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Background: Stroke is a significant global health burden and ranks as the second 
leading cause of death worldwide.

Objective: This study aims to develop and evaluate a machine learning-based 
predictive tool for forecasting the 90-day prognosis of stroke patients after 
discharge as measured by the modified Rankin Score.

Methods: The study utilized data from a large national multiethnic stroke registry 
comprising 15,859 adult patients diagnosed with ischemic or hemorrhagic stroke. 
Of these, 7,452 patients satisfied the study’s inclusion criteria. Feature selection 
was performed using the correlation and permutation importance methods. 
Six classifiers, including Random Forest (RF), Classification and Regression Tree, 
Linear Discriminant Analysis, Support Vector Machine, and k-Nearest Neighbors, 
were employed for prediction.

Results: The RF model demonstrated superior performance, achieving the highest 
accuracy (0.823) and excellent discrimination power (AUC 0.893). Notably, stroke 
type, hospital acquired infections, admission location, and hospital length of stay 
emerged as the top-ranked predictors.

Conclusion: The RF model shows promise in predicting stroke prognosis, enabling 
personalized care plans and enhanced preventive measures for stroke patients. 
Prospective validation is essential to assess its real-world clinical performance 
and ensure successful implementation across diverse healthcare settings.
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Background

Stroke is a global health concern, recognized as the second leading cause of death and a 
prominent contributor to long-term disability worldwide (1). The World Health Organization 
estimates that annually, 13.7 million people suffer a stroke, and approximately 5.5 million succumb 
to death due to its complications (1). Furthermore, stroke is a primary cause of significant, persistent 
disability. Over half of the stroke survivors aged 65 and over experience reduced mobility due Stroke 
(2, 3). In Qatar, Hamad General Hospital (HGH), the country’s main tertiary hospital, offers 
specialized stroke services under the umbrella of the Neuroscience Institute and maintains the 
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stroke registry. This center covers more than 90% of all stroke admissions. 
The registry provides a comprehensive insight into the incidence and 
management of stroke disease in the country. Qatar is home known for 
its multiethnic population with a large young able-bodied South/
Southeastern Asian presence. Whereas the local Qatari population have 
an average incidence of stroke is 92.04 per 100,000 adult population (4). 
The mean age is around 64 years, and the average age for the first 
cerebrovascular event is approximately 63 years (4). The most common 
type of stroke was ischemic stroke (IS), accounting for 73.7% of cases, 
primarily caused by small vessel disease (4). Hypertension and diabetes 
were particularly common in this group, affecting 82.7 and 71.6% of 
patients, respectively (4). Compared to their male counterparts, Qatari 
females were older at the time of stroke onset, experienced higher rates 
of hypertension and diabetes, and had a greater likelihood of disability 
or death at 90 days (4). The Registry is a prospective one that captures 
important clinicodemographic characteristics of stroke patients and their 
complications and outcomes (5).

This substantial global and national burden emphasizes the 
urgency to optimize stroke management strategies, including the 
identification of robust prognostic factors that could inform 
therapeutic decisions and patient care pathways.

Literature review

The research community has made substantial strides in 
examining the factors contributing to stroke outcomes. These 
encompass patient demographics, clinical characteristics, and 
treatment modalities, as well as the exploration of machine learning 
models to predict prognosis. Age, gender, and pre-stroke health status, 
such as the pre-admission modified Rankin Score (mRS), were 
frequently noted as significant factors in the prognosis of patients 
post-thrombectomy (6). Similarly, lifestyle habits, like smoking, were 
found to influence outcomes, with non-smokers more likely to have a 
favorable recovery (7).

Clinical indicators are another common factor in predicting 
stroke outcomes. Infarct volume, for instance, has been linked to 
clinical outcomes following IS. Smaller infarct growths, as well as 
better initial perfusion, have been associated with better patient 
outcomes (8). Likewise, post-thrombectomy National Institutes of 
Health Stroke Scale (NIHSS) scores and the requirement for a 
decompressive hemicraniectomy were identified as significant 
predictors of functional outcomes (6). Furthermore, stroke severity, 
indicated by NIHSS scores, along with alteplase treatment, was noted 
as significant in determining functional changes in mild IS patients 
from 30 to 90 days post-stroke (9).

The predictability of various scoring systems was examined, and 
the modified SOAR (mSOAR) score was reported to be effective in 
predicting post-stroke disability (10). Similarly, the impact of factors 
such as age, stroke history, heart rate, and TOAST classification on the 
prognosis of transient ischemic attack (TIA) or minor stroke patients 
was discussed, and they were integrated into machine learning models 
for predictive purposes (11).

The application of machine learning algorithms for predicting 
stroke outcomes is promising. These algorithms were found to have 
comparable, if not superior, performance in predicting the 90-day 
prognosis of TIA and minor stroke patients compared to traditional 
logistic regression models. Similarly, explainable machine learning 

methodologies have been developed to predict functional outcomes 
at discharge, showing high levels of accuracy (11).

Predicting outcomes post-stroke is paramount for clinical 
planning and patient care. A common measure of disability and 
independence in patients after suffering a stroke is the mRS (11, 12). 
An analysis of acute IS patients found significant changes in mRS 
scores from 30 to 90 days post-discharge (11). The mRS score at 
discharge and non-home discharge disposition were deemed good 
individual predictors of the 90-day mRS score, providing a tool for 
assessing likely patient outcomes (11). Accurate prediction of mRS 
scores can guide patient expectations and clinical trial analyses. A 
model developed using data from multi-center prospective studies 
predicted the 90-day mRS score based on variables available during 
the stroke hospitalization (13). This model found age and NIHSS score 
at discharge as significant independent predictors of the 90-day mRS, 
with an accuracy of 78% in predicting the mRS score within one point 
in the validation cohort (13).

Further to this, machine learning models have been shown to 
offer promising results in predicting patient outcomes. With the ability 
to analyze a vast amount of clinical, laboratory, and imaging data, 
these models can provide nuanced insight. In one study, different 
machine learning algorithms, including XGBoost, LightGBM, 
CatBoost, and Random Forest (RF), were used to predict short- and 
medium-term functional outcomes in acute IS patients (14, 15). The 
LightGBM and Random Forest algorithms demonstrated the highest 
predictive power for functional outcomes (14).

Despite a mild onset, patients with IS can still exhibit substantial 
disability rates at 90 days, often due to early neurological worsening (16). 
A prospective cohort study found that early worsening and acute infarct 
growth from baseline to 5 days were more common among those with 
poor outcomes (16). On the other hand, studies on thrombectomy in late 
time windows have reported improved patient outcomes. In the DEFUSE 
3 study, patients who exhibited rapid neurological improvement (RNI) 
24 h after thrombectomy were more likely to have a favorable clinical 
outcome (17). RNI was associated with a favorable shift in the mRS at 
day 90 and lower rates of mortality (17).

Stroke outcome prediction is a multifaceted process that integrates 
a range of factors, from demographic and clinical characteristics to the 
incorporation of machine learning models. These advancements have 
the potential to refine the prognostic process, enabling personalized 
therapeutic strategies, improving patient outcomes, and mitigating the 
global burden of stroke. Therefore, this study aims at designing a 
machine learning based model to help predict the stroke patient’s 
prognosis 90 days post discharge using mRS.

Materials and methods

The study received approval from the institutional research board 
(IRB) of Hamad Medical Corporation, Qatar, with reference MRC-01-
22-594. The study methodology followed a specific sequence of steps 
as summarized in Figure 1.

Data collection

Data were collected from the Stroke Registry of Hamad General 
Hospital (HGH), covering the period from January 2014 to July 2022. 
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The dataset includes all adults aged 18 years and above, who were 
admitted to HGH with a primary diagnosis of stroke, comprising 
cases of IS, transient ischemic attack (TIA), hemorrhagic stroke (ICH), 
and stroke mimics. In total, 15,859 patients sought specialized stroke 
care at the hospital since the establishment of the stroke registry 
in Qatar.

Baseline variables

The extracted variables covered diverse aspects of the patients, 
including demographic information, ethnicity, stroke risk factors, 
known comorbidities, admission location, hospitalization outcomes 
[i.e., length of stay (LOS) and hospital-acquired infections like 
pneumonia and urinary tract infection (UTI)], mortality, and stroke 
severity. The severity of stroke at admission was classified into five 
categories using the National Institute of Health Stroke Score (NIHSS) 
(18, 19). At the time of admission, the mRS was collected, which 
captures the patient’s pre-stroke condition as reported by family 
members, graded on a 0–6 scale (11). IS etiology was determined 
using the Trial of Org 10,172 in Acute Stroke Treatment (TOAST) 
classification (20). A stroke type variable was created by combining 
the five TOAST categories under IS, with ICH forming another 
category, providing a comparative perspective between the two stroke 
types. To identify Body Mass Index (BMI) categories, the CDC’s 
5-class definition for adult overweight and obesity was adopted (21).

Regarding ethnicity, patients were classified into five groups based 
on their declared nationality: Qatari, Middle East and North Africa 
(MENA) region, South Asia region, South East Asia region (as defined 
by the United Nations geo-scheme), and all other nationalities 
categorized as “other” (22, 23). Notably, the Qatari patients were 
placed in a separate category to facilitate a meaningful comparative 
perspective, considering the unique demographic structure of the 
country, where the majority of the population comprises expatriates 
(4, 24). This approach has been consistently employed in previous 
publications studying stroke in Qatar (5, 22). All included risk factors, 

such as comorbidities and smoking history, were reliably confirmed 
during the patient’s hospital stay and verified by the stroke registry 
personnel by accessing the patient’s electronic medical records. Table 1 
summarizes the data.

Outcome variable

The mRS, collected at the 90-day post-discharge follow-up visit, 
was simplified into a binary variable. An mRS score of ≤2 was 
categorized as favorable, indicating a good prognosis while mRS 
score > 2 was categorized as unfavorable, representing a poor prognosis 
(4, 11, 25).

Inclusion/exclusion criteria

From initial 15,859 patients, 9,840 adults (≥18) diagnosed with IS 
or ICH were included. Excluded: TIA and mimic cases (6,019), 
in-hospital deaths (334), unstandardized (0–6) 90-day mRS score 
(207) and missed 90-day follow-up (1847). Finally, 7,452 patients were 
included in the study. See Figure 2 for details.

Data cleaning and preprocessing

Out of the 19 variables included in the study, 18 had no missing 
values. However, Body Mass Index had missing values in 393 records 
(5%). Addressing data missingness in predictive models is crucial, and 
various approaches exist, such as eliminating incomplete records or 
imputing the missing data (26, 27). In this study, the missing values 
were substituted with a value of (zero). It is worth noting that, as stated 
by Markey et al. (28), substituting a value of zero for missing values in 
Body Mass Index is not recommended. However, this substitution was 
done merely to compare the performance of different classifiers in 
order to find the most effective alternative for our prediction system. 

FIGURE 1

Summary of study’s methodology.

https://doi.org/10.3389/fneur.2023.1270767
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Abujaber et al. 10.3389/fneur.2023.1270767

Frontiers in Neurology 04 frontiersin.org

TABLE 1 Statistical characteristics of the collected stroke dataset.

Variable Feature Favorable (mRS  >  2) Unfavorable (mRS >2) Total

Age <mean (54.32) 1985 1,512 3,497

≥mean (54.32) 2,774 1,181 3,955

Mean ± SD (54.32 ± 13.7)-IQR 18

Sex 1: Male 3,944 1991 5,935

2: Female 815 702 1,517

Ethnicity 1: Qatari 700 664 1,364

2: MENA 895 511 1,406

3: South Asian 2,456 1,171 3,627

4: South-East Asian 488 250 738

5: Other 220 97 317

Modified Rankin Score (mRS) 

pre-stroke onset

0: No symptoms 4,500 1913 6,413

1: No significant disability 72 40 112

2: Slight disability 128 128 256

3: Moderate disability 44 313 357

4: Moderate–Severe disability 11 160 171

5: Severe disability 4 139 143

NIHSS at admission 1: No stroke 927 166 1,093

2: Minor Stroke 2,596 577 3,173

3: Moderate Stroke 1,087 1,045 2,132

4: Moderate to Severe Stroke 85 377 462

5: Severe Stroke 64 528 592

Body Mass Index (BMI) 0: Missing 346 47 393

1: Underweight 168 139 307

2: Normal weight 1,281 745 2026

3: Overweight 1820 1,059 2,879

4: Obese 816 454 1,270

5: Extremely Obese 328 249 577

Diabetes Mellitus (DM) 0: No 2,348 1,185 3,533

1: Yes 2,411 1,508 3,919

Hypertension (HTN) 0: No 1,369 597 1966

1: Yes 3,390 2096 5,486

Dyslipidemia 0: No 2,564 1,593 4,157

1: Yes 2,195 1,100 3,295

Prior stroke 0: No 4,338 2,280 6,618

1: Yes 421 413 834

Atrial Fibrillation (AF) 0: No 4,602 2,451 7,053

1: Yes 157 242 399

Coronary Artery Disease (CAD) 0: No 4,286 2,306 6,592

1: Yes 473 387 860

Congestive Heart Failure (CHF) 0: No 4,742 2,654 7,396

1: Yes 17 39 56

Tobacco use 0: No 3,560 2,312 5,872

1: Yes 1,199 381 1,580

(Continued)
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The inclusion of this variable was assessed based on the results of the 
feature selection methods, and the whole feature is removed as can 
be seen from the feature selection analysis.

Feature selection

This study used feature correlation (29) and Permutation 
importance (30) with RF, Easy Ensemble (EE), and Artificial Neural 
Network (ANN) for feature selection. Features were categorized based 
on correlation coefficients: weak, moderate, and strong (31, 32). Easy 
Ensemble identified 13 out of 19 variable (69%) and ranked them 
based on importance while and ANN and RF ranked all the variables 
based on importance (Figure 3). Finally, cross-analysis of the best 
features across the four approaches (EE, RF, ANN, and correlation) 
was done to assess the consistency and reliability of the features 
chosen across different methods.

Trained models

Six classifiers were employed as follows and the training and 
testing process involves 5-fold cross-validation.

 • Classification and Regression Tree (CART) uses decision trees to 
recursively split data based on feature values (33). Parameters: 
minimum split = 20, maximum depth = 6, complexity 
parameter = 0.01.

 • Linear Discriminant Analysis (LDA) focuses on linear decision 
boundaries, maximizing separability through linear 
transformations (34). Parameters: prior probabilities = NULL, 
shrinkage coefficient = 1.

 • Support Vector Machine (SVM) constructs a hyperplane with 
support vectors to separate classes, maximizing data point 
margins (35). Parameters: kernel function = “radial,” gamma = 0.2, 
cost: 1.

 • Random Forest (RF) combines decision trees trained on random 
data subsets, aggregating predictions (36). Parameters: number 
of trees = 500, number of features = square root of all = 4, node 
size = 100.

 • Artificial Neural Network (ANN) mimics biological neural 
networks, processing information through interconnected nodes 
with activation functions (37). Parameters: size = one hidden 
layer with 5 nodes, maximum number of iterations = 100, 
activation function = “logistic.”

 • k-Nearest Neighbors (KNN) assigns a data point to the majority 
class among its k nearest neighbors in the feature space (38). 
Parameters: k = 5, distance function = “euclidean.”

 • Naïve Bayes calculates the probability of each class given the 
values of the features independently (39). Parameters: Laplace 
smoothing parameter (default = 1).

 • AdaBoost combines the predictions multiple weak learners 
(decision trees). Parameters: The type of base learner = “rpart,” 
the number of base learners =100, the learning rate = 0.5.

 • Easy Ensemble (EE) trains multiple base learners (decision trees) 
on different subsets of the training data successively. It uses a 
weighted sampling strategy to select a portion of the training data 
at each iteration. Weights are assigned to training samples based 
on their difficulty, with heavier weights assigned to more difficult 
examples (40). Parameters: The number of base learners = 100, 
maximum depth = 3, weighting = “balanced,” sampling 
strategy = “random,” and learning rate = 0.5.

Data imbalance, encoding and 
performance evaluation

Utilizing 5-fold validation, the study determined the best 
performing algorithm based on average accuracy. However, the 
dataset is class-imbalanced, with unfavorable mRS accounting for 36% 
compared to 64% favorable. To assess classifiers’ true efficacy despite 

TABLE 1 (Continued)

Variable Feature Favorable (mRS  >  2) Unfavorable (mRS >2) Total

Hospital Length of Stay – LOS 

(days)

< mean (6.56) 1,407 693 2,101

≥ mean (6.56) 1,286 4,066 5,351

Mean ± SD (6.56 ± 9)-IQR 4.7

Admission location 1: Stroke Unit 2,289 1,167 3,456

2: ICU 203 716 919

3: Other 2,267 810 3,077

Hospital acquired Pneumonia 0: No 4,712 2,270 6,982

1: Yes 47 423 470

Hospital acquired Urinary Tract 

Infection (UTI)

0: No 4,725 2,442 7,167

1: Yes 34 251 285

Stroke type 1: Ischemic Stroke (IS) 4,244 1951 6,195

2: Hemorrhagic Stroke (ICH) 515 742 1,257

90-day mRS 0: Favorable (≤2) 1: Unfavorable 

(>2)

4,759 2,693 7,452
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class imbalance, F1-score and area under the curve (AUC) were used 
(41). Both factorized and one-hot encoding methods were tested to 
determine which method enhances the learning process and improve 
data representation and understanding (32). Then, a final experiment 
was conducted to identify the best performing algorithm using the 
superior encoding method.

Results

Table 1 presents the study population’s characteristics, with an 
average age of 54.32 ± 13.7 years. Approximately 80% of the 
participants are male, and 14% were admitted with NIHSS >16. IS was 
diagnosed in 83% of patients, and the average LOS was 6.56 ± 9 days. 
At the 90-day follow-up, 36% of patients reported an unfavorable 
mRS score.

Correlation feature selection resulted in three feature categories 
based on the correlation coefficient. We classify influences as weak, 
moderate, or strong. Specifically, characteristics with correlation 
coefficients close to 1 or − 1 are deemed to have a strong positive or 
strong negative correlation. Furthermore, features with correlation 
coefficients greater than 0.20 or less than −0.20 are classified as having 
strong or moderate correlations. See Table 2 and Figure 4.

 • Weak Influence: Sex, ethnicity, BMI, DM, HTN, dyslipidemia, 
prior stroke, AF, CAD, CHF, tobacco use, and admission location.

 • Moderate Influence: Age, pneumonia, pre-stroke mRS, LOS, 
UTI, stroke type.

 • Strong Influence: NIHSS.

Based on Permutation/ feature importance, the classifiers ranked 
variables based on their importance to the prediction accuracy 
(Figure 3). The cross-analysis resulted in four sets of features (Table 3):

 • Strong features with full agreements (SFA4): These features were 
identified as strong by all four methods, including pneumonia, 
LOS, stroke type, and NIHSS that has highest correlation 
coefficient in feature correlation method.

 • Strong features with at least three agreements (SFA3): These 
features were identified as strong by at least three methods, 
comprising the SFA4 features and adding UTI, dyslipidemia, 
prior stroke, AF, CAD, CHF, tobacco use, and admission location.

 • Weak features (WF12): These features were recognized as strong 
by only one or two methods, including age, pre-stroke mRS, sex, 
DM, and HTN.

 • Weakest features (WF0): These features were classified as weak 
by all four feature selection methods, consisting of ethnicity 
and BMI.

Evaluation of the trained models

As demonstrated by Scrutinio and colleagues (42). Choosing the 
most effective machine learning model is a formidable task. This process 
demands the consideration of numerous performance parameters while 
simultaneously weighing the insights derived from the results and their 
relevance to the clinical field. Therefore, several experiments were 
conducted on the stroke data to identify the optimal machine learning 
model for predicting stroke prognosis. Table 4 demonstrates that RF 
achieved the highest performance, with an average accuracy of 82.9%, 
consistently showing good results. ANN followed RF in performance. 
Figure 5 visually confirms RF and ANN’s superiority, as their accuracy 
boxes are positioned toward the highest values, indicating narrower 
widths. Additionally, the KAPPA plots show that both classifiers 
approach 0.65, closer to 1 than other classifiers, signifying excellent 
consistency and stability over the five runs.

The best performing model, RF, was evaluated using one-hot and 
factorized encoding. Its performance was compared with ANN in 
terms of F-score and AUC (Table 5 and Figure 6). Additionally, the 
findings of the EE classifier were studied and compared to the top 
performers, RF and ANN, while recording F-score and AUC measures.

As displayed in Table 5, the classifiers’ performance using one-hot 
vs. factorized encoding did not exhibit significant differences. 
Therefore, factorized method was chosen as it helps maintain a smaller 
size for the training model. Taking into account the average accuracy, 
F-score, and AUC combined, RF demonstrated superior performance 
compared to the other models, making it a suitable choice 
for deployment.

In the final phase of this study, a third set of experiments using RF 
was conducted to explore the features for incorporation into the proposed 
system (Table  6). Surprisingly, utilizing only the strongest subsets of 
features (SFA4 and SFA3) hindered the system’s performance. Similarly, 
when weak and weakest features (WF12&WF0) or the weakest feature 
(WF0) were removed (as shown in Table 5), most metrics declined, except 
for a marginal increase in AUC when ethnicity was removed. Eliminating 

FIGURE 2

Data inclusion/exclusion process.
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any feature led to a drop in the F1 measure. Based on these findings, the 
proposed mRS-90 prediction system includes all variables listed in 
Table 1, except BMI. Table 7 provides a comprehensive overview of the 
RF model’s performance and Figure  7 presents the significance 
of predictors.

The Random Forrest model identified a set of key predictors that 
help clinicians early predict the 90-day prognosis of stroke patients. 
The important predictors are illustrated in ascending order (Figure 3) 
based on their importance on predicting the target outcome.

Discussion

The use of machine learning (ML) in medical research has 
expanded significantly, with applications in screening, diagnosis, 

and prognosis (43). In this study, we aimed to devise a predictive 
tool based on ML to help clinicians forecast the 90-day prognosis 
of stroke patients after hospital discharge. Several algorithms were 
compared for predictive performance, and the RF algorithm 
emerged as the best performing classifier. Consequently, the 
discussion section focuses on the insights derived from the RF 
algorithm’s output.

Two key findings emerged from this study; firstly, feature selection 
revealed several variables with significant predictive power for the 
90-day prognosis, including stroke type, hospital-acquired infections 
(UTI and pneumonia), admission location, known comorbidities, and 
other risk factors such as smoking. Secondly, the discrimination 
power (AUC) of all the models was excellent (0.893) (44), providing a 
high degree of confidence in the accuracy of the model’s predictions. 
Also, the RF model’s performance surpassed conventional statistical 

FIGURE 3

Feature importance (RF, ANN and EE classifiers).

TABLE 2 The correlation coefficient of each feature with the other features and the class (90 mRS).

Feature Age Sex Ethnicity mRS_baseline NIHSS_class

Coefficient −0.21 −0.11 0.11 −0.36 −0.49

Feature AF_Hx CAD_Hx CHF_Hx Tobacco_user LoS_days

Coefficient −0.12 −0.07 −0.06 0.13 −0.31

Feature BMI_class DM HTN Dyslipidemia Prior_stroke

Coefficient −0.07 −0.05 −0.07 0.05 −0.10

Feature Adm_location Pneumonia_HAI UTI_HAI Stroke type (Diagnosis) Class

Coefficient 0.07 −0.29 −0.22 −0.21 1
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methods heavily relying on logistic regression to predict disease 
outcomes, where AUC is typically <0.8 (11, 45, 46).

Past studies have shown that predicting the 90-day prognosis is 
influenced by factors such as stroke severity, sex, age, stroke type, mRS 
and NIHSS scores at admission and discharge, body mass index 
(BMI), comorbidities, smoking history, and in-hospital length of stay 
(9, 11, 12, 14). In this study, we  identified several predictors and 
ranked them based on their importance, as presented in Figure 7. 
Predictor importance is determined by the variable’s impact on the 
model’s ability to predict the outcome, with the most influential 
predictor ranked first. Subsequently, other variables are ranked relative 
to the most influential predictor (47).

This study identified the stroke type as the strongest predictor for 
the 90-day prognosis. In our secondary analysis, we found that 59% 
of patients with ICH had unfavorable mRS at the 90-day follow-up, 
while only 31.5% of patients with IS had unfavorable outcomes (value 
of p < 0.05). This indicates that ICH serves as an early predictor of an 
unfavorable prognosis, aligning with previous research that associates 
ICH with adverse outcomes, particularly mortality, when compared 
to IS (48). Furthermore, the severity of presentation at the hospital was 
higher for patients diagnosed with ICH. Only 8.9% of IS patients 
presented with an NIHSS score greater than 16, whereas 39.8% of ICH 
patients had a higher severity score (value of p < 0.05). Moreover, the 
occurrence of hospital-acquired UTI and pneumonia emerged as 
strong predictors for stroke patient prognosis. Stroke patients are 
known to be at significant risk of infections during hospitalization, 
which can worsen their functional outcomes (49). The study revealed 
that 88.1% of patients who experienced hospital-acquired UTI and 
90% of those who developed hospital-acquired pneumonia had an 
unfavorable 90-day mRS (value of p < 0.05).

Admission location significantly influenced the 90-day prognosis. 
Among patients admitted to the critical care unit, 77.9% had an 
unfavorable prognosis, contrasting with 33.8 and 26.3% in the stroke 

unit and other units, respectively (value of p < 0.05). This relationship 
might be  associated with factors like the severity of presentation, 
leading to critical care unit admissions. 64% of critical care unit 
patients had NIHSS score > 16 compared to 8.3 and 5.8% in the stroke 
unit and general scope units, respectively (value of p < 0.05). 
Additionally, a majority of critical care unit patients were diagnosed 
with ICH (61.6% vs. 38.4%), explaining the worse prognosis compared 
to other admission locations. The literature supports that specialized 
stroke units lead to favorable outcomes (50, 51), but patients in critical 
care units tend to have poorer prognoses (52).

Similar to previous research, the LOS was significantly correlated 
with the 90-day mRS (12). Patients with unfavorable 90-day mRS had 
an average LOS of 10.3 days, compared to 4.4 days for those with 
favorable outcomes (value of p < 0.05).

The study revealed that smoking history plays a role in predicting 
the 90-day prognosis. Surprisingly, individuals with a history of 
tobacco consumption had a more favorable prognosis compared to 
non-smokers. Only 24.1% of tobacco users had an unfavorable 90-day 
mRS, while 39.4% of non-smokers had unfavorable outcomes (value 
of p < 0.05). This interesting phenomenon is known as the tobacco 
paradox in stroke, where smokers exhibit more favorable outcomes 
than non-smokers (53). Some researchers attribute this paradox to the 
age difference between the smoker and non-smoker groups. In other 
words, “the more you smoke, the earlier you stroke and the longer 
you have to cope” (53). Consistent with previous research, this study 
found that tobacco consumers had a mean age of 51, whereas 
non-smokers had a mean age of 55 (value of p < 0.05). This finding 

FIGURE 4

Correlation heat map. Strong positive correlation is represented by 
blue, strong negative correlation by red, and a lack of color denotes 
a weak correlation.

TABLE 3 Cross-analysis of the best features’ qualities of four feature 
selection methods, (✓) means the feature is selected by the method, and 
(×) otherwise.

Feature Correlation RF ANN EE

NIHSS at 

admission

✓Strong ✓ × ×

Age ✓Moderate × × ✓

Pneumonia ✓Moderate ✓ ✓ ✓

Pre-stroke mRS ✓Moderate × × ×

LoS ✓Moderate ✓ ✓ ✓

UTI ✓Moderate × ✓ ✓

Stroke type ✓Moderate ✓ ✓ ✓

Sex × Weak × × ✓

Ethnicity × Weak × × ×

BMI × Weak × × ×

DM × Weak ✓ ✓ ×

HTN × Weak ✓ ✓ ×

Dyslipidemia × Weak ✓ ✓ ✓

Prior stroke × Weak ✓ ✓ ✓

AF × Weak ✓ ✓ ✓

CAD × Weak ✓ ✓ ✓

CHF × Weak ✓ ✓ ✓

Tobacco use × Weak ✓ ✓ ✓

Admission 

location

× Weak ✓ ✓ ✓
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shed light on the complex relationship between smoking history, age, 
and stroke prognosis.

Regarding comorbidities, the study found that, apart from 
dyslipidemia, patients with CHF, CAD, AF, prior stroke, HTN, and 
DM were more prone to poorer 90-day prognosis (69.6% vs. 35.9, 45% 
vs. 35, 60.7% vs. 34.8, 49.5% vs. 34.5, 38.2% vs. 30.4, 38.5% vs. 33.5% 
respectively) with a value of p < 0.05. These findings align with much 
of the past research (11, 14, 48). Dyslipidemia, known as a major risk 
factor for developing stroke and affecting stroke outcomes (54), 
showed an interesting result in this study. Patients with dyslipidemia 
were found to be less prone to unfavorable 90-day mRS, with 33.4% 
compared to 38.4% for non-dyslipidemia patients (value of p < 0.05). 
In a meta-analysis that studied the impact of several comorbidities on 
stroke outcomes, particularly recurrence, dyslipidemia turned to have 
insignificant relationship (55). It’s important to consider the specific 
characteristics and interactions within the study population when 
interpreting the impact of dyslipidemia on stroke outcomes.

Consistent with existing literature, the severity of stroke, as 
measured by NIHSS, is a strong predictor of stroke outcomes and 
prognosis (9, 11, 14). This study corroborates these findings, revealing 
that higher admission NIHSS scores are associated with an elevated 
risk of unfavorable 90-day mRS. Specifically, 85.4% of patients with 
severe NIHSS scores (>16) had unfavorable 90-day mRS, in contrast 
to 27.5% of those with NIHSS scores <16 (value of p < 0.05). 

Furthermore, the mRS prior to stroke onset, collected from family 
members and calculated by treating physicians, plays a significant role 
in predicting prognosis. Patients with mRS > 2 before the latest stroke 
onset were more likely to have an unfavorable 90-day mRS. Notably, 
92.8% of patients with mRS > 2 prior to stroke onset had unfavorable 
mRS at 90 days, compared to 38.5% of those with mRS ≤ 2 (10, 12).

Ethnicity also imposes a significant risk of stroke development 
among certain groups (56). In this study, patients belonging to the 
MENA region had a 42.5% risk of unfavorable 90-day mRS, whereas 
patients from South-Asia, South-East Asia, and other ethnicities had 
percentages of 32.3, 33.9, and 30.6%, respectively, (value of p < 0.05). 
Interestingly, Qatari patients had the highest risk of unfavorable 
90-day mRS compared to all other patients, with 48.7% versus 33.3% 
(value of p < 0.05). This observation may be  attributed to Qatar’s 
unique demographic structure, where the majority of the population 
comprises, expatriates living and working in Qatar (4, 24). 
Consequently, they tend to be  significantly younger than Qatari 
patients at the time of stroke presentation, with a mean age of 
64 ± 14 years compared to 52.8 ± 12 years (value of p < 0.05).

Patient sex plays a significant role in predicting stroke prognosis 
(9, 12). This study found that 46.3% of female patients had unfavorable 
90-day mRS, compared to 33.5% of male patients (value of p < 0.05). 
Although there was no significant difference in stroke severity 
between male and female patients, the mean age of female patients 
was significantly higher than that of male patients (59.5 ± 16 years vs. 
53 ± 13 years, value of p < 0.05). This finding is consistent with previous 
research conducted in Qatar (57). Age, as in previous studies, was 
found to significantly predict stroke prognosis (11). The study found 
that the average age of stroke patients with unfavorable 90-day mRS 
was significantly higher than the average age of those with a favorable 
mRS; 58 ± 15 years vs. 52 ± 12 years (value of p < 0.05). This further 

TABLE 4 Accuracy results of different models, using 5-fold cross-validation,

Model Min. 1stQu. Median Mean 3rdQu. Max.

CART 0.763 0.767 0.773 0.784 0.808 0.810

LDA 0.800 0.808 0.812 0.812 0.815 0.826

SVM 0.803 0.813 0.814 0.819 0.826 0.838

KNN 0.789 0.790 0.805 0.804 0.817 0.818

RF 0.816 0.825 0.828 0.829 0.834 0.844

ANN 0.809 0.818 0.827 0.826 0.836 0.840

NaiveBayes 0.772 0.776 0.778 0.777 0.779 0.782

AdaBoost 0.796 0.797 0.813 0.809 0.816 0.823

EasyEnsemble 0.816 0.819 0.828 0.826 0.832 0.834

FIGURE 5

Box and whisker plots for classifiers’ comparison across 5-fold cross-
validation.

TABLE 5 prediction results using 5-fold cross validation,

Encoding Average 
Accuracy

F1 AUC

EE One-hot 0.816779 0.853147 0.891296

RF 0.819463 0.861981 0.879417

ANN 0.810738 0.857576 0.877465

EE Factorized 0.816779 0.853147 0.891296

RF 0.817450 0.859938 0.881802

ANN 0.812752 0.859587 0.882489
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emphasizes the importance of considering age as a relevant factor in 
early predicting stroke outcomes.

Body Mass Index (BMI) was excluded in the model training and 
testing phase as it ranked as one of the weakest features (WF0) and 
was not prioritized by any feature selection methods. Including BMI 
led to a significant decline in system performance. Additionally, 
around 5% of included records had missing BMI values, and training 
models on approximate or hypothesized data in the medical field can 
distort predictive performance, impacting clinical decision-making 
(58, 59). Thus, BMI was not considered in the final predictive model. 
Another option is to exclude all the instances where the BMI is 
missing. Here we eliminated 393 instances with BMI = 0 from the 
dataset. We  found that the predictive performance, as shown in 
Table 6, was marginally lower than when the full feature was excluded. 
We acknowledge the significance of quantifying the influence of data 
handling decisions on model performance, and we have recorded 
these findings to demonstrate the trade-off between removing the 
feature that has missing data and preserving predictive accuracy. 
However, this could be a dilemma: which to remove? the missing data 
instances? Or the entire feature? The first option eliminates a number 
of instances that may be significant to the learning process, whereas 
the second option eliminates a feature that may be important to the 
learning process. As a result, we believe that answering such a question 
is primarily dependent on the dataset investigated; in our dataset, 
we found that it is preferable to delete the entire feature from the final 
prediction system.

From another angle, this study demonstrates that the Random 
Forest (RF) model outperformed the other tested models, achieving 
maximum accuracy and excellent discrimination power (AUC > 0.8). 

This promising finding suggests that the RF model can be deployed in 
clinical settings to early predict the 90-day prognosis, enabling care 
providers to devise personalized plans that enhance preventive 
measures and ensure better quality of life for stroke patients.

The RF model demonstrated superior performance compared to 
conventional statistical methods, which often rely on logistic 
regression with AUCs typically <0.8 (11, 45, 46). The powerful 
predictive capacity of machine learning makes prospective validation 
of the RF algorithm essential to assess its real-world performance in 
clinical settings (60). External validation remains a critical step for 
clinical implementation of recent machine learning models. This study 
lays the groundwork for further validation and potential real-world 
deployment of the RF model, opening new avenues for stroke 
prognosis prediction and patient care. Future prospective deployment 
and validation should prioritize high-quality, well-described databases 
with sufficient sample sizes, comprehensive patient tracking, and 
clinically significant endpoints.

Limitations

The study has several limitations that may present opportunities 
for future research in this field. The study’s predictive model 
demonstrated impressive performance in predicting stroke outcomes, 
providing valuable insights into prognosis prediction. However, to 
ensure the reliability and applicability of the model, external validation 
in diverse patient populations is crucial. This external validation will 
test the model’s robustness and verify its effectiveness across different 
healthcare settings and stroke cases.

FIGURE 6

AUC results of the chosen classifiers using one-hot encoding and factorized encoding.

TABLE 6 The RF prediction results on different subsets of features.

Feature set TP rate FP rate Precision Recall F-Measure AUC

SFA4 0.710 0.340 0.709 0.710 0.709 0.761

SFA3 0.740 0.308 0.739 0.740 0.739 0.797

Removing WF12&WF0 0.765 0.289 0.762 0.765 0.763 0.825

Removing WF0 0.827 0.220 0.825 0.827 0.825 0.893

All features removing the zero BMI records 0.822 0.219 0.821 0.822 0.821 0.892
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Data quality issues led to the exclusion of certain variables from 
the prediction system. While this was necessary to maintain data 
integrity, it is important to recognize that excluding BMI, that has 
been found in previous research to play a significant role in predicting 
stroke outcomes. Exploring ways to address data quality and 
incorporate important variables like BMI in future studies may 
enhance the model’s predictive capabilities.

Moreover, the study’s context in Qatar might limit its generalizability 
to other regions with different demographic and healthcare 
characteristics. To increase the model’s applicability worldwide, similar 
studies should be  conducted in diverse populations, considering 
regional variations in stroke risk factors and healthcare practices.

In summary, despite its promising performance, the study’s 
predictive model needs further validation, inclusion of imaging data, 
and consideration of variables excluded due to data quality issues to 
ensure its effectiveness and applicability in diverse clinical settings and 
populations. Addressing these limitations will contribute to the 
advancement of stroke prognosis prediction, ultimately leading to 
improved patient care and outcomes.

Conclusion

The results of this study highlight the superiority of the Random 
Forest (RF) model over other tested models, showcasing its remarkable 
accuracy and discrimination power (AUC 0.893). This promising finding 
opens avenues for deploying the RF model in clinical settings to early 
predict 90-day prognosis, enabling personalized care plans that enhance 
preventive measures and improve the quality of life for stroke patients.

The RF model’s performance surpasses conventional statistical 
methods, such as logistic regression, commonly yielding lower AUC 
values. Embracing the powerful predictive capacity of machine 
learning, it is imperative to prospectively validate the RF algorithm to 
assess its real-world clinical performance. This validation process will 
provide essential insights into the model’s effectiveness, reliability, and 
potential for practical implementation in clinical settings. By 
rigorously examining its predictive capabilities, full potential of the RF 
model can be unlocked, advancing stroke prognosis prediction and 
enhancing patient care outcomes.

The study lays the foundation for further validation and potential 
real-world deployment of the RF model, representing a significant step 
forward in stroke prognosis prediction and patient care. By embracing 
machine learning predictive capacity, healthcare providers can better 
tailor interventions and optimize outcomes for stroke patients, 
ultimately advancing the field of stroke research and treatment.
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Predictor importance in RF.
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