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Background: Parkinson’s disease (PD) often presents with subtle early signs, 
making diagnosis difficult. F-DOPA PET imaging provides a reliable measure of 
dopaminergic function and is a primary tool for early PD diagnosis. This study aims 
to evaluate the ability of machine-learning (ML) extracted EEG features to predict 
F-DOPA results and distinguish between PD and non-PD patients. These features, 
extracted using a single-channel EEG during an auditory cognitive assessment, 
include EEG feature A0 associated with cognitive load in healthy subjects, and 
EEG feature L1 associated with cognitive task differentiation.

Methods: Participants in this study are comprised of cognitively healthy patients 
who had undergone an F-DOPA PET scan as a part of their standard care (n  =  32), 
and cognitively healthy controls (n  =  20). EEG data collected using the Neurosteer 
system during an auditory cognitive task, was decomposed using wavelet-packet 
analysis and machine learning methods for feature extraction. These features 
were used in a connectivity analysis that was applied in a similar manner to fMRI 
connectivity. A preliminary model that relies on the features and their connectivity 
was used to predict initially unrevealed F-DOPA test results. Then, generalized 
linear mixed models (LMM) were used to discern between PD and non-PD 
subjects based on EEG variables.

Results: The prediction model correctly classified patients with unrevealed scores 
as positive F-DOPA. EEG feature A0 and the Delta band revealed distinct activity 
patterns separating between study groups, with controls displaying higher activity 
than PD patients. In controls, EEG feature L1 showed variations between resting 
state and high-cognitive load, an effect lacking in PD patients.

Conclusion: Our findings exhibit the potential of single-channel EEG technology 
in combination with an auditory cognitive assessment to distinguish positive 
from negative F-DOPA PET scores. This approach shows promise for early PD 
diagnosis. Additional studies are needed to further verify the utility of this tool as 
a potential biomarker for PD.
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1 Introduction

Diagnosing Parkinson’s Disease (PD) at early stages may 
be  challenging as clinical signs can be  subtle, inconclusive, and 
require differentiation from other disorders. To validate their 
diagnosis in the early stages, clinicians utilize objective biomarkers 
of dopaminergic degeneration. Positron emission tomography (PET) 
scans with [18F]-6-fluoro-L-3,4-dihydroxyphenylalanine (F-DOPA) 
is an established FDA-approved technique for PD diagnosis (1). 
Despite the effectiveness of PET scans in diagnosing PD, several 
challenges limit their broader use: they are large and costly, involve 
30 min of radiation exposure using radioactive tracers (2), requires 
trained personnel, and requires the patient to lay still, which is 
particularly challenging for seniors with tremor symptoms. 
Moreover, these scans often are not covered by health insurance, 
adding financial burdens (3). As the pursuit of disease-modifying 
treatments for PD intensifies, there is a growing demand for new, 
cost-effective biomarkers that facilitate early diagnosis and are more 
accessible in clinical settings (4).

Electroencephalographic (EEG) signals have been extensively 
studied for over a century and are generally used to investigate cortical 
and subcortical functionality (5). EEG offers a low-cost and 
non-invasive approach, directly measuring neural activity, which can 
be analyzed in various dimensions, including time, space, frequency, 
power, and phase, reflecting specific neurophysiological mechanisms 
(6). Advancements in ML and signal processing techniques, such as 
multi-taper analysis (7, 8) have significantly contributed to extracting 
useful information from raw EEG signals (9). Novel techniques can 
exploit the vast amount of information on time-frequency processes 
in a single recording (10, 11).

Since the loss of dopaminergic neurons affects multiple brain 
networks, EEG could serve as a research tool in PD (12). Quantitative 
EEG (qEEG) provides a reliable and widely available measurement 
that could yield biomarkers for disease severity in PD patients (13). 
Generally, the incidence of EEG abnormalities in PD patients is higher 
than in healthy elderly individuals, with the most common alteration 
being generalized slowing of the EEG (14, 15). Some research is 
available regarding PD diagnosis; for instance, coherence function 
(CF) has been hypothesized to be a relevant tool for detecting early 
PD signs (16). CF is related to cortical dynamic imbalances and 
measures linear dependence through the frequency domain between 
a pair of electrodes placed on the scalp (17). Coherence can detect 
changes in functional and effective cortical interconnections that 
occur in the initial onset of PD (18). Indeed, previous studies have 
reported that non-linear analysis of EEG signals, particularly machine 
learning (ML) methods, can extract features that could potentially 
serve as PD biomarkers (19–25). A recent study published results 
discriminating early-stage PD from healthy brain function using 
multi-EEG event-related potentials (ERPs) combined with brain 
network analytics and ML tools while participants performed an 
auditory cognitive assessment (26).

In this pilot study, we  evaluated the ability of an easy-to-use 
single-channel EEG system (by Neurosteer®) combined with an 
auditory cognitive assessment to detect electrical activity changes 
associated with PD. Past research indicates that capturing EEG data 
during active participation in cognitive and auditory tasks can reveal 
unique features, potentially enhancing the discrimination power of 
different brain states (27). Of particular interest are two biomarkers: 

features A0 and L1. EEG feature A0, previously identified as a classifier 
distinguishing cognitive load from rest in healthy subjects, has been 
recognized as a potent predictor of cognitive decline in individuals 
with mild-to-moderate impairment (28). Whereas EEG feature L1 
acted as an LDA classifier, which was developed and validated on 
datasets involving participants undergoing an n-back working 
memory task (29). Both features were selected due to their 
demonstrated robustness and consistent capability to differentiate 
between cognitive states and task levels (29, 30). It is essential to note 
that the participants holding a valid F-DOPA test included in this 
study had no prior diagnosis of cognitive decline and did not report 
any neuro-cognitive symptoms. We utilized an auditory assessment 
with musical stimuli that has been previously employed to distinguish 
between cognitive decline and healthy senior participants (28, 31). The 
objective of the present study was to assess the capability of these 
features extracted from a single-channel EEG during an auditory 
cognitive assessment, to differentiate between positive and negative 
F-DOPA PET results in order to potentially discriminate between PD 
and non-PD populations.

2 Materials and methods

2.1 Participants

This study included 32 participants (15 females) with a mean age 
of 64.5 (SD = 11.73), all holding a valid F-DOPA PET scan results 
obtained as part of their standard care due to clinical symptoms 
suspicious of early PD. Additionally, 20 age-matched, cognitively 
healthy individuals (7 females) with a mean age of 66.61 (SD = 5.33) 
served as controls. The entire cohort of 52 participants underwent 
assessment at rest, and then an auditory cognitive assessment, while 
their brain activity was recorded using a single-channel 
electroencephalogram (EEG) by Neurosteer. Informed consent was 
obtained from each participant before their involvement in the study.

2.1.1 Participants with F-DOPA PET results
Participants with F-DOPA PET results were recruited from the 

Movement Disorders Unit at Tel Aviv Sourasky Medical Center if they 
had an MMSE score higher than 24 and could hear, read, and 
understand instructions for the Informed Consent Form (ICF) 
discussion as well as for the auditory assessment tasks. Individuals 
with compromised scalp or skull integrity, facial or forehead skin 
irritation, hearing loss, cognitive decline and a history of severe drug 
abuse were excluded from the study.

Ethical approval for data collection was obtained from the Ethics 
Committee (EC) of Tel Aviv Sourasky Medical Center (Ichilov) on 
June 07, 2021. Israeli Ministry of Health (MOH) registry number: 
MOH_2021-06-02_010019.

2.1.2 Healthy participants
For statistical power reasons, since most patients recruited to the 

study had a positive F-DOPA result, we did an additional analysis with 
a group of healthy age-matched controls. These patients’ data was 
taken from another study (NIH registry number: NCT04683835). Out 
of 80 patients recruited from an orthopedic rehabilitation center, 40 
had an MMSE score between 28 and 30. Out of this group, 
we randomly selected 20 participants to compose the healthy group 
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for the purpose of the current study. Participants were selected 
randomly to create an age-matched control group (random selection 
was done using the pandas DataFrame.sample function). The resulting 
control group was comprised of 7 females and 13 males to match the 
existing gender distribution among the patient already included in the 
analysis. The mean age was 66.61 (5.33), and the mean MMSE score 
was 29.09 (0.78). The full participants selection code is provided in 
Supplementary materials C.

2.1.3 Study groups
The 52 study participants were initially divided into four groups 

based on their F-DOPA results (see Figure 1): participants with a 
positive F-DOPA result (n = 14); participants with a negative 
F-DOPA result (n = 6); participants whose label was initially 
unrevealed in the ‘unknown’ group (n = 12); and healthy age-matched 
controls (n = 20). These groups were used in building and testing the 
prediction model.

For the second part of the analysis using Linear mixed Models 
(LMM), the labels were revealed, and participants were added to the 
relevant groups: the healthy age-matched controls were combined 
with the negative group to form the ‘healthy’ group (n = 26), which 
was compared to the ‘PD patients’ group consisting of patients with a 
positive F-DOPA result (n = 26, see Healthy participants 
section above).

To confirm that the groups were balanced in terms of age, gender, 
and MMSE scores, we  analyzed the average ages of each group 
collectively and for males and females individually. Moreover, 

we contrasted the age and MMSE scores within each group for both 
genders. These analyses were performed using the Welch Two 
Sample t-test.

2.2 EEG device

EEG measurements were executed utilizing the Recorder 
(Neurosteer EEG recorder). An FDA cleared adhesive with three 
electrodes was applied to the subject’s forehead, using a dry gel to 
enhance signal quality. The non-intrusive electrodes were located at 
the prefrontal areas, producing a single-EEG channel derived from 
the difference between Fp1 and Fp2 and a ground electrode at Fpz, 
based on the international 10/20 electrode positioning. The signal 
range is ±25 mV (background noise <30nVrms). The electrode 
contact impedances were kept under 12 kΩ, as determined by a 
handheld impedance device (EZM4A, Grass Instrument Co., USA). 
The data was acquired in a continuous mode and subsampled to 500 
samples per second.

During the data collection, a proficient research member oversaw 
each subject to reduce potential muscle interference. Subjects received 
guidance to refrain from making facial gestures during the session, 
and the supervising member would notify them if noticeable muscle 
or eye movements were detected. Notably, the differential signal 
processing and superior common-mode rejection ratio (CMRR) 
contribute to minimizing motion disturbances and electrical 
interference (32).

FIGURE 1

Study design and groups at each analysis stage. The study included patients with valid F-DOPA results and age-matched healthy participants as 
controls. In the first part of the analysis, a prediction model was used; patients with an initial positive F-DOPA score were included in the model’s 
training data, while patients with an initial negative F-DOPA score, patients with unrevealed test scores, and healthy controls made up the testing data. 
In the second part of the analysis (after the results were revealed), a Linear Mixed Model (LMM) was utilized to compare between two combined 
groups: the PD-patients group (n  =  26, patients with positive F-DOPA results) and the healthy group (n  =  26, patients with negative F-DOPA results 
along with healthy controls).
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2.3 Procedure

2.3.1 EEG recording and auditory assessment 
protocol

The session was conducted in a quiet, well-lit room. A research 
team member prepared the sanitized Neurosteer EEG recording 
equipment (including the disposable electrode patch, sensor, EEG 
monitor, and clicker) for deployment. Recording commenced once the 
electrode patch was attached to the participant’s forehead. Throughout 
the evaluation, participants remained seated and received guidance 
through a speaker linked to the EEG monitor. The entire session 
generally lasted 30 min. The cognitive assessment battery included a 
musical detection task (with two difficulty levels), a musical n-back 
task (with two difficulty levels) and a resting-state task. The research 
assistant provided initial instructions to participants, ensuring 
minimal additional directives to avert any bias. A brief segment of 
baseline activity was captured for every participant to guarantee 
accurate evaluation.

2.3.1.1 Cognitive tasks
This study included a previously described auditory detection task 

(28), an auditory n-back task, and resting state tasks (see Figure 2).
The detection task included a sequence of tunes from a violin, 

trumpet, and flute. Participants held a clicker in order to respond to 
the musical cues. Instructions directed participants to click once when 
they heard a specific instrument playing. Responses were limited to 
“yes” trials corresponding to the designated instrument’s tune. The 
task was designed with two levels of difficulty to evaluate escalating 
cognitive demands. In Detection level 1, a consistent tune played for 
3 s, recurring throughout the block. Participants were directed to click 
promptly for every repetition of the tune. This level featured three 
trials of 90 s each (corresponding to each instrument), with each 
melody appearing 5–6 times and intervals of 10–18 s of silence. 
Detection level 2 included tunes lasting for 1.5 s, of three instruments 
intertwined within a single block. Participants were instructed to 
respond solely to a designated instrument in that block, disregarding 
the rest. Each trial in this level had 6–8 melodies interspersed with 
8–14 s of silence, and the target tune played 2–3 times.

In the n-back task, participants were presented with a sequence of 
melodies played by different instruments and used the clicker to 
respond to the stimuli. This task also included two difficulty levels 
(0-back and 1-back) to examine increasing cognitive load. A set of 
melodies (played by a violin, a trumpet, and a flute) was played in a 
different order for each block, and participants were asked to click a 

button when the melody repeated n-trials ago (based on the block 
level). In the 0-back level, participants clicked the button each time a 
melody was heard. This level included one 90-s block with 9 trials 
(instances of melody playing), each melody played for 1.5 s and 6–11 s 
of silence in between. In the 1-back level, participants clicked the 
button each time a melody repeated itself (n = 1). This level included 
two 90-s blocks with 12–14 trials (instances of melody playing), each 
melody played for 1.5 s and 4–6 s of silence in between. In each block, 
30–40% of the trials were the target stimulus, where the melody 
repeated itself, and the participant was expected to click the button. 
The resting state tasks consisted of two blocks: one with 45 s and the 
other with 60 s of resting state recording.

Given the participants’ age and capabilities, a constraint for the 
experimental design was the session’s duration. Ensuring participant 
comfort and cooperation was paramount; thus, we maintained a tight 
protocol to include setup time, explanation, informed consent 
procedures, and the experiment within a 30-min window. This 
decision inevitably limited the number of trials per condition. 
However, as a countermeasure, we  prioritized diversifying our 
conditions to facilitate robust cognitive load manipulations instead of 
simply increasing repetitions of the same condition.

2.3.2 Signal processing
The EEG signal was decomposed into multiple components using 

harmonic analysis mathematical models (9, 33), and ML methods were 
employed on the components to extract higher-level EEG features. The 
full technical specifications for signal processing can be  found in 
Molcho et al. (28). In summary, the Neurosteer® signal-processing 
algorithm analyzes EEG data using a time/frequency wavelet-packet 
analysis. This analysis, previously conducted on a separate dataset of 
EEG recordings, identified an optimal orthogonal basis decomposition 
from a large collection of wavelet packet atoms, optimized for that set 
of recordings using the Best Basis algorithm (34). This basis results 
generated a new representation of 121 optimized components called 
Brain Activity Features (BAFs). Each BAF consists of time-varying 
fundamental frequencies and their harmonics.

The BAFs are calculated over a 4-s window, which contains 2,048 
time elements due to the 500 Hz sampling frequency. In this window, 
each BAF is a convolution of a time/frequency wavelet packet atom, 
allowing for a signal that can vary in frequency over the 4-s window, 
such as a chirp. The window is then advanced by 1 s, similar to a moving 
window spectrogram with 75% overlap, and the calculation is repeated 
for the new 4-s window. The EEG power spectrum is obtained using a 
fast Fourier transform (FFT) of the EEG signals within a 4-s window.

FIGURE 2

A visual representation of the two cognitive tasks used in this study is provided. Auditory Detection (left): Level 1 features the same melody played by 
the same musical instrument several times, and the participant is asked to click each time the melody is played. Level 2 presents melodies played by 
different instruments, and the participant is asked to click only when a melody by a specific instrument is played (in this example, the flute melody). 
Musical n-back (right): Levels 1 and 2 showcase melodies played by various instruments. In Level 1, the participant is asked to click whenever a melody 
is played, while in Level 2, the participant is asked to click only when a melody immediately repeats itself (regardless of which melody is played).
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3 Results

3.1 Demographic results

To ensure that the groups were well-balanced, we  compared 
some demographic characteristics of each group. First, for the 
positive vs. negative patients within the F-DOPA group, 
we compared the F-DOPA test age, symptoms onset age, difference 
between the F-DOPA test and the auditory assessment task (in 
years), and PD diagnosis age (in years), see Table 1 for details. No 
significant differences were found between these sub-groups (all 
ps > 0.05). Due to the small sample size of the negative F-DOPA 
group (n = 6), this analysis did not include a division between males 
and females. The mean time that had passed between the F-DOPA 
test (after which the diagnosis was determined) and the auditory 
assessment was 1.28 (1.37) years. Out of the F-DOPA group, 87% of 
the participants took PD medications during study completion. The 
most common medications were Azilect (31%), Amantadine (31%), 
Dopicar (25%), and Sinemet CR (15%); for the complete list of 
medications, see Supplementary material B and Table  1. For 
descriptive information about the motor symptoms, see 
Supplementary material B and Table 1.

All recruited patients completed the auditory assessment tasks, 
and their EEG data was used. The average age of the PD patients group 
(n = 26, 11 Females) was 64.15 (12.30) years, and the average MMSE 

score was 29.61 (0.57). The average age of the Healthy group (n = 26, 
11 Females) was 66.19 (6.49) years, and the average MMSE score was 
29.07 (0.89). Overall, the mean age was 65.17 (9.79) years, with 42% 
females and 58% males. No significant differences in age or gender 
were found between the groups (all ps > 0.05). See Table 2 for complete 
demographic details and results.

3.2 Prediction model of F-DOPA results

For a full description of the prediction model methodology see 
Supplementary materials A. In the initial phase of data analysis, our 
primary objective was to develop a predictor capable of accurately 
classifying and predicting F-DOPA test results. The prediction model 
was formulated using machine learning (ML) methods applied to the 
extracted BAFs. As an integral component of the study design, 
one-third of the F-DOPA results were intentionally undisclosed to 
evaluate the prediction model. The process of developing such a 
predictor entails three steps: (1) identifying the feature representation 
from which the prediction is derived, (2) determining the type of data 
to be utilized in training the predictor, and (3) ascertaining the model 
family from which a predictor will be selected. In this pilot study, our 
primary focus was on identifying the type of representation that could 
yield a meaningful prediction. Consequently, we maintained the other 
two factors as constants, as detailed below.

TABLE 1 F-DOPA clinical information for the groups included in the first part of the analysis.

Study 
group

Gender n
Auditory task 

age, years
F-DOPA test 

age, years
Symptoms onset 

age, years
F-DOPA – auditory task 

difference, years
PD diagnosis 

age, years

F-DOPA 

Negative

Female 4 61.77 (7.97) 62.03 (8.30) 57.79 (9.94) 0.49 (0.50) 62.02 (8.3)

Male 2 74.50 (0.50) 75.01 (1.00) 74.50 (0.5) 0.5 (0.50) 75 (1)

F-DOPA 

Positive

Female 11 65.10 (13.10) 63.64 (12.85) 56.41 (12.72) 1.91 (1.73) 63.37 (12.73)

Male 15 63.54 (11.22) 62.73 (11.41) 58.79 (11.59) 1.14 (1.10) 61.73 (12.03)

Averages are shown for males and females separately. No significant changes were found between the sub-groups for the measured parameters.

TABLE 2 Demographic information for the groups included in the second part of the analysis.

Groups PD patients Healthy

Total

n 26 26

MMSE 29.61 (0.57) 29.07 (0.89)

Age 64.15 (12.30) 66.19 (6.49)

Age t-tests PD patients vs. healthy: t = 0.54, p = 0.58

Male

n 15 15

MMSE 29.66 (0.61) 29.06 (0.88)

Age 63.46 (11.61) 67.13 (5.89)

Age t-tests PD patients vs. healthy (male): t = 1.09, p = 0.28

Female

n 11 11

MMSE 29.54 (0.52) 29.09 (0.94)

Age 65.09 (13.71) 64.90 (7.34)

Age t-tests PD patients vs. healthy (female): t = −0.03, p = 0.96

Age males vs. females t = −0.32, p = 0.74 t = 0.85, p = 0.39

Averages are shown for the total number of participants, as well as for males and females separately. t and p values of the comparisons between mean ages of the study groups are displayed for 
the total, and for males and females separately. Additionally, t and p values of the comparisons between age and MMSE scores for each gender are provided in the last rows.
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To that end, we initially tested whether a feature representation 
based on connectivity between the BAFs was useful. Connectivity and 
causality Analysis had been used successfully in the context of 
neuroscience (35). In this study, we adopted the approach used by 
Friston et  al. (35), applying it to the components extracted from 
single-channel EEG data rather than multiple electrodes or multiple 
fMRI regions (see full details in the Supplementary materials A). 
We  employed connectivity-based representation and performed 
dimensionality reduction using principal components analysis 
(PCA) (36).

The PCA-derived reduced-dimensionality representation was used 
for training and testing the prediction model. We used a previously 
collected dataset, which included data from healthy participants and 
patients with PD performing similar auditory tasks, in conjunction 
with the positive F-DOPA labels collected in this study (n = 14) to serve 
as training data for the predictor. The testing data comprised of 
participants with undisclosed F-DOPA results (n = 12), participants 
with negative F-DOPA (n = 6), and healthy controls (n = 20).

The prediction model was based on an ensemble of ridge 
regression (37). Ridge regression extends linear regression by 
modifying the loss function to minimize the model’s complexity, 
introducing a constraint on the coefficients through a penalty factor 
equivalent to the square of the magnitude of the coefficients. The 
ensemble predictor consisted of 10 logistic regression predictors with 
regularization terms ranging from 1 to 10 (38). Studies have shown 
that ensembles with strong regularization values can mitigate noise in 
the data and produce better predictors (39).

The trained PCA model with ridge regression yielded a score 
between−1 and 1 for each participant, corresponding to a predicted 
test result label. A separating cutoff score of 0 was set, with data points 
higher than 0 classified as positive F-DOPA and those lower than 0 
classified as negative F-DOPA. The prediction model labels were 
compared to the actual test labels to determine the model’s accuracy 
in classifying the 12 unknown patients and accurately classifying other 
groups as either negative or positive.

Due to a tendency for positive bias among patients referred for 
F-DOPA scans as part of standard care, the majority of collected 
F-DOPA results were positive. To include negative results, the six 
patients with negative F-DOPA results were also considered as part of 
the testing data. Since all 12 patients in the unknown group were 
eventually classified as positive, we performed additional quantitative 
analysis using Bayesian Mann–Whitney U Tests to determine the 
similarity between labeled groups. This follow-up analysis was 
conducted using a data augmentation algorithm with 5 chains of 1,000 
iterations. We report the BF01 (i.e., the null hypothesis that H0 is not 
different from H1) of the Bayesian U tests between controls vs. 
negative and positive vs. unknown, and the BF10 (i.e., the hypothesis 
that H0 is different from H1) of the Bayesian U tests between control 
vs. positive and control vs. unknown groups. This analysis was 
performed using JASP 0.11.1.0 software (40) (JASP, Version 0.17).

3.2.1 Prediction model results
Figure 3 depicts the prediction model results. All 12 patients in 

the ‘Unknown’ group were classified as having a positive F-DOPA 
result based on the prediction model (i.e., all predictor results 
were > 0). Moreover, the predictor assigned negative values to the six 
patients initially labeled as negative F-DOPA and positive values to all 
14 patients initially labeled as positive F-DOPA. The majority of the 
control group samples received negative values as expected, except for 
4 samples in the control group (20%), who received a positive F-DOPA 
label. It would be of interest to follow these four individuals and test 
if there was a pre-symptomatic detection of dopamine depletion in 
these subjects.

Bayesian Mann–Whitney U tests revealed strong evidence that the 
predicted results of the control group differ from positive F-DOPA 
patients (BF10 = 121.88, W = 385, R2 = 1.04), and presented moderate 
evidence of similarity to the negatively labeled F-DOPA group 
(BF01 = 2.97, W = 116, R2 = 1.21). The group with unknown labels, who 
were all given positive predictor results, was strongly evident to differ 
from the control group (BF10 = 149.48, W = 550, R2 = 1.032), and 

FIGURE 3

Results of the prediction model. The prediction scores (y-axis) cutoff between positive and negative labels is 0 (data points with prediction scores 
higher than 0 are classified as positive F-DOPA, whereas prediction scores lower than 0 are classified as negative F-DOPA). The study data are 
displayed in the graph as individual sample points and as F-DOPA groups: positive F-DOPA results, negative F-DOPA results, healthy age-matched 
controls, and initially unrevealed unknown F-DOPA results.
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showed moderate evidence of similarity to the positive group 
(BF01 = 2.145, W = 98, R2 = 1). For all U-test outputs and figures, see 
Supplementary materials B.

3.3 High-level features and mixed linear 
models (LMM) analysis

The second part of data analysis was focused on evaluating the 
ability of previously extracted high-level EEG features and 
conventional frequency bands to differentiate between PD patients 
and healthy controls based on the auditory assessment protocol. A 
significant advantage of utilizing Linear Mixed Models (LMM) in our 
analysis stems from its capability to leverage multiple data points 
from each subject. Specifically, in our experiment, each second of 
activity represented a data point. By incorporating these into the 
model as random factors, LMM can effectively counteract the 
limitations posed by the reduced number of trials per condition (i.e., 
cognitive load level). This methodological approach optimally 
leverages our data structure, allowing for meaningful statistical 
interpretations despite the constraints on session duration and 
number of repetitions.

3.3.1 High-level EEG features
The EEG features were previously generated using machine 

learning (ML) techniques applied to the Brain Activity Features 
(BAFs) from labeled datasets previously collected by Neurosteer. 
Specifically, EEG features A0 and L1, employed in this study, were 
calculated using the linear discriminant analysis (LDA) technique 
(41). The LDA technique aims to identify an optimal linear 
transformation that maximizes class separability.

Data analysis included the activity of EEG features A0 and L1, 
normalized to a scale of 0–100. The EEG variables were calculated 
every second from a moving window of 4 s, and the mean activity per 
condition was incorporated into the analyses.

3.3.2 Frequency bands
The EEG dependent variables incorporated the power spectral 

density. Absolute power values were converted to logarithm base 10, 
resulting in values expressed in dBμV. Among the frequency bands, 
Delta (0.5–4 Hz) and Theta (4–7 Hz) were included. Preliminary tests 
indicated that the other frequency bands, such as Alpha (8–15 Hz), 
Beta (16–31 Hz), and lower Gamma (32–45 Hz), did not demonstrate 
any significant correlations or differences in the current data.

3.3.3 LMM analysis comparing PD patients and 
healthy controls

In order to detect differences between PD patients and healthy 
controls, we employed a general linear mixed model (GLMM) (42), 
which incorporates both fixed and random effects. This model was 
preferred over the simpler GLM due to the relatively small sample 
size, as the GLMM accounts for the random slope for each 
participant. The model included the fixed within-participant variable 
of cognitive load level, as well as the group as a between-
participants variable.

The group variable consisted of two levels: ‘PD Patients’ (patients 
with positive F-DOPA results) and ‘Healthy Controls’ (comprising 
both patients with negative F-DOPA results and healthy age-matched 

controls). As an initial validation, student t-tests were performed on 
each EEG variable between the subjects in the ‘Healthy Controls’ 
group to ensure there were no inherent differences in EEG activity 
between the two sub-groups (i.e., patients with negative F-DOPA 
results vs. healthy age-matched controls).

The cognitive load variable was an ordinal variable, coded linearly 
according to the task cognitive load level (from low to high) as 
follows: resting state = 0; detection level 1 = 1; 0-back = 1; detection 
level 2 = 2; and 1-back = 2. The model included the samples per 
participant per task (i.e., samples per second of activation) as a 
random slope. For models that demonstrated a significant main effect 
of cognitive load, post-hoc analyses were conducted, comparing 
possible pairwise combinations of cognitive load levels for each group 
(i.e., healthy vs. PD), using the Benjamini-Hochberg correction (43) 
for multiple comparisons. The significance level for all analyses was 
set to p < 0.05. All analyses were conducted using RStudio version 
1.4.1717 (44).

3.3.4 LMM results – comparing EEG variables 
between PD patient and healthy controls

3.3.4.1 Initial validation
To rule out any intrinsic differences within the ‘healthy controls’ 

group, we compared between the subgroups composing the group: 
patients with negative F-DOPA results and the healthy age-matched 
patients. No significant differences were found for any of the EEG 
variables (p = 0.249, p = 0.64, p = 0.3 and p = 0.406 for Delta, Theta, A0 
and L1, respectively).

3.3.4.2 LMM models
The activity of EEG features per participant, as a function of 

group and cognitive load, is presented in Figure  4. For a full 
description of the models’ outputs see Table  3. Delta and A0 
showed higher mean activity for the healthy controls compared to 
the PD patients (p = 0.01 and p = 0.003, respectively). Cognitive 
load ordinal effect reached significance for L1 (p = 0.043). Paired 
t-test analysis revealed that for the healthy group, L1 activity 
during the resting state task was significantly lower than during the 
high-cognitive load condition (adjusted p = 0.022), whereas in the 
PD group, no significant difference was found in L1 activity 
between any of the cognitive load conditions (see Table  4; 
Figure 4).

4 Discussion

While the F-DOPA PET scan is acknowledged for its diagnostic 
utility in parkinsonism (45), it is constrained by its fiscal demands 
and invasiveness, making the identification of valid biomarkers for 
early diagnosis and disease progression in PD vital (46). This pilot 
study utilized a single-channel EEG device, combined with signal 
processing, connectivity analysis, and machine learning-derived 
features, to recognize activity pattern differences between positive 
and negative F-DOPA test subjects. The ML predictor presented 
here effectively identified all unrevealed F-DOPA scores and 80% 
of the control cohort. Moreover, at the group level, previously 
extracted biomarkers applied to this dataset, highlighted 
differences in group averages (features Delta and A0) and irregular 
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resting state neural activity in positive F-DOPA patients 
(feature L1).

The predictor accurately determined that 12 of the unrevealed 
test results were properly categorized as positive F-DOPA scores. In 
addition, it correctly detected the outcomes of both the negative 
and the positive F-DOPA scores that were initially disclosed. 
Moreover, most of the control group received a negative label as 
expected, except for 4 samples in the control group (20%), who 
received positive F-DOPA labels. This may be within the margin of 
error, or these participants may be  prodromal PD patients. A 
follow-up longitudinal study following these patients would 
be  beneficial to corroborate this. Nevertheless, the preliminary 
prediction results presented here support the notion of the power 
of prediction for individual patients rather than analysis of a group 
of patients. The supplementary Bayesian analysis further 
substantiated the predictor’s accuracy, providing evidence that the 
predictor output for F-DOPA-positive patients significantly 
diverged from that of healthy controls and the patients with 
negative results. In contrast, the output for F-DOPA-positive 
patients was indistinguishable from that of the 12 previously 
unknown patients, all subsequently confirmed as F-DOPA-positive. 
As the predictor was specifically engineered to distinguish between 
F-DOPA-positive and F-DOPA-negative outcomes, no notable 
differences were observed between the F-DOPA-negative patients 

and the control group participants. Nonetheless, the possibility of 
existing disparities in brain activity between the F-DOPA-negative 
patients who were referred to perform an F-DOPA test due to some 
clinical manifestations and the healthy controls cannot 
be dismissed, and the brain activity of the symptomatic F-DOPA 
negative group should be  further investigated. This notion is 
supported by the raw data underlying the predictor’s development, 
as depicted in Supplementary materials A.

Upon revealing all F-DOPA results, further analysis was 
conducted to compare the EEG activity of PD patients vs. healthy 
controls, as well as cognitive load levels (manipulated by different 
auditory cognitive tasks). Results indicate that the Delta band and 
EEG feature A0 differentiate between the groups: Delta and A0 
exhibited lower activity for the PD patients compared to healthy 
controls. This difference was more pronounced for A0 than Delta, 
suggesting that A0 may be more sensitive to functional changes, a 
notion supported by the highest separation demonstrated between 
groups with different levels of cognitive decline in a previous study 
(28). Finally, the L1 biomarker, which was previously shown to 
correlate with cognitive load (29), exhibited lower activity in resting 
state for healthy controls. In contrast, PD patients did not display 
such a decrease in L1 activity in the resting state condition. This 
finding aligns with previous research regarding resting state activity 
within PD patients. PD is characterized by higher resting EEG total 
power compared to healthy controls and slower oscillations in brain 
activity during resting state – a phenomenon independent of the 
disease’s stage, duration, and severity, and is also resistant to 
treatment with dopamine (47, 48). In conjunction, activation 
patterns of the two biomarkers – a decrease in A0 mean activity and 
no difference in L1 between high cognitive load and rest may serve 
as early indications of PD.

Despite the promising initial results, this study has several 
limitations. The generalization of the results is restricted due to the 
small sample size, and further studies with larger cohorts of 
patients are necessary to validate these preliminary findings. 
Investigations comparing various other indications for PD, 
including cerebrospinal fluid (CSF) and blood biomarkers, would 
also be  beneficial in validating the EEG biomarkers and their 

TABLE 3 Fixed effect coefficients, standard error, z-values, p-values, and 95% confidence interval outputs from the LMMs conducted on EEG features, 
with group (healthy controls vs. Parkinson’s patients), and cognitive load (resting state vs. low-load vs. high-load) coded as numeric variable.

Fixed effect Coef. Std.Err. z p  >  |z| [0.025 0.975]

Delta Intercept 2.24 0.87 2.58 0.01 0.54 3.94

Group 2.99 1.16 2.58 0.01 0.72 5.25

Cognitive load 0.12 0.26 0.45 0.651 −0.39 0.62

Theta Intercept −7.38 0.69 −10.70 <0.001 −8.73 −6.03

Group 1.24 0.96 1.28 0.199 −0.65 3.12

Cognitive load 0.21 0.17 1.21 0.226 −0.13 0.54

A0 Intercept 72.72 1.59 45.74 <0.001 69.60 75.84

Group 6.30 2.13 2.97 0.003 2.14 10.47

Cognitive load 0.24 0.21 1.13 0.258 −0.18 0.66

L1 Intercept 48.17 1.51 31.84 <0.001 45.20 51.13

Group −0.30 2.15 −0.14 0.889 −4.51 3.91

Cognitive load 0.65 0.32 2.02 0.043 0.02 1.28

Bold values represent significant effects (p < 0.05).

TABLE 4 t values, p values and p BH adjusted values of the pairwise 
comparisons of the L1 activity per each group, between the three 
cognitive load conditions: high-load, low-load, and resting state.

Group Comparison t value p value p adj BH

Healthy 

controls

L1 activity

(high, low) 2.92 0.007 0.022

(mid, low) 2.11 0.045 0.068

(mid, high) −0.61 0.544 0.544

PD Patients

L1 activity

(high, low) 0.60 0.549 1.649

(mid, low) 0.52 0.607 0.911

(mid, high) −0.08 0.933 0.933

Bold values represent significant effects (p < 0.05).
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predictive power. Moreover, the absence of detailed clinical 
information precludes the performance of in-depth EEG-clinical 
correlations; We do not have enough data to design a clinical profile 
of the negative F-DOPA group. Follow-up studies testing the 
symptomatic patients who received a negative F-DOPA result, as 
well as the four healthy patients, would greatly contribute to a 
better understanding of the results. Additionally, we  did not 
perform an analysis in accordance with medication treatment and 
clinical symptoms of our patients. Our approach employs wavelet-
packet analysis as a pre-processing step for ML, creating 
components composed of time-varying fundamental frequencies 
and their harmonics. These complex time/frequency components 
of dynamic nature are instrumental in the interpretation of the EEG 
signal. Future research should explore the utility of this approach 
in the assessment of neurological disorders. Additionally, 
examining the potential usefulness of the EEG features presented 
here in controlled studies characterizing EEG signal changes in 
seniors may contribute to understanding the association of these 
features with basic brain function. This warrants further 
investigation to evaluate the single-channel EEG with ML analysis 
as a potential new biomarker in the context of PD.

The fact that a single-channel EEG with auditory cognitive 
assessment was able to differentiate between patients with positive vs. 
negative F-DOPA PET results may support the hypothesis that a 
single-channel EEG could reflect the dopaminergic function of the 
brain. Furthermore, while F-DOPA PET is based on metabolic 
function and predominantly reflects dopaminergic deficit, EEG data 
may potentially represent functional disability due to dopaminergic 
deficit. Discrimination based on features extracted from a single EEG 
channel could potentially lead to an objective physiological assessment 
to aid in the early detection and diagnosis of PD.
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FIGURE 4

Mean activity of EEG features Delta (top left), Theta (top right), A0 (bottom left), and L1 (bottom right), comparing PD Patients (left) and Healthy 
Controls (right) during performance of cognitive tasks, as a function of cognitive load: high cognitive load (dark turquoise), low cognitive load 
(turquoise), and resting state (light turquoise).
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