamics (65). Recently, the work of Páscoa dos Santos

et al. (18, 20), extended these previous approaches by showing that,

by accounting for local E-I homeostasis, models could not only

explain the re-emergence of network properties such as modularity

but that the distribution of changes in local excitability explains

empirical findings and might relate to the emergence of late-

onset side effects such as depression. In parallel, Chakraborty et al.

(66) have used a similar approach to investigate the key areas for

the recovery of E-I balance after stroke in order to promote the

restoration of functional networks.

Therefore, mean-field based large-scale models are a powerful

tool for probing into the influence of mesoscale dynamics on

the macroscale organization of the neocortex, with implications

for functional recovery in stroke patients, particularly when E-I

homeostasis is accounted for.

In the case of stroke, being able to study these processes in

personalized models is of particular importance. More specifically,

models accounting for local E-I homeostasis can allow clinicians

to predict the magnitude of adaptation in local excitability

required for the reorganization of large-scale functional networks

(20). Such knowledge can then be used in the clinic to guide

neurorehabilitation or neurostimulation therapies toward optimal

targeting of brain areas that might be pivotal for optimal

recovery (67).

Subject-specific information is pivotal for personalized models,

both at the level of gray-matter necrosis and white-matter

disconnection (68, 69). While it is possible to constrain models

with individualized estimates of SC (65), such data generally does

not attain a satisfactory level of signal-to-noise reaction and results

indicate that the use of individualized connectomes is not the

most critical step in building patient-specific models (70). To that

effect, normative connectomes from open databases, such as the

HCP (71), can be constrained by subject-specific lesions, obtained

through either manual or automatic segmentation of structural

T1 MRI imaging (30). This approach has proven successful in

whole-brain modeling (72), where lesion masks were used in

the healthy connectome to reproduce post-stroke disruptions in

functional networks.

Finally accounting for E-I homeostasis might provide key

insights into the evolution of brain networks in the months

following the stroke (20). Firstly, by simulating healthy activity

in models constrained by a normative connectome, and applying

patient-specific lesions to these healthy models, one can predict the

regions more impacted by the loss of incoming excitation from

the lesioned area. Most importantly, these lesioned models can

provide a picture of the evolution of local excitability that would

allow for the optimal reorganization of functional networks, which

can be compared with the actual progression of stroke patients.

More specifically, models with the same large-scale anatomical

constraints and patient-specific lesions can be fitted to empirical

data (e.g., fMRI) obtained along the progression of the disease

by optimizing the weights of local excitatory-inhibitory coupling

of the neural masses. These values can then be compared to

the predictions obtained from models with fully operational E-

I homeostasis, to aid in the identification of critical targets

for neurostimulation to promote recovery of balance in regions

where E-I homeostasis might be unable to do so (20). With
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that in mind, we advance this multiscale approach as a potential

framework for providing valuable spatially specific information to

guide clinician decisions on rehabilitation protocols, promoting

optimized recovery.

Non-invasive neuromodulation

After identifying the lesion site and potential target areas

for non-invasive stimulation using whole brain models, various

non-invasive neuromodulation techniques can be explored for

their application in clinical settings to promote neural plasticity

and enhance function in stroke patients. Transcranial magnetic

stimulation (TMS) and transcranial direct current stimulation

(tDCS) offer different effects on neurons, with TMS inducing

neuronal depolarization through a magnetic field, while tDCS

modulates cortical excitability through hyperpolarization or

depolarization of neuronal resting membrane potentials (73–79).

However, limitations such as spatial resolution and penetration

depth have been observed in these techniques, hindering their

full potential for stroke treatment (73). On the other hand,

transcranial-focused ultrasound stimulation (TFUS) emerges as a

promising non-invasive, high-resolution, and safe technology that

can effectively modulate neural activity and exert neuroprotective

effects (80, 81). Studies have demonstrated its efficacy in treating

various neurological disorders, including stroke, without causing

tissue damage. With its potential to become a non-invasive

treatment method for ischemic stroke, transcranial ultrasound

stimulation (TUS) holds promising research prospects and offers a

valuable avenue for patient-specific intervention decisions in stroke

management (82–85).

The use of focused ultrasound has witnessed a surge in

various applications, with diagnostic ultrasound becoming an

essential clinical imaging modality (86–88). Transcranial-focused

ultrasound (TFUS) is a promising non-invasive technology, that

offers capabilities to monitor cerebral circulation with high

temporal and spatial resolution (89). TFUS allows precise delivery

of energy to brain tissue at various intensities, enabling modulation

of nervous system activity through frequency, intensity, and

stimulation time adjustments (90). This stimulation involves

transmitting ultrasound waves in continuous or pulsed forms

via an ultrasonic probe (67, 91, 92). Importantly, TFUS can

modulate neural excitability (93) through mechanical effects

(94), alterations in ion channels (95) and membrane capacitance

(96), generation of sonopores (97), and thermal effects through

temperature elevation caused by sound waves (93, 98). As a

potential non-invasive treatment for neurological diseases, TFUS’s

therapeutic effect is influenced by factors like carrier frequency,

peak intensity, duration, pulse repetition frequency, and duty

cycle (91). Utilizing ultrasound phased array technology, TFUS

allows large-scale neuromodulation within a tissue volume by

directing focused ultrasound beams to different neural targets

(99, 100). Alternatively, single-element transducers enable targeted

transmission of acoustic energy to specific areas in the brain, acting

on focal points (101). Low-intensity focused ultrasound (LIFU),

operating at specific frequencies and intensities stimulates nerve

tissue mainly through pressure generated by ultrasonic radiation

(92). LIFU can improve blood supply around brain lesions via

neural regulation without causing tissue damage, making it a

promising option for the non-invasive treatment of ischemic

stroke (102–104).

Therefore, given the potential of ultrasound stimulation

techniques to modulate neural excitability or improve blood supply

around necrotic areas, we highlight their potential to supplement

current rehabilitation therapies and potentiate recovery post-

stroke.

BrainX3-use case

BrainX3 serves as an exemplary platform for personalized

medicine, developed at SPECS lab where the team is currently

working on integrating lesion segmentation, whole-brain

modeling, and non-invasive stimulation protocols. It adopts a

layered architecture with distinct levels: Graphical User Interface

(GUI), Application Core, Native, and Specific Plugins. This

design ensures decoupling of the user interface from the internal

application logic, as well as the internal logic from the data

types and components. The GUI layer handles user interfaces

and interactions for various platforms, providing access to a

multimodal exploration framework (Figure 2). This framework

allows users to explore a logical dataset organization, perform

semantic corpora queries, visualize 3D brain atlases, and visualize

functional connectome. The 3D visualization is powered by VTK,

displaying anatomical data, image post-processing results, and

analysis and simulation outcomes (34).

An iterative development and integration approach, guided

by continuous user feedback, ensures the advancement and

combination of various components to achieve a comprehensive

solution. By incorporating lesion segmentation, whole brain

modeling, and non-invasive stimulation functionalities, BrainX3

embodies the concept of personalized medicine, facilitating

individualized patient care and intervention decisions. The

platform’s intuitive and powerful capabilities make it a prime

example of how cutting-edge neuroinformatics technology can

revolutionize healthcare by tailoring treatments to each patient’s

unique needs (34, 46, 105–108).

The integration of AI-based models for lesion identification

and whole brain models within the BrainX3 platform presents

a revolutionary step in personalized medicine. The combination

of these cutting-edge technologies opens up new horizons for

understanding and treating neurological disorders at an individual

level. By leveraging AI algorithms for lesion identification, BrainX3

empowers neuroscientists and clinicians to accurately detect and

classify lesions, providing crucial insights into the structural

damage caused by these abnormalities. This precise lesion

identification is vital for tailoring treatment plans to each patient’s

specific needs, enhancing the potential for successful interventions.

Furthermore, the incorporation of whole brain models

in BrainX3 enables the replication of patient-specific brain

activity, going beyond static lesion identification to grasp the

dynamic and interconnected nature of the brain. With access to

longitudinal patient-specific data, BrainX3 allows the exploration

of irregularities in large-scale brain dynamics, shedding light on

complex neural interactions underlying neurological conditions.

This comprehensive understanding of brain dynamics can
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FIGURE 2

Illustration of the primary interface in BrainX3 2.0. On the left pane, you’ll find showcased datasets, encompassing atlases and imaging information.
The center pane is designated for the visualization of imaging data and a three-dimensional portrayal of the brain structure. Lastly, the right pane
features the BrainX3 Semantome, employing API-driven search tools to retrieve up-to-date research articles and leveraging OpenAI’s chat GPT to
respond to inquiries.

profoundly impact diagnosis and prognosis, laying the foundation

for more informed and personalized treatment decisions.

Moreover, the amalgamation of lesion identification andwhole-

brain modeling opens up the possibility of identifying potential

targets for non-invasive neuromodulation techniques within

BrainX3. By analyzing the patient’s connectome and structural

data, BrainX3 can be used to pinpoint specific brain regions

affected by the lesion and propose nodes that could serve as targets

for non-invasive interventions. This breakthrough has significant

implications for developing tailored therapeutic approaches,

such as transcranial magnetic stimulation (TMS), transcranial

direct current stimulation (tDCS), and transcranial ultrasound

stimulation (TUS). These techniques have demonstrated the

potential to promote neural plasticity, modulate excitability and

improve brain function in various neurological disorders. With

BrainX3′s capabilities, clinicians can identify optimal targets for

neuromodulation and use embedded models to test the effect of

the perturbation on such targets, thus increasing the efficacy of

treatment while minimizing potential side effects.

In conclusion, the integration of AI-based lesion identification,

whole-brain modeling, and the identification of potential targets

for non-invasive neuromodulation within BrainX3 represents a

pivotal leap forward in personalized medicine. This synergy

between advanced technologies empowers clinicians to create

highly individualized treatment plans, taking into account the

unique characteristics of each patient’s brain. As BrainX3 continues

to evolve and refine its functionalities, it has the potential to

revolutionize patient care, offering unprecedented opportunities to

advance the field of neuroscience and transform the landscape of

personalized medicine.
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